Articles | Volume 11, issue 5
https://doi.org/10.5194/gmd-11-1849-2018
https://doi.org/10.5194/gmd-11-1849-2018
Model description paper
 | 
14 May 2018
Model description paper |  | 14 May 2018

Cohesive and mixed sediment in the Regional Ocean Modeling System (ROMS v3.6) implemented in the Coupled Ocean–Atmosphere–Wave–Sediment Transport Modeling System (COAWST r1234)

Christopher R. Sherwood, Alfredo L. Aretxabaleta, Courtney K. Harris, J. Paul Rinehimer, Romaric Verney, and Bénédicte Ferré

Related authors

Projecting management-relevant change of undeveloped coastal barriers with the Mesoscale Explicit Ecogeomorphic Barrier model (MEEB) v1.0
Ian R. B. Reeves, Andrew D. Ashton, Erika E. Lentz, Christopher R. Sherwood, Davina L. Passeri, and Sara L. Zeigler
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-232,https://doi.org/10.5194/gmd-2024-232, 2025
Preprint under review for GMD
Short summary

Related subject area

Oceanography
A wave-resolving two-dimensional vertical Lagrangian approach to model microplastic transport in nearshore waters based on TrackMPD 3.0
Isabel Jalón-Rojas, Damien Sous, and Vincent Marieu
Geosci. Model Dev., 18, 319–336, https://doi.org/10.5194/gmd-18-319-2025,https://doi.org/10.5194/gmd-18-319-2025, 2025
Short summary
HOTSSea v1: a NEMO-based physical Hindcast of the Salish Sea (1980–2018) supporting ecosystem model development
Greig Oldford, Tereza Jarníková, Villy Christensen, and Michael Dunphy
Geosci. Model Dev., 18, 211–237, https://doi.org/10.5194/gmd-18-211-2025,https://doi.org/10.5194/gmd-18-211-2025, 2025
Short summary
DalROMS-NWA12 v1.0, a coupled circulation–ice–biogeochemistry modelling system for the northwest Atlantic Ocean: development and validation
Kyoko Ohashi, Arnaud Laurent, Christoph Renkl, Jinyu Sheng, Katja Fennel, and Eric Oliver
Geosci. Model Dev., 17, 8697–8733, https://doi.org/10.5194/gmd-17-8697-2024,https://doi.org/10.5194/gmd-17-8697-2024, 2024
Short summary
A revised ocean mixed layer model for better simulating the diurnal variation in ocean skin temperature
Eui-Jong Kang, Byung-Ju Sohn, Sang-Woo Kim, Wonho Kim, Young-Cheol Kwon, Seung-Bum Kim, Hyoung-Wook Chun, and Chao Liu
Geosci. Model Dev., 17, 8553–8568, https://doi.org/10.5194/gmd-17-8553-2024,https://doi.org/10.5194/gmd-17-8553-2024, 2024
Short summary
Evaluating an accelerated forcing approach for improving computational efficiency in coupled ice sheet–ocean modelling
Qin Zhou, Chen Zhao, Rupert Gladstone, Tore Hattermann, David Gwyther, and Benjamin Galton-Fenzi
Geosci. Model Dev., 17, 8243–8265, https://doi.org/10.5194/gmd-17-8243-2024,https://doi.org/10.5194/gmd-17-8243-2024, 2024
Short summary

Cited articles

Amoudry, L. O. and Souza, A. J.: Deterministic coastal morphological and sediment transport modeling: a review and discussion, Rev. Geophys., 49, RG2002, https://doi.org/10.1029/2010RG000341, 2011.
Ariathurai, R. and Arulanandan, K.: Erosion Rates of Cohesive Soils, Journal of Hydraulic Division, ASCE, 104, 279–283, 1978.
Booij, N., Ris, R. C., and Holthuijsen, L. H.: A third-generation wave model for coastal regions: 1. Model description and validation, J. Geophys. Res., 104, 7649–7666, https://doi.org/10.1029/98JC02622, 1999.
Boudreau, B. P.: Is burial velocity a master parameter for bioturbation?, Geochim. Cosmochim. Ac., 58, 1243–1250, 1994.
Boudreau, B. P.: Diagenetic Models and Their Implementation, Springer-Verlag, Berlin, 414 pp., 1997.
Download
Short summary
Cohesive sediment (mud) is ubiquitous in the world's coastal regions, but its behavior is complicated and often oversimplified by computer models. This paper describes extensions to a widely used open-source coastal ocean model that allow users to simulate important components of cohesive sediment transport.