Articles | Volume 11, issue 4
https://doi.org/10.5194/gmd-11-1653-2018
https://doi.org/10.5194/gmd-11-1653-2018
Methods for assessment of models
 | 
27 Apr 2018
Methods for assessment of models |  | 27 Apr 2018

Global sensitivity and uncertainty analysis of an atmospheric chemistry transport model: the FRAME model (version 9.15.0) as a case study

Ksenia Aleksankina, Mathew R. Heal, Anthony J. Dore, Marcel Van Oijen, and Stefan Reis

Related authors

Advanced methods for uncertainty assessment and global sensitivity analysis of an Eulerian atmospheric chemistry transport model
Ksenia Aleksankina, Stefan Reis, Massimo Vieno, and Mathew R. Heal
Atmos. Chem. Phys., 19, 2881–2898, https://doi.org/10.5194/acp-19-2881-2019,https://doi.org/10.5194/acp-19-2881-2019, 2019
Short summary

Related subject area

Atmospheric sciences
A dynamic ammonia emission model and the online coupling with WRF–Chem (WRF–SoilN–Chem v1.0): development and regional evaluation in China
Chuanhua Ren, Xin Huang, Tengyu Liu, Yu Song, Zhang Wen, Xuejun Liu, Aijun Ding, and Tong Zhu
Geosci. Model Dev., 16, 1641–1659, https://doi.org/10.5194/gmd-16-1641-2023,https://doi.org/10.5194/gmd-16-1641-2023, 2023
Short summary
SCIATRAN software package (V4.6): update and further development of aerosol, clouds, surface reflectance databases and models
Linlu Mei, Vladimir Rozanov, Alexei Rozanov, and John P. Burrows
Geosci. Model Dev., 16, 1511–1536, https://doi.org/10.5194/gmd-16-1511-2023,https://doi.org/10.5194/gmd-16-1511-2023, 2023
Short summary
Deep learning models for generation of precipitation maps based on numerical weather prediction
Adrian Rojas-Campos, Michael Langguth, Martin Wittenbrink, and Gordon Pipa
Geosci. Model Dev., 16, 1467–1480, https://doi.org/10.5194/gmd-16-1467-2023,https://doi.org/10.5194/gmd-16-1467-2023, 2023
Short summary
An inconsistency in aviation emissions between CMIP5 and CMIP6 and the implications for short-lived species and their radiative forcing
Robin N. Thor, Mariano Mertens, Sigrun Matthes, Mattia Righi, Johannes Hendricks, Sabine Brinkop, Phoebe Graf, Volker Grewe, Patrick Jöckel, and Steven Smith
Geosci. Model Dev., 16, 1459–1466, https://doi.org/10.5194/gmd-16-1459-2023,https://doi.org/10.5194/gmd-16-1459-2023, 2023
Short summary
On the use of Infrared Atmospheric Sounding Interferometer (IASI) spectrally resolved radiances to test the EC-Earth climate model (v3.3.3) in clear-sky conditions
Stefano Della Fera, Federico Fabiano, Piera Raspollini, Marco Ridolfi, Ugo Cortesi, Flavio Barbara, and Jost von Hardenberg
Geosci. Model Dev., 16, 1379–1394, https://doi.org/10.5194/gmd-16-1379-2023,https://doi.org/10.5194/gmd-16-1379-2023, 2023
Short summary

Cited articles

Aleksankina, K.: Global sensitivity and uncertainty analysis of an atmospheric chemistry transport model: the FRAME model (version 9.15.0) as a case study [Data set], Zenodo, https://doi.org/10.5281/zenodo.1145852, 2018.
Appel, K. W., Gilliland, A. B., Sarwar, G., and Gilliam, R. C.: Evaluation of the Community Multiscale Air Quality (CMAQ) model version 4.5: Sensitivities impacting model performance, Atmos. Environ., 41, 9603–9615, https://doi.org/10.1016/j.atmosenv.2007.08.044, 2007.
AQEG: Linking Emission Inventories and Ambient Measurements, available at: https://uk-air.defra.gov.uk/assets/documents/reports/cat11/1508060906_ DEF-PB14106_Linking_Emissions_ Inventories_And_Ambient_ Measurements_Final.pdf (last access: 9 March 2018), 2015.
Bergin, M. S., Noblet, G. S., Petrini, K., Dhieux, J. R., Milford, J. B., and Harley, R. A.: Formal Uncertainty Analysis of a Lagrangian Photochemical Air Pollution Model, Environ. Sci. Technol., 33, 1116–1126, https://doi.org/10.1021/es980749y, 1999.
Blatman, G. and Sudret, B.: A comparison of three metamodel-based methods for global sensitivity analysis: GP modelling, HDMR and LAR-gPC, Procedia – Soc. Behav. Sci., 2, 7613–7614, https://doi.org/10.1016/j.sbspro.2010.05.143, 2010.
Download
Short summary
Atmospheric chemistry transport models are widely used to underpin policy decisions. We present a global sensitivity and uncertainty analysis approach to understand how uncertainty in input emissions of SO2, NOx, and NH3 drives uncertainties in model outputs, using the FRAME model as an example. We interpret results for input emissions uncertainty ranges reported by the national emissions inventory. Variance-based measures of sensitivity were used to apportion model output uncertainty.