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Abstract. Atmospheric chemistry transport models
(ACTMs) are widely used to underpin policy decisions
associated with the impact of potential changes in emissions
on future pollutant concentrations and deposition. It is
therefore essential to have a quantitative understanding of
the uncertainty in model output arising from uncertainties
in the input pollutant emissions. ACTMs incorporate com-
plex and non-linear descriptions of chemical and physical
processes which means that interactions and non-linearities
in input–output relationships may not be revealed through
the local one-at-a-time sensitivity analysis typically used.
The aim of this work is to demonstrate a global sensitivity
and uncertainty analysis approach for an ACTM, using
as an example the FRAME model, which is extensively
employed in the UK to generate source–receptor matrices
for the UK Integrated Assessment Model and to estimate
critical load exceedances. An optimised Latin hypercube
sampling design was used to construct model runs within
±40 % variation range for the UK emissions of SO2, NOx ,
and NH3, from which regression coefficients for each input–
output combination and each model grid (> 10 000 across
the UK) were calculated. Surface concentrations of SO2,
NOx , and NH3 (and of deposition of S and N) were found to
be predominantly sensitive to the emissions of the respective
pollutant, while sensitivities of secondary species such as
HNO3 and particulate SO2−

4 , NO−3 , and NH+4 to pollutant
emissions were more complex and geographically variable.
The uncertainties in model output variables were propagated
from the uncertainty ranges reported by the UK National
Atmospheric Emissions Inventory for the emissions of SO2,

NOx , and NH3 (±4, ±10, and ±20 % respectively). The
uncertainties in the surface concentrations of NH3 and NOx
and the depositions of NHx and NOy were dominated by the
uncertainties in emissions of NH3, and NOx respectively,
whilst concentrations of SO2 and deposition of SOy were
affected by the uncertainties in both SO2 and NH3 emis-
sions. Likewise, the relative uncertainties in the modelled
surface concentrations of each of the secondary pollutant
variables (NH+4 , NO−3 , SO2−

4 , and HNO3) were due to
uncertainties in at least two input variables. In all cases the
spatial distribution of relative uncertainty was found to be
geographically heterogeneous. The global methods used
here can be applied to conduct sensitivity and uncertainty
analyses of other ACTMs.

1 Introduction

Atmospheric chemistry transport models (ACTMs) provide
scientific support for policy development. It is therefore im-
portant to have a quantitative understanding of the levels
of uncertainty associated with model outputs (AQEG, 2015;
Frost et al., 2013; Rypdal and Winiwarter, 2001). Sensitiv-
ity and uncertainty analyses are both used in this regard.
Uncertainty analysis is applied to quantify the propagation
of uncertainties of single or multiple inputs through to a
model output, whilst sensitivity analysis is used to investi-
gate input–output relationships and to apportion the varia-
tion in model output to the different inputs. However, due to
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the complexity of ACTMs, the relationship between model
inputs and outputs is not analytically tractable, so both quan-
tities must be estimated by sampling model inputs according
to an experimental design and undertaking multiple model
simulations (Dean et al., 2015; Norton, 2015; Saltelli et al.,
2000; Saltelli and Annoni, 2010).

Typically, model assessment studies focus on uncertainties
in the model parameter values (Derwent, 1987; Konda et al.,
2010; De Simone et al., 2014) and model-specific structure
(Simpson et al., 2003; Thompson and Selin, 2012). However,
for ACTMs the uncertainty in the model input emissions data
could be dominating; for example, previous dispersion model
uncertainty studies identified input emissions as a primary
source of uncertainty in model outputs (Bergin et al., 1999;
Hanna et al., 2007; Sax and Isakov, 2003). It is also the case
that a major role of ACTMs is to estimate the impact of po-
tential future changes in emissions on atmospheric composi-
tion (Boldo et al., 2011; Crippa et al., 2016; Heal et al., 2013;
Vieno et al., 2016; Xing et al., 2011; Zhang et al., 2010).

Thus, the focus of this study is to demonstrate a systematic
approach for quantifying model output sensitivity and uncer-
tainty as a function of the variation in model input emissions.
We used the Fine Resolution Atmospheric Multi-pollutant
Exchange (FRAME) model as a case study. FRAME is a La-
grangian model that, at a 5 km× 5 km horizontal resolution
over the UK, outputs annual average surface concentrations
of sulfur dioxide (SO2), nitrogen oxides (NOx), ammonia
(NH3), nitric acid (HNO3), particulate ammonium (NH+4 ),
sulfate (SO2−

4 ), and nitrate (NO−3 ), together with dry and
wet deposition of oxidised sulfur (SOy), oxidised nitrogen
(NOy), and reduced nitrogen (NHx) (Dore et al., 2012; Mate-
jko et al., 2009; Singles et al., 1998). The model is exten-
sively used to provide policy support including generation
of source–receptor matrices for the UK Integrated Assess-
ment Model (UKIAM) and the estimation of critical load ex-
ceedances (Matejko et al., 2009; Oxley et al., 2013). Source–
receptor matrices link concentration and deposition with in-
dividual emission sources and are used to automate proce-
dures to estimate the impact of future emission reduction sce-
narios. Integrated assessment modelling incorporates techni-
cal emissions abatement costs with cost–benefit analysis and
source–receptor data to indicate cost-effective solutions to
protect natural ecosystems from acidic and nitrogen depo-
sition above defined critical thresholds and to protect human
health from particulate concentrations (Oxley et al., 2003,
2013).

FRAME uses emissions input data from the UK National
Atmospheric Emissions Inventory (NAEI; http://naei.beis.
gov.uk/, last access: 30 October 2016), which are compiled
following the international Guidelines for Reporting Emis-
sions and Projections Data under the Convention on Long-
range Transboundary Air Pollution (United Nations Eco-
nomic Commission for Europe, 2015). We used the uncer-
tainties published by the NAEI in the Informative Inventory

Report (Misra et al., 2015) as the foundation of the uncer-
tainty propagation for the FRAME concentration and depo-
sition outputs with respect to UK emissions of SO2, NOx ,
and NH3. The uncertainty ranges for different pollutants re-
ported by the NAEI are estimated using a Monte Carlo tech-
nique which corresponds to the IPCC Tier 2 approach (IPCC,
2006). In this approach, uncertainty ranges for each source
for both emission factor and activity statistics are associated
with a probability distribution and further used as inputs in a
stochastic simulation which calculates output distributions of
total UK emissions for each pollutant. The uncertainties are
expressed as plus or minus half the confidence interval width
relative to the estimated emissions value.

Previously, local one-at-a-time (OAT) sensitivity analy-
sis has been used to investigate ACTM sensitivity because
it is less computationally demanding than global sensitivity
analysis that requires a large number of simultaneous pertur-
bations of all inputs of interest. However, there are signifi-
cant disadvantages associated with OAT analysis: the inter-
actions between the input parameters and non-linearities in
the model response cannot be identified; additionally, as the
number of input parameters increases, the fraction of param-
eter space investigated tends to 0 (Jimenez and Landgrebe,
1998; Saltelli and Annoni, 2010). Therefore, local OAT sen-
sitivity analysis is only applicable when the effects of the
different inputs are all independent of each other and model
response is linear for the range of investigated inputs. Many
previous publications that include ACTM sensitivity analysis
use the OAT approach but fail to acknowledge its limitations
(Appel et al., 2007; Borge et al., 2008; Capaldo and Pandis,
1997; Labrador et al., 2005; Makar et al., 2009).

Hence, this study focuses on demonstrating the use of
global methods capable of revealing non-linearity in the
model response and the presence of interactions between in-
puts in addition to revealing the spatial pattern of the model
response to changes in the input emissions. Global sensitivity
and uncertainty analyses have been applied in many earth sci-
ence fields such as hydrological modelling (Shin et al., 2013;
Yatheendradas et al., 2008), ecological modelling (Lagerwall
et al., 2014; Makler-Pick et al., 2011; Song et al., 2012), and
atmospheric aerosol modelling (Carslaw et al., 2013; Chen
et al., 2013; Lee et al., 2011). Increasing computational re-
source means this approach is now starting to be applied to
ACTMs (Christian et al., 2017).

In a global sensitivity analysis a sample space is created
for all inputs under investigation from which a set of com-
binations of model inputs for different model runs are cho-
sen. The sampling design for model inputs for uncertainty
and sensitivity analysis must balance the needs of covering
the full multidimensional input parameter space at sufficient
density to allow the characterisation of any non-linearities
and interactions in the model response with a small enough
number of samples for the total number of model runs to re-
main computationally tractable. Simple random sampling is
conceptually the simplest sampling technique but has low ef-
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ficiency compared to other sampling approaches and tends
to lead to clusters and gaps in coverage of the input space
(Saltelli et al., 2008). Likewise, full or fractional factorial de-
signs (Box and Hunter, 1961) do not allow an effective explo-
ration of the whole input space because for more than a few
levels of each input, the number of model runs becomes very
large. Quasi-random sampling, of which the Sobol’ sequence
(Sobol’, 1967, 1976; Sobol’ and Levitan, 1999) is a popular
choice for variance-based sensitivity analysis, may not work
well when the number of sampling points is small (Saltelli et
al., 2008). Therefore, in this work, Latin hypercube sampling
(LHS) (McKay et al., 1979), which is a stratified space-filling
sampling technique, was used. Advances have been made to
optimise the space-filling properties of LHS including max-
imin sampling (Johnson et al., 1990; Morris and Mitchell,
1995) and integrated mean squared-error minimisation (Park,
1994).

In summary, this work demonstrates the application of
global uncertainty and sensitivity analysis to an ACTM us-
ing the FRAME model as an example.

2 Methods

2.1 Model description

The FRAME model is a Lagrangian model that calculates an-
nual average surface concentrations of SO2, NOx , NH3, and
HNO3, particulate NH+4 , SO2−

4 , and NO−3 , and dry and wet
deposition of SOy , NOy , and NHx at 5 km× 5 km horizon-
tal resolution over the UK (Dore et al., 2012; Fournier et al.,
2002; Matejko et al., 2009; Singles et al., 1998). This spa-
tial resolution corresponds to > 10 000 model grid squares
over the UK land area. The air column contains 33 verti-
cal layers of varying thickness from 1 m at the surface to
100 m at the top of the mixing layer. The vertical diffusion
between layers is calculated usingK-theory. The air columns
move from the boundary of the domain along straight-line
trajectories with varying starting angles at a 1◦ resolution.
The trajectories are defined by an annual wind rose and
annually averaged wind speed generated for the year 2012
from the output of the Weather Research and Forecast model
(www.wrf-model.org, last access: 1 November 2017) (Ska-
marock et al., 2008) version 3.7.1. The model was run at a
5 km resolution over the UK with boundary and initial con-
ditions initialised by the National Centers for Environmen-
tal Prediction Final Global Forecast System (NCEP-GFS-
FNL) data (https://rda.ucar.edu/datasets/ds083.2/, 30 Octo-
ber 2016).

Gridded emissions of SO2, NOx , and NH3 are ob-
tained from the UK NAEI (http://naei.beis.gov.uk/, 15 Oc-
tober 2016) at a 1 km× 1 km spatial resolution (maps are
shown in Fig. S1 in the Supplement). Input emissions of
SO2 and NOx are split into three categories: UK area, point
source, and shipping emissions. FRAME treats SO2 emis-

sions as 95 % SO2 and 5 % H2SO4, and NOx emissions as
95 % NO and 5 % NO2. For NH3 emissions, there are only
UK area and point source categories. The NH3 emissions
from livestock are distributed spatially according to Hellsten
et al. (2008). All emissions are injected into the air column
at different heights according to the classification of emission
sources.

The chemical scheme is described in Fournier et al. (2004)
and includes gaseous- and aqueous-phase oxidation reactions
and conversion of the gases NH3, SO2, and NOx to partic-
ulate matter (NH+4 , NO−3 , SO2−

4 ). NH4NO3 is formed by
the equilibrium reaction between HNO3 and NH3 and nitrate
aerosol also arises by the deposition of HNO3 onto sea salt or
large particles. H2SO4 reacts with NH3 to form (NH4)2SO4.
The aqueous-phase reactions include the oxidation of S(IV)
by O3 and the metal catalysed reaction with O2. Modelled
dry deposition is land-cover dependent and calculated using
a canopy resistance model. Wet deposition is calculated us-
ing scavenging coefficients, and it is driven by rainfall, which
is modelled using a constant drizzle approach based on the
measured spatial distribution of annual average rainfall data
with the assumption of an enhanced washout rate over ele-
vated areas.

A detailed evaluation of model outputs with annually av-
eraged measurements of pollutant concentrations in air and
precipitation concentrations is discussed elsewhere (Dore et
al., 2015). In this study, all model runs were performed us-
ing emissions and meteorology data for the year 2012 and
FRAME model version 9.15.0.

2.2 Sensitivity and uncertainty analysis

For both sensitivity and uncertainty analyses a Latin hyper-
cube sampling design was chosen as it is superior to quasi-
random sampling for small numbers of samples (Saltelli et
al., 2008). A uniform LHS design was created using the R
package “lhs” (Carnell, 2016), with the sample optimised
by maximising the mean distance between the design points.
The LHS design was created for the scaling coefficients ap-
plied to the model input emissions of UK SO2, NOx , and
NH3 and not for the actual values of the input emissions. This
means that emissions from all sources of a particular pollu-
tant were varied by the same fraction across all grid squares
in a particular model run.

For the sensitivity analysis a uniform LHS sample of size
n= 100 within a range of ±40 % relative to the baseline for
each of the three input variables was created. This range was
chosen to test the overall model response to changes in emis-
sions (for example to identify non-linearities) as it encom-
passes the range of variations in input emissions used for fu-
ture scenario simulations with the FRAME model, as well
as incorporating emission reductions applied for the gener-
ation of source–receptor relationships for integrated assess-
ment modelling.
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Regression coefficients (RCs) were used as the measure
of the sensitivity of the model response, derived as follows.
For each model grid cell and for each model output variable
a multiple linear regression (Eq. 1) was performed using the
data from the n= 100 model runs. To obtain the RCs (bi in
Eq. 1), the model inputs Xi and outputs Y were substituted
by corresponding values of fractional change relative to the
baseline value. This simplifies the interpretation of the re-
sulting RCs. An RC represents the relative effect of changing
input Xi on the output Y, e.g. RC= 0.5 signifies a 15 % re-
duction in the output variable value if an input is reduced by
30 %. The coefficients of determination (R2) were evaluated
for each fitted model (for every grid cell) to identify if a sig-
nificant level of non-linearity in the input–output relationship
was present.

Y = b0+

3∑
i=1

biXi (1)

For the uncertainty propagation, the input sampling space
was constrained to the specific uncertainty ranges assigned
to the emissions of SO2, NOx , and NH3 in the UK Informa-
tive Inventory Report (Misra et al., 2015) with a new LHS
sample n= 100. These uncertainty ranges are derived fol-
lowing published guidelines on quantifying uncertainties in
emissions estimates (IPCC, 2006; Pulles and Kuenen, 2016).
According to the guidelines, uncertainties are expressed as
lower and upper limits of the 95 % confidence interval as a
percentage of the central estimate. The assigned emissions
uncertainties have ±4, ±10, and ±20 % ranges for SO2,
NOx , and NH3 respectively. The probability distributions
were not specified; therefore, it was chosen to use uniform
distributions for the variable ranges from which the LHS
sample was created. It is also acknowledged that a number
of other aspects of emissions uncertainty are not included.
For example, the FRAME model cannot capture uncertainty
in assigned seasonal and diurnal cycles in emissions. Uncer-
tainties in the spatial distributions or in the height of elevated
emissions are also not included.

The uncertainty values for each grid square were calcu-
lated as a half of the 95 % confidence interval relative to the
mean value of the output as recommended in the EMEP/EEA
and IPCC Guidebooks (IPCC, 2006; Pulles and Kuenen,
2016). Relative uncertainty values are presented here.

To assess the contribution of uncertainties in the emissions
of SO2, NOx , and NH3 to the overall output uncertainty, stan-
dardised regression coefficients (SRCs) were calculated as
shown in Eq. (2). A multiple linear regression was performed
using the data from the 100 model simulations for the case
of constrained input sampling space. The SRCs (βi in Eq. 2)
were calculated by multiplying the RC by the ratio between
the standard deviations of the input σi and output σY . (σY is
the same for all the βi values for a given output variable.)

βi = bi
σi

σY
(2)

The squared value of SRC (Eq. 3) for linear additive mod-
els is equal to the ratio of variance of the mean of Y when
one input variable is fixed, VXi (EX∼i (Y |Xi)), to the uncon-
ditional variance of Y , V (Y ) (Saltelli et al., 2008). Thus,
SRC squared represents the fractional contribution of the
uncertainties in the model inputs to the overall uncertainty
in the output. For the case of non-linear models, variance
decomposition methods are described in more detail else-
where (Homma and Saltelli, 1996; Saltelli, 2002; Saltelli et
al., 2010; Sobol’, 1993). In the case where a large number
of model simulations is not possible, an emulator-based ap-
proach can be used for the uncertainty and sensitivity analy-
sis (Blatman and Sudret, 2010; Lee et al., 2011; Shahsavani
and Grimvall, 2011; Storlie and Helton, 2008).

β2
i =

VXi (EX∼i (Y |Xi))

V (Y )
(3)

3 Results and discussion

3.1 Global sensitivity analysis

Figure 1 summarises the distributions of the RC global sensi-
tivity measure across all model grid cells. RCs show the sen-
sitivity of each model output variable to the three input emis-
sions variables (SO2, NOx , and NH3) and can be interpreted
as a magnitude of the response of an output to the unit change
in a particular input when all other inputs are allowed to vary.
The magnitude of the RCs provides useful information not
only about the effect of the change in a particular input on a
model output but also allows input sensitivity ranking to be
determined because all inputs were assigned the same range
of variation (±40 %). In the case where the ranges for inputs
differ, SRCs are used to obtain the input importance ranking
instead.

Figure 1 shows (i) that model outputs have varying sensi-
tivities, (ii) that model outputs have varying relative rankings
in their sensitivities to SO2, NOx , and NH3 emissions, and
(iii) that these output sensitivities to the emissions also vary
spatially across the model grids, as shown by the spreads in
individual box plots. The annual average concentrations of
particulate NH+4 , NO−3 , and SO2−

4 and annual dry and wet
deposition of SOy for the baseline model run are presented
in Supplement Fig. S2. The actual spatial distributions of the
RCs from Fig. 1 are illustrated in Fig. 2 for the example out-
put variables of particulate NH+4 , NO−3 , and SO2−

4 . Figure 3
shows the equivalent for the example output variables of dry
and wet deposition of SOy . These five output variables were
chosen to illustrate the spatial distribution of uncertainty and
sensitivity metrics. Figures S3 and S4 in Supplement show
the spatial distribution of RCs for other FRAME outputs dis-
played in Fig. 1.
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Figure 1. Box plots of the values of RCs across all UK land-based model grid squares. Boxes demarcate the median and lower/upper quartiles
of the distributions; whiskers extend to 1.5 times the interquartile range.

RC is a first-order sensitivity measure, and it quantifies
the average response of model output to varying a model
input Xi when all inputs are allowed to vary. In this study
no second- or higher-order interaction terms were quanti-
fied as their contribution was assumed to be negligible. This
was concluded from the values of the coefficients of deter-
mination (R2) obtained from multiple linear regressions per-
formed; for most output variables, values of R2 were on av-
erage > 0.98, with the exception of a slightly lower value for
HNO3 (R2 > 0.96). Hence, less than 2 % (4 % for HNO3)

of variance in the output could not be explained by the lin-
ear combination of inputs. This finding allows us to con-
clude that the FRAME model response is in fact fairly linear
within the ±40 % emission perturbation range investigated.
The absence of any substantial deviations from linearity in
the model response and the absence of second- or higher-
order interactions between input variables indicate that the
current use of the FRAME model to produce source–receptor
matrices for the use in the UK Integrated Assessment Model
is not subject to undue error from varying emissions one at
a time. Without conducting the global sensitivity analysis, it
is not possible to predict a priori for a given model output
variable either the relative sensitivities to the different input
factors, such as emissions, or the spatial variation in these
sensitivities that are illustrated in Figs. 1, 2, and 3.

With respect to findings from this FRAME model sensitiv-
ity analysis for particulate inorganic components in the UK
context, Fig. 1 shows that the modelled surface concentra-
tions of particulate NH+4 are sensitive to changes in emis-
sions of all three pollutants, being similarly sensitive (on av-
erage) to emissions of NH3 and SO2 and slightly less sensi-
tive to emissions of NOx . The sensitivities of NH+4 to SO2,
NOx , and NH3 emission changes were found to vary substan-
tially around the UK (top row of Fig. 2). The sensitivity of
NH+4 to SO2 emissions is generally lowest in south-east Eng-
land, and rises on moving north and west across the UK. Re-
ductions in emissions are always associated with reductions
in NH+4 . The broad geographical pattern of relative sensitiv-

ity across the UK of NH+4 to NH3 emissions is approximately
the reverse of that to SO2 emissions although with substan-
tial spatial heterogeneity as well. Figure 2 shows that there
are instances in north-west Scotland of negative RCs for the
sensitivity of NH+4 to NOx emissions, i.e. areas where NH+4
increases when NOx emissions are decreased.

Figure 1 similarly shows that surface concentrations of
particulate SO2−

4 are sensitive to changes in emissions of all
three of SO2, NOx , and NH3 (most sensitive to SO2 emis-
sions) but with a universally negative sensitivity (albeit rela-
tively weak) to NOx emissions; i.e. particulate SO2−

4 concen-
trations increase everywhere by approximately 3 % if NOx
emissions are reduced by 40 % (lower row of Fig. 2). This
is due to competition between HNO3 and H2SO4 to react
with NH3 and form particles; i.e. reducing NOx emissions
means NH3 is more readily available to react with H2SO4.
The positive values of RCs of SO2−

4 to SO2 emissions are
geographically fairly uniform (somewhat lower sensitivity in
the eastern UK), but the relative sensitivity to NH3 emissions
is more heterogeneous and greater in the east.

The sensitivity of particulate NO−3 concentrations to the
emissions is more straightforward than for particulate NH+4
and SO2

4, being dominated by its positive sensitivity to NOx
emissions, weakly sensitive to NH3 emissions, and essen-
tially not sensitive at all to SO2 emissions (Fig. 1 and middle
row of Fig. 2). The sensitivity to NOx emissions is almost
unity, such that for example a 30 % reduction in NOx emis-
sions results in almost the same 30 % reduction in surface
NO−3 . The spatial distribution of RCs that represent the sen-
sitivity of NO−3 concentrations to NOx (and NH3) emissions
is also geographically more homogenous across the UK than
the sensitivities of NH+4 and SO2−

4 concentrations (middle
row of Fig. 2).

The concentrations of the three inorganic particulate mat-
ter components are determined by the reactions that lead to
the formation of (NH4)2SO4 and NH4NO3. The formation of
the former is irreversible whilst the latter exists in reversible
equilibrium with gas-phase NH3 and HNO3. Changes in
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Figure 2. Spatial distributions (at the 5 km× 5 km model grid reso-
lution) of RCs for particulate NH+4 , SO2−

4 , and NO−3 as a function
of variation in input emissions of SO2, NOx , and NH3. The model
input emissions for which the RC quantifies the output variable sen-
sitivity is given in brackets in each panel.

emissions of NH3 have an impact on the formation of both
(NH4)2SO4 and NH4NO3 very quickly, and therefore close
to the source of the NH3 emissions, because it reacts di-
rectly as NH3. In contrast, the influence of changes in SO2
and NOx emissions is not so localised. Before they influence
the formation of (NH4)2SO4 and NH4NO3, these gases must
be oxidised in the atmosphere to H2SO4 and HNO3, during
which time the air is undergoing transport. The spatial pat-
tern of the sensitivities of (NH4)2SO4 and NH4NO3 forma-
tion to changes in the UK precursor emissions is therefore
the outcome of many interacting factors: (i) the magnitude of
background import of precursors from outside the UK which
could explain the lower sensitivity of inorganic particulate

Figure 3. Spatial distributions (at the 5 km× 5 km model grid reso-
lution) of RCs of dry (d) and wet (w) deposition of SOy as a func-
tion of variation in input emissions of SO2, NOx , and NH3. The
model input emissions for which the RC quantifies the output vari-
able sensitivity is given in the brackets in each panel.

matter components to SO2 emissions in south-east England,
(ii) the magnitude and spatial pattern of the UK precursors,
(iii) the time taken for chemical oxidation in relation to at-
mospheric transport of air masses, and (iv) the varying dry
and wet deposition spatial patterns that remove from the at-
mosphere both the precursor gases and particulate products.

In summary, the broad patterns of the sensitivity results in
Figs. 1, 2, and 3 can be explained as follows. The surface
concentrations of the directly emitted pollutants NH3, NOx ,
and SO2 are predominantly sensitive only to their respective
emissions (Fig. 1). This is also the case for the deposition
of oxidised S and of oxidised and reduced N. Dry deposi-
tion is dominated by the gas-phase components, so the varia-
tions in the dry deposition of NHx and SOy are dominated by
the variations in the emissions of NH3 and SOx respectively,
with the RC values being close to 1. For the dry deposition of
NOy , both NO2 and its oxidation product HNO3 are impor-
tant. This is illustrated by the weaker response of dry NOy
deposition to changes in NOx emissions. Wet deposition is
a more complex process as this is dominated by washout of
the particles which are the product of chemical reactions in
the atmosphere. This explains lower values of RC for wet
compared to dry deposition.
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The considerably more ubiquitous sources of NOx emis-
sions compared with SO2 emissions means that atmospheric
concentrations of gaseous oxidised N are generally higher
than for oxidised S, so the former usually has a greater in-
fluence on NH3 chemistry. Therefore, particulate NO−3 is
predominantly controlled by NOx emissions, and changes
in SO2 emissions have very little effect on particulate
NO−3 . However, because lower NOx emissions lead to lower
NH4NO3 formation, more NH3 is available, which means
lower NOx emissions lead to greater (NH4)2SO4 formation.
This explains the inverse correlation between surface con-
centrations of SO2−

4 and NOx emissions. On the other hand,
changes in NH3 emissions impact on both NO−3 and SO2−

4
concentrations, both in a positive direction of association but
with a magnitude sensitive to the relative amounts of the re-
acting species present, which in turn depends both on the
magnitudes and distances of local sources and on long-range
transport. Likewise, the sensitivity of NH+4 concentrations
varies with all three sets of precursor emissions and with ge-
ographical location. The same is the case for concentrations
of HNO3. This is why, aside from some broad expectations,
it is not easily possible to predict the spatial patterns of the
sensitivities of ACTM model output to changes in emissions,
and a formal sensitivity analysis is needed.

3.2 Uncertainty propagation

The global uncertainty propagation approach for FRAME
output variables was based on the assigned uncertainties in
the estimates of the total UK emissions of SO2 (±4 %), NOx
(±10 %), and NH3 (±20 %) (Misra et al., 2015). As ex-
plained in the “Methods” section, the uncertainties in the in-
put emissions were assigned uniform distributions, and no
uncertainties in either the spatial or temporal aspects of the
emissions are included. No substantial difference in the re-
sulting model output uncertainty ranges was observed when
the probability distributions of the input emissions were
changed to normal. The distributions of the relative uncer-
tainties across all model grid cells for each output are shown
in Fig. 4. Example maps of the spatial distributions of the
relative uncertainties from Fig. 4 for surface concentrations
of particulate NH+4 , NO−3 , and SO2−

4 and for dry and wet de-
position of SOy are shown in Fig. 5. Equivalent maps for the
relative uncertainties of the other FRAME output variables
are shown in Supplement Fig. S5.

Figure 4 shows that the surface concentration of NH3 is
the most uncertain output (model grid median uncertainty
19.8 %). This is because the variation in NH3 surface con-
centrations is almost entirely driven by variation in NH3 in-
put emissions (Fig. 1), and this is the most uncertain input
in the presented analysis. The uncertainty in modelled dry
deposition of NHx likewise closely matches the assigned un-
certainty in NH3 emissions (median= 18.8 %). The uncer-
tainty in wet deposition of NHx is somewhat less than uncer-
tainty in dry deposition (median= 13.4 %) because wet de-

Figure 4. Distributions of relative uncertainty values calculated for
all FRAME model outputs across all model grid squares given the
following input uncertainty ranges: ±4, ±10, and ±20 % in emis-
sions of SO2, NOx , and NH3 respectively. Boxes demarcate the
median and lower and upper quartiles of the distributions; whiskers
extend to 1.5 times the interquartile range.

position of NHx includes some dissolved (NH4)2SO4 com-
ponent which is also sensitive to other precursor emissions
whose uncertainty is estimated to be smaller than for NH3.
Surface concentrations of SO2 and the dry and wet deposi-
tions of SOy have the least uncertainty (medians of 6.0, 4.8,
and 3.2 %) for the similar reason that these model outputs are
predominantly sensitive to SO2 emissions (Fig. 1), which has
the smallest of the input uncertainties (±4 %).

Relative uncertainties of particulate SO2−
4 (me-

dian= 6.4 %), NO−3 (median= 8.6 %), and NH+4 (me-
dian= 7.5 %) are fairly similar (Fig. 4) even though there
are substantial differences in the assigned uncertainties for
emissions of SO2, NOx , and NH3. The explanation is that
particulate matter (PM) components are sensitive to all three
inputs (for NO−3 , two out of three inputs) (Fig. 1). There
is also wide spatial variation in the uncertainties of these
PM components (Figs. 4 and 5). The relative uncertainty
values in the surface concentration of HNO3 show the
largest variability out of all output variables. This can be
explained by the fact that the concentration of this species is
impacted directly by both gas- and particle-phase processes.
The spatial pattern of the relative uncertainty values does
not correlate either with the spatial pattern of emissions or
rainfall, which demonstrates again that the uncertainties of
many model outputs cannot be readily predicted because of
the complexity of the atmospheric processes underpinning
them and consequently that formal uncertainty analysis
needs to be applied.
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Figure 5. Spatial distributions (at the 5 km× 5 km model grid resolution) of the relative uncertainties in surface concentrations of particulate
NH+4 , SO2−

4 , NO−3 , and dry and wet deposition of SOy for uncertainties of±4,±10,±20 % in emissions of SO2, NOx , and NH3 respectively.
The uncertainty values are represented as a range of ± the baseline value and represent the 95 % confidence interval.

3.2.1 Uncertainty apportionment

Estimated uncertainty of the model output given the uncer-
tainties in model input emissions is presented in Figs. 4 and
5, but it is also of interest to know how each of the inputs
contributes to the overall uncertainty individually. This was
estimated by calculating squared SRCs (Eq. 3). As an exam-
ple, Fig. 6 illustrates the spatial distributions of the fractional
contributions of the SO2, NOx , and NH3 emission uncertain-
ties to the overall uncertainties in surface concentrations of
particulate NH+4 , NO−3 and SO2−

4 for the assigned uncertain-
ties in the input emissions, whilst Fig. 7 illustrates a similar
theory for the dry and wet deposition of SOy . The equivalent
maps for the other model output variables are presented in
Supplement Figs. S6 and S7.

Figure 6 shows that across nearly all of the UK, uncer-
tainty in concentrations of particulate NH+4 is mainly driven
by the uncertainty in NH3 emissions. Uncertainty in NOx
emissions contributes some uncertainty to NH+4 concentra-
tions, whilst the uncertainty in SO2 emissions makes almost
no contribution. Northern Ireland is an exception; here, un-
certainties in NOx emissions contribute the most to the un-
certainties in NH+4 concentrations and perturbations in NH3
emissions have less impact. Concentrations of NH3 in North-
ern Ireland are some of the highest anywhere in the UK,
whilst NOx emissions are not high; this means that NH3 will
be in excess, so the formation of NH4NO3 will be largely
controlled by HNO3 through NOx emissions. The major con-
tribution to uncertainty in particulate NO−3 derives from un-
certainty in NOx emissions (Fig. 6). However, in the east
of Scotland, uncertainty in NH3 emissions contributes up to
78 % of the total uncertainty. There is no contribution from
SO2 emissions uncertainty. An important feature of the lower
panels of Fig. 6 is that by far the major contributor to uncer-
tainty in particulate SO2−

4 concentrations is the uncertainty
assigned to the NH3 emissions, not the uncertainty in the di-
rect precursor SO2 emissions. This is because the formation
of (NH4)2SO4 is irreversibly dependent on gaseous NH3 and

emissions of NH3 are much more uncertain than SO2 emis-
sions.

Figure 7 shows the spatial distribution of the squared SRC
values for dry and wet SOy deposition; for these output vari-
ables, uncertainty in NOx does not make any contribution to
uncertainty in either case. In contrast to the situation for par-
ticulate SO2−

4 concentrations shown in Fig. 6, Fig. 7 shows
that uncertainty in dry and wet deposition of SOy is mainly
driven by the uncertainty in the SO2 emissions. Additionally,
uncertainty in NH3 emissions contributes to the total uncer-
tainty in dry and wet SOy deposition. The contribution to
uncertainty in wet deposition is higher due to wet deposition
being dominated by the washout of the particles, which in-
clude products of the reactions of NH3 with oxidation prod-
ucts of SOx .

4 Conclusions

We have applied global sensitivity analysis to determine the
response of concentration and deposition output variables of
the FRAME atmospheric chemistry transport model to per-
turbations of UK emissions of SO2, NOx , and NH3. The ben-
efit of using systematic global sensitivity analysis is that all
dimensions of variable input space are investigated simul-
taneously, which is important when the response to a large
number of variables is of interest so inferences can be drawn
without assumptions about the model structure. For complex
models such as ACTMs, for which input–output mapping is
not analytically tractable, it is not possible to predict output
sensitivities to multiple input perturbations without conduct-
ing a global sensitivity analysis. Local one-at-a-time sensi-
tivity analysis is often applied without acknowledging the
shortcomings associated with it.

In this study no substantial deviations from linearity or
the presence of interactions between the model input vari-
ables were identified for the FRAME model in response to
input emission perturbations within a ±40 % range; hence,
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Figure 6. Spatial distributions (at the 5 km× 5 km model grid res-
olution) of the squared SRC values which represent the fractional
contribution of the uncertainty in the input emissions given in brack-
ets to the overall uncertainty in the surface concentrations of partic-
ulate NH+4 , SO2−

4 , and NO−3 . The uncertainties in the input emis-
sions are ±4, ±10, and ±20 % for SO2, NOx , and NH3 respec-
tively.

regression coefficients obtained from multiple linear regres-
sion were chosen as a sensitivity measure. This was not pre-
dictable from a local one-at-a-time sensitivity analysis.

Whilst the sensitivity of surface concentrations of the pri-
mary precursor gases SO2, NOx , and NH3 (and of the depo-
sition of S and N) was dominated by the emissions of the re-
spective pollutant, the sensitivities of secondary species such
as HNO3 and particulate SO2−

4 , NO−3 , and NH+4 to pollutant
emissions were more nuanced and geographically variable.
The dry deposition of S and N showed a stronger response

Figure 7. Spatial distributions (at the 5 km× 5 km model grid res-
olution) of the squared SRC values which represent the fractional
contribution of the uncertainty in the input emissions given in brack-
ets to the overall uncertainty in the dry and wet deposition of SOy .
The uncertainties in the input emissions are ±4, ±10, and ±20 %
for SO2, NOx , and NH3 respectively.

to changes in the emissions of the respective pollutant com-
pared to wet deposition.

A global uncertainty analysis approach was used to esti-
mate uncertainty ranges for all FRAME model output vari-
ables from the uncertainties assigned to the UK emissions of
SO2, NOx , and NH3 (±4, ±10, and ±20 % respectively) by
the UK National Atmospheric Emissions Inventory. The spa-
tial distribution of the relative uncertainty was affected by
both the sensitivity of the model output to variations in the
inputs and the magnitude of this variation (i.e. the input un-
certainty range); NH3 was the most uncertain input, and as a
result the output variables sensitive to NH3 showed the high-
est levels of relative uncertainty in the areas most sensitive
to this input. The uncertainty in the surface concentrations
of NH3 and NOx and the depositions of NHx and NOy was
shown to be due to uncertainty in a single precursor input
variable, NH3, and NOx respectively. In contrast, the con-
centration of SO2 and deposition of SOy was affected by un-
certainties in both SO2 and NH3 emissions. Likewise, the rel-
ative uncertainties in the modelled surface concentrations of
each of the secondary pollutant variables (NH+4 , NO−3 , SO2−

4 ,
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and HNO3) were affected by the uncertainty range of at least
two input variables.

This work has demonstrated a methodology for conduct-
ing global sensitivity and uncertainty analysis for ACTMs.
Although, for the FRAME model used here, the response to
emission perturbations was found to be substantially linear
in the investigated input range, the complexity of chemical
and physical processes included in ACTMs means that the
input–output relationships, in particular their spatial patterns,
cannot be predicted without conducting a global sensitivity
analysis. The benefit of using global approaches is that all
dimensions of input variable space are investigated simulta-
neously, so model input–output relationships can be quanti-
fied without the need to make strong prior assumptions about
the model response to perturbations in the inputs of interest.

Data availability. The FRAME model code is not available in
the public domain as the model is the intellectual property of
the Centre for Ecology & Hydrology and is only made available
to students and researchers who are collaborating directly with
CEH staff. However, all the following output data are available at
https://doi.org/10.5281/zenodo.1145852 (Aleksankina, 2018). The
data contain (i) all FRAME model outputs (raw data) for both ac-
tual input uncertainty and±40 % input ranges, (ii) R scripts used to
calculate RCs, SRCs, and uncertainty ranges, and (iii) RCs, SRCs,
and uncertainty ranges calculated for every FRAME output variable
and which are presented in all figures in this paper.

The Supplement related to this article is available
online at https://doi.org/10.5194/gmd-11-1653-2018-
supplement.
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