Articles | Volume 11, issue 4
Methods for assessment of models
27 Apr 2018
Methods for assessment of models |  | 27 Apr 2018

Global sensitivity and uncertainty analysis of an atmospheric chemistry transport model: the FRAME model (version 9.15.0) as a case study

Ksenia Aleksankina, Mathew R. Heal, Anthony J. Dore, Marcel Van Oijen, and Stefan Reis

Related authors

Advanced methods for uncertainty assessment and global sensitivity analysis of an Eulerian atmospheric chemistry transport model
Ksenia Aleksankina, Stefan Reis, Massimo Vieno, and Mathew R. Heal
Atmos. Chem. Phys., 19, 2881–2898,,, 2019
Short summary

Related subject area

Atmospheric sciences
Metrics for evaluating the quality in linear atmospheric inverse problems: a case study of a trace gas inversion
Vineet Yadav, Subhomoy Ghosh, and Charles E. Miller
Geosci. Model Dev., 16, 5219–5236,,, 2023
Short summary
Improved representation of volcanic sulfur dioxide depletion in Lagrangian transport simulations: a case study with MPTRAC v2.4
Mingzhao Liu, Lars Hoffmann, Sabine Griessbach, Zhongyin Cai, Yi Heng, and Xue Wu
Geosci. Model Dev., 16, 5197–5217,,, 2023
Short summary
Use of threshold parameter variation for tropical cyclone tracking
Bernhard M. Enz, Jan P. Engelmann, and Ulrike Lohmann
Geosci. Model Dev., 16, 5093–5112,,, 2023
Short summary
Passive-tracer modelling at super-resolution with Weather Research and Forecasting – Advanced Research WRF (WRF-ARW) to assess mass-balance schemes
Sepehr Fathi, Mark Gordon, and Yongsheng Chen
Geosci. Model Dev., 16, 5069–5091,,, 2023
Short summary
The High-resolution Intermediate Complexity Atmospheric Research (HICAR v1.1) model enables fast dynamic downscaling to the hectometer scale
Dylan Reynolds, Ethan Gutmann, Bert Kruyt, Michael Haugeneder, Tobias Jonas, Franziska Gerber, Michael Lehning, and Rebecca Mott
Geosci. Model Dev., 16, 5049–5068,,, 2023
Short summary

Cited articles

Aleksankina, K.: Global sensitivity and uncertainty analysis of an atmospheric chemistry transport model: the FRAME model (version 9.15.0) as a case study [Data set], Zenodo,, 2018.
Appel, K. W., Gilliland, A. B., Sarwar, G., and Gilliam, R. C.: Evaluation of the Community Multiscale Air Quality (CMAQ) model version 4.5: Sensitivities impacting model performance, Atmos. Environ., 41, 9603–9615,, 2007.
AQEG: Linking Emission Inventories and Ambient Measurements, available at: DEF-PB14106_Linking_Emissions_ Inventories_And_Ambient_ Measurements_Final.pdf (last access: 9 March 2018), 2015.
Bergin, M. S., Noblet, G. S., Petrini, K., Dhieux, J. R., Milford, J. B., and Harley, R. A.: Formal Uncertainty Analysis of a Lagrangian Photochemical Air Pollution Model, Environ. Sci. Technol., 33, 1116–1126,, 1999.
Blatman, G. and Sudret, B.: A comparison of three metamodel-based methods for global sensitivity analysis: GP modelling, HDMR and LAR-gPC, Procedia – Soc. Behav. Sci., 2, 7613–7614,, 2010.
Short summary
Atmospheric chemistry transport models are widely used to underpin policy decisions. We present a global sensitivity and uncertainty analysis approach to understand how uncertainty in input emissions of SO2, NOx, and NH3 drives uncertainties in model outputs, using the FRAME model as an example. We interpret results for input emissions uncertainty ranges reported by the national emissions inventory. Variance-based measures of sensitivity were used to apportion model output uncertainty.