Articles | Volume 11, issue 5
https://doi.org/10.5194/gmd-11-1849-2018
https://doi.org/10.5194/gmd-11-1849-2018
Model description paper
 | 
14 May 2018
Model description paper |  | 14 May 2018

Cohesive and mixed sediment in the Regional Ocean Modeling System (ROMS v3.6) implemented in the Coupled Ocean–Atmosphere–Wave–Sediment Transport Modeling System (COAWST r1234)

Christopher R. Sherwood, Alfredo L. Aretxabaleta, Courtney K. Harris, J. Paul Rinehimer, Romaric Verney, and Bénédicte Ferré

Related authors

Projecting management-relevant change of undeveloped coastal barriers with the Mesoscale Explicit Ecogeomorphic Barrier model (MEEB) v1.0
Ian R. B. Reeves, Andrew D. Ashton, Erika E. Lentz, Christopher R. Sherwood, Davina L. Passeri, and Sara L. Zeigler
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-232,https://doi.org/10.5194/gmd-2024-232, 2025
Preprint under review for GMD
Short summary

Related subject area

Oceanography
Comparing an idealized deterministic–stochastic model (SUP model, version 1) of the tide- and wind-driven sea surface currents in the Gulf of Trieste to high-frequency radar observations
Sofia Flora, Laura Ursella, and Achim Wirth
Geosci. Model Dev., 18, 4685–4712, https://doi.org/10.5194/gmd-18-4685-2025,https://doi.org/10.5194/gmd-18-4685-2025, 2025
Short summary
PIBM 1.0: an individual-based model for simulating phytoplankton acclimation, diversity, and evolution in the ocean
Iria Sala and Bingzhang Chen
Geosci. Model Dev., 18, 4155–4182, https://doi.org/10.5194/gmd-18-4155-2025,https://doi.org/10.5194/gmd-18-4155-2025, 2025
Short summary
An effective communication topology for performance optimization: a case study of the finite-volume wave modeling (FVWAM)
Renbo Pang, Fujiang Yu, Yuanyong Gao, Ye Yuan, Liang Yuan, and Zhiyi Gao
Geosci. Model Dev., 18, 4119–4136, https://doi.org/10.5194/gmd-18-4119-2025,https://doi.org/10.5194/gmd-18-4119-2025, 2025
Short summary
GREAT v1.0: Global Real-time Early Assessment of Tsunamis
Usama Kadri, Ali Abdolali, and Maxim Filimonov
Geosci. Model Dev., 18, 3487–3507, https://doi.org/10.5194/gmd-18-3487-2025,https://doi.org/10.5194/gmd-18-3487-2025, 2025
Short summary
Using automatic calibration to improve the physics behind complex numerical models: an example from a 3D lake model using Delft3D (v6.02.10) and DYNO-PODS (v1.0)
Marina Amadori, Abolfazl Irani Rahaghi, Damien Bouffard, and Marco Toffolon
Geosci. Model Dev., 18, 3473–3486, https://doi.org/10.5194/gmd-18-3473-2025,https://doi.org/10.5194/gmd-18-3473-2025, 2025
Short summary

Cited articles

Amoudry, L. O. and Souza, A. J.: Deterministic coastal morphological and sediment transport modeling: a review and discussion, Rev. Geophys., 49, RG2002, https://doi.org/10.1029/2010RG000341, 2011.
Ariathurai, R. and Arulanandan, K.: Erosion Rates of Cohesive Soils, Journal of Hydraulic Division, ASCE, 104, 279–283, 1978.
Booij, N., Ris, R. C., and Holthuijsen, L. H.: A third-generation wave model for coastal regions: 1. Model description and validation, J. Geophys. Res., 104, 7649–7666, https://doi.org/10.1029/98JC02622, 1999.
Boudreau, B. P.: Is burial velocity a master parameter for bioturbation?, Geochim. Cosmochim. Ac., 58, 1243–1250, 1994.
Boudreau, B. P.: Diagenetic Models and Their Implementation, Springer-Verlag, Berlin, 414 pp., 1997.
Download
Short summary
Cohesive sediment (mud) is ubiquitous in the world's coastal regions, but its behavior is complicated and often oversimplified by computer models. This paper describes extensions to a widely used open-source coastal ocean model that allow users to simulate important components of cohesive sediment transport.
Share