Articles | Volume 10, issue 2
https://doi.org/10.5194/gmd-10-811-2017
https://doi.org/10.5194/gmd-10-811-2017
Development and technical paper
 | 
21 Feb 2017
Development and technical paper |  | 21 Feb 2017

Enabling BOINC in infrastructure as a service cloud system

Diego Montes, Juan A. Añel, Tomás F. Pena, Peter Uhe, and David C. H. Wallom

Related authors

Risks of seasonal extreme rainfall events in Bangladesh under 1.5 and 2.0 °C warmer worlds – how anthropogenic aerosols change the story
Ruksana H. Rimi, Karsten Haustein, Emily J. Barbour, Sarah N. Sparrow, Sihan Li, David C. H. Wallom, and Myles R. Allen
Hydrol. Earth Syst. Sci., 26, 5737–5756, https://doi.org/10.5194/hess-26-5737-2022,https://doi.org/10.5194/hess-26-5737-2022, 2022
Short summary
OpenIFS@home version 1: a citizen science project for ensemble weather and climate forecasting
Sarah Sparrow, Andrew Bowery, Glenn D. Carver, Marcus O. Köhler, Pirkka Ollinaho, Florian Pappenberger, David Wallom, and Antje Weisheimer
Geosci. Model Dev., 14, 3473–3486, https://doi.org/10.5194/gmd-14-3473-2021,https://doi.org/10.5194/gmd-14-3473-2021, 2021
Short summary
Attribution of the Australian bushfire risk to anthropogenic climate change
Geert Jan van Oldenborgh, Folmer Krikken, Sophie Lewis, Nicholas J. Leach, Flavio Lehner, Kate R. Saunders, Michiel van Weele, Karsten Haustein, Sihan Li, David Wallom, Sarah Sparrow, Julie Arrighi, Roop K. Singh, Maarten K. van Aalst, Sjoukje Y. Philip, Robert Vautard, and Friederike E. L. Otto
Nat. Hazards Earth Syst. Sci., 21, 941–960, https://doi.org/10.5194/nhess-21-941-2021,https://doi.org/10.5194/nhess-21-941-2021, 2021
Short summary
Current status on the need for improved accessibility to climate models code
Juan A. Añel, Michael García-Rodríguez, and Javier Rodeiro
Geosci. Model Dev., 14, 923–934, https://doi.org/10.5194/gmd-14-923-2021,https://doi.org/10.5194/gmd-14-923-2021, 2021
Short summary
Ozone measurement practice in the laboratory using Schönbein's method
Ignacio Arturo Ramirez-Gonzalez, Juan Antonio Añel, and Antonio Cid Samamed
Geosci. Commun., 3, 99–108, https://doi.org/10.5194/gc-3-99-2020,https://doi.org/10.5194/gc-3-99-2020, 2020
Short summary

Related subject area

Climate and Earth system modeling
HyPhAICC v1.0: a hybrid physics–AI approach for probability fields advection shown through an application to cloud cover nowcasting
Rachid El Montassir, Olivier Pannekoucke, and Corentin Lapeyre
Geosci. Model Dev., 17, 6657–6681, https://doi.org/10.5194/gmd-17-6657-2024,https://doi.org/10.5194/gmd-17-6657-2024, 2024
Short summary
CICERO Simple Climate Model (CICERO-SCM v1.1.1) – an improved simple climate model with a parameter calibration tool
Marit Sandstad, Borgar Aamaas, Ane Nordlie Johansen, Marianne Tronstad Lund, Glen Philip Peters, Bjørn Hallvard Samset, Benjamin Mark Sanderson, and Ragnhild Bieltvedt Skeie
Geosci. Model Dev., 17, 6589–6625, https://doi.org/10.5194/gmd-17-6589-2024,https://doi.org/10.5194/gmd-17-6589-2024, 2024
Short summary
Development of a plant carbon–nitrogen interface coupling framework in a coupled biophysical-ecosystem–biogeochemical model (SSiB5/TRIFFID/DayCent-SOM v1.0)
Zheng Xiang, Yongkang Xue, Weidong Guo, Melannie D. Hartman, Ye Liu, and William J. Parton
Geosci. Model Dev., 17, 6437–6464, https://doi.org/10.5194/gmd-17-6437-2024,https://doi.org/10.5194/gmd-17-6437-2024, 2024
Short summary
Dynamical Madden–Julian Oscillation forecasts using an ensemble subseasonal-to-seasonal forecast system of the IAP-CAS model
Yangke Liu, Qing Bao, Bian He, Xiaofei Wu, Jing Yang, Yimin Liu, Guoxiong Wu, Tao Zhu, Siyuan Zhou, Yao Tang, Ankang Qu, Yalan Fan, Anling Liu, Dandan Chen, Zhaoming Luo, Xing Hu, and Tongwen Wu
Geosci. Model Dev., 17, 6249–6275, https://doi.org/10.5194/gmd-17-6249-2024,https://doi.org/10.5194/gmd-17-6249-2024, 2024
Short summary
Implementation of a brittle sea ice rheology in an Eulerian, finite-difference, C-grid modeling framework: impact on the simulated deformation of sea ice in the Arctic
Laurent Brodeau, Pierre Rampal, Einar Ólason, and Véronique Dansereau
Geosci. Model Dev., 17, 6051–6082, https://doi.org/10.5194/gmd-17-6051-2024,https://doi.org/10.5194/gmd-17-6051-2024, 2024
Short summary

Cited articles

Allen, M.: Do-it-yourself climate prediction, Nature, 401, 642, https://doi.org/10.1038/44266, 1999.
Añel, J. A.: The importance of reviewing the code, Commun. ACM, 54, 40–41, https://doi.org/10.1145/1941487.1941502, 2011.
Añel, J. A., López-Moreno, J. I., Otto, F. E. L., Vicente-Serrano, S., Schaller, N., Massey, N., Buisán, S., and Allen, M. R.: The extreme snow accumulation in the western Spanish Pyrenees during winter and spring 2013, B. Am. Meterol. Soc., 95, S73–S76, 2014.
Anderson, D. P.: Boinc: A system for public-resource computing and storage, in: 5th IEEE/ACM International Workshop on Grid Computing, GRID 2004, Pittsburgh, USA, 8 November 2004, IEEE Computer Society Washington, DC, USA, 4–10, https://doi.org/10.1109/GRID.2004.14, 2004.
AWS: S3 Princing, available at: https://aws.amazon.com/s3/pricing/ (last access: 22 December 2016), 2016a.
Download
Short summary
This paper discusses the how the combination of cloud and volunteer computing can be a feasible solution to address large, complex, and expensive computing problems such as climate modelling.