Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.240
IF5.240
IF 5-year value: 5.768
IF 5-year
5.768
CiteScore value: 8.9
CiteScore
8.9
SNIP value: 1.713
SNIP1.713
IPP value: 5.53
IPP5.53
SJR value: 3.18
SJR3.18
Scimago H <br class='widget-line-break'>index value: 71
Scimago H
index
71
h5-index value: 51
h5-index51
Volume 11, issue 5
Geosci. Model Dev., 11, 1849–1871, 2018
https://doi.org/10.5194/gmd-11-1849-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
Geosci. Model Dev., 11, 1849–1871, 2018
https://doi.org/10.5194/gmd-11-1849-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Model description paper 14 May 2018

Model description paper | 14 May 2018

Cohesive and mixed sediment in the Regional Ocean Modeling System (ROMS v3.6) implemented in the Coupled Ocean–Atmosphere–Wave–Sediment Transport Modeling System (COAWST r1234)

Christopher R. Sherwood et al.

Related authors

Spatiotemporal variability of light attenuation and net ecosystem metabolism in a back-barrier estuary
Neil K. Ganju, Jeremy M. Testa, Steven E. Suttles, and Alfredo L. Aretxabaleta
Ocean Sci., 16, 593–614, https://doi.org/10.5194/os-16-593-2020,https://doi.org/10.5194/os-16-593-2020, 2020
Short summary
Spatial distribution of water level impacting back-barrier bays
Alfredo L. Aretxabaleta, Neil K. Ganju, Zafer Defne, and Richard P. Signell
Nat. Hazards Earth Syst. Sci., 19, 1823–1838, https://doi.org/10.5194/nhess-19-1823-2019,https://doi.org/10.5194/nhess-19-1823-2019, 2019
Short summary
Spatiotemporal variability of light attenuation and net ecosystem metabolism in a back-barrier estuary
Neil K. Ganju, Jeremy M. Testa, Steven E. Suttles, and Alfredo L. Aretxabaleta
Biogeosciences Discuss., https://doi.org/10.5194/bg-2018-335,https://doi.org/10.5194/bg-2018-335, 2018
Revised manuscript not accepted
Short summary
Sensitivity analysis of a coupled hydrodynamic-vegetation model using the effectively subsampled quadratures method (ESQM v5.2)
Tarandeep S. Kalra, Alfredo Aretxabaleta, Pranay Seshadri, Neil K. Ganju, and Alexis Beudin
Geosci. Model Dev., 10, 4511–4523, https://doi.org/10.5194/gmd-10-4511-2017,https://doi.org/10.5194/gmd-10-4511-2017, 2017
Short summary
The roles of resuspension, diffusion and biogeochemical processes on oxygen dynamics offshore of the Rhône River, France: a numerical modeling study
Julia M. Moriarty, Courtney K. Harris, Katja Fennel, Marjorie A. M. Friedrichs, Kehui Xu, and Christophe Rabouille
Biogeosciences, 14, 1919–1946, https://doi.org/10.5194/bg-14-1919-2017,https://doi.org/10.5194/bg-14-1919-2017, 2017
Short summary

Related subject area

Oceanography
Tracking water masses using passive-tracer transport in NEMO v3.4 with NEMOTAM: application to North Atlantic Deep Water and North Atlantic Subtropical Mode Water
Dafydd Stephenson, Simon A. Müller, and Florian Sévellec
Geosci. Model Dev., 13, 2031–2050, https://doi.org/10.5194/gmd-13-2031-2020,https://doi.org/10.5194/gmd-13-2031-2020, 2020
Short summary
Sensitivity study on the main tidal constituents of the Gulf of Tonkin by using the frequency-domain tidal solver in T-UGOm
Violaine Piton, Marine Herrmann, Florent Lyard, Patrick Marsaleix, Thomas Duhaut, Damien Allain, and Sylvain Ouillon
Geosci. Model Dev., 13, 1583–1607, https://doi.org/10.5194/gmd-13-1583-2020,https://doi.org/10.5194/gmd-13-1583-2020, 2020
Short summary
DINCAE 1.0: a convolutional neural network with error estimates to reconstruct sea surface temperature satellite observations
Alexander Barth, Aida Alvera-Azcárate, Matjaz Licer, and Jean-Marie Beckers
Geosci. Model Dev., 13, 1609–1622, https://doi.org/10.5194/gmd-13-1609-2020,https://doi.org/10.5194/gmd-13-1609-2020, 2020
Short summary
Mitigation of model bias influences on wave data assimilation with multiple assimilation systems using WaveWatch III v5.16 and SWAN v41.20
Jiangyu Li and Shaoqing Zhang
Geosci. Model Dev., 13, 1035–1054, https://doi.org/10.5194/gmd-13-1035-2020,https://doi.org/10.5194/gmd-13-1035-2020, 2020
Short summary
Doppio – A ROMS-based Circulation Model for the Mid-Atlantic Bight and Gulf of Maine: Configuration and comparison to integrated coastal observing network observations
Alexander Gordon Lopez, John Lewis Wilkin, and Julia Chefter Levin
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-359,https://doi.org/10.5194/gmd-2019-359, 2020
Revised manuscript accepted for GMD
Short summary

Cited articles

Amoudry, L. O. and Souza, A. J.: Deterministic coastal morphological and sediment transport modeling: a review and discussion, Rev. Geophys., 49, RG2002, https://doi.org/10.1029/2010RG000341, 2011.
Ariathurai, R. and Arulanandan, K.: Erosion Rates of Cohesive Soils, Journal of Hydraulic Division, ASCE, 104, 279–283, 1978.
Booij, N., Ris, R. C., and Holthuijsen, L. H.: A third-generation wave model for coastal regions: 1. Model description and validation, J. Geophys. Res., 104, 7649–7666, https://doi.org/10.1029/98JC02622, 1999.
Boudreau, B. P.: Is burial velocity a master parameter for bioturbation?, Geochim. Cosmochim. Ac., 58, 1243–1250, 1994.
Boudreau, B. P.: Diagenetic Models and Their Implementation, Springer-Verlag, Berlin, 414 pp., 1997.
Publications Copernicus
Download
Short summary
Cohesive sediment (mud) is ubiquitous in the world's coastal regions, but its behavior is complicated and often oversimplified by computer models. This paper describes extensions to a widely used open-source coastal ocean model that allow users to simulate important components of cohesive sediment transport.
Cohesive sediment (mud) is ubiquitous in the world's coastal regions, but its behavior is...
Citation