Articles | Volume 10, issue 10
https://doi.org/10.5194/gmd-10-3793-2017
https://doi.org/10.5194/gmd-10-3793-2017
Model evaluation paper
 | 
17 Oct 2017
Model evaluation paper |  | 17 Oct 2017

Sensitivity analysis of the meteorological preprocessor MPP-FMI 3.0 using algorithmic differentiation

John Backman, Curtis R. Wood, Mikko Auvinen, Leena Kangas, Hanna Hannuniemi, Ari Karppinen, and Jaakko Kukkonen

Related authors

How horizontal transport and turbulent mixing impact aerosol particle and precursor concentrations at a background site in the UAE
Jutta Kesti, Ewan J. O'Connor, Anne Hirsikko, John Backman, Maria Filioglou, Anu-Maija Sundström, Juha Tonttila, Heikki Lihavainen, Hannele Korhonen, and Eija Asmi
Atmos. Chem. Phys., 24, 9369–9386, https://doi.org/10.5194/acp-24-9369-2024,https://doi.org/10.5194/acp-24-9369-2024, 2024
Short summary
Aerosol optical properties calculated from size distributions, filter samples and absorption photometer data at Dome C, Antarctica, and their relationships with seasonal cycles of sources
Aki Virkkula, Henrik Grythe, John Backman, Tuukka Petäjä, Maurizio Busetto, Christian Lanconelli, Angelo Lupi, Silvia Becagli, Rita Traversi, Mirko Severi, Vito Vitale, Patrick Sheridan, and Elisabeth Andrews
Atmos. Chem. Phys., 22, 5033–5069, https://doi.org/10.5194/acp-22-5033-2022,https://doi.org/10.5194/acp-22-5033-2022, 2022
Short summary
Aerosol particle characteristics measured in the United Arab Emirates and their response to mixing in the boundary layer
Jutta Kesti, John Backman, Ewan J. O'Connor, Anne Hirsikko, Eija Asmi, Minna Aurela, Ulla Makkonen, Maria Filioglou, Mika Komppula, Hannele Korhonen, and Heikki Lihavainen
Atmos. Chem. Phys., 22, 481–503, https://doi.org/10.5194/acp-22-481-2022,https://doi.org/10.5194/acp-22-481-2022, 2022
Short summary
Estimates of mass absorption cross sections of black carbon for filter-based absorption photometers in the Arctic
Sho Ohata, Tatsuhiro Mori, Yutaka Kondo, Sangeeta Sharma, Antti Hyvärinen, Elisabeth Andrews, Peter Tunved, Eija Asmi, John Backman, Henri Servomaa, Daniel Veber, Konstantinos Eleftheriadis, Stergios Vratolis, Radovan Krejci, Paul Zieger, Makoto Koike, Yugo Kanaya, Atsushi Yoshida, Nobuhiro Moteki, Yongjing Zhao, Yutaka Tobo, Junji Matsushita, and Naga Oshima
Atmos. Meas. Tech., 14, 6723–6748, https://doi.org/10.5194/amt-14-6723-2021,https://doi.org/10.5194/amt-14-6723-2021, 2021
Short summary
Absorption instruments inter-comparison campaign at the Arctic Pallas station
Eija Asmi, John Backman, Henri Servomaa, Aki Virkkula, Maria I. Gini, Konstantinos Eleftheriadis, Thomas Müller, Sho Ohata, Yutaka Kondo, and Antti Hyvärinen
Atmos. Meas. Tech., 14, 5397–5413, https://doi.org/10.5194/amt-14-5397-2021,https://doi.org/10.5194/amt-14-5397-2021, 2021
Short summary

Related subject area

Atmospheric sciences
An enhanced emission module for the PALM model system 23.10 with application for PM10 emission from urban domestic heating
Edward C. Chan, Ilona J. Jäkel, Basit Khan, Martijn Schaap, Timothy M. Butler, Renate Forkel, and Sabine Banzhaf
Geosci. Model Dev., 18, 1119–1139, https://doi.org/10.5194/gmd-18-1119-2025,https://doi.org/10.5194/gmd-18-1119-2025, 2025
Short summary
Identifying lightning processes in ERA5 soundings with deep learning
Gregor Ehrensperger, Thorsten Simon, Georg J. Mayr, and Tobias Hell
Geosci. Model Dev., 18, 1141–1153, https://doi.org/10.5194/gmd-18-1141-2025,https://doi.org/10.5194/gmd-18-1141-2025, 2025
Short summary
Sensitivity of predicted ultrafine particle size distributions in Europe to different nucleation rate parameterizations using PMCAMx-UF v2.2
David Patoulias, Kalliopi Florou, and Spyros N. Pandis
Geosci. Model Dev., 18, 1103–1118, https://doi.org/10.5194/gmd-18-1103-2025,https://doi.org/10.5194/gmd-18-1103-2025, 2025
Short summary
Explaining neural networks for detection of tropical cyclones and atmospheric rivers in gridded atmospheric simulation data
Tim Radke, Susanne Fuchs, Christian Wilms, Iuliia Polkova, and Marc Rautenhaus
Geosci. Model Dev., 18, 1017–1039, https://doi.org/10.5194/gmd-18-1017-2025,https://doi.org/10.5194/gmd-18-1017-2025, 2025
Short summary
Accurate space-based NOx emission estimates with the flux divergence approach require fine-scale model information on local oxidation chemistry and profile shapes
Felipe Cifuentes, Henk Eskes, Enrico Dammers, Charlotte Bryan, and Folkert Boersma
Geosci. Model Dev., 18, 621–649, https://doi.org/10.5194/gmd-18-621-2025,https://doi.org/10.5194/gmd-18-621-2025, 2025
Short summary

Cited articles

Fisher, B., Kukkonen, J., and Schatzmann, M.: Meteorology applied to urban air pollution problems COST 715, Int. J. Environ. Pollut., 16, 560–570, https://doi.org/10.1504/IJEP.2001.000650, 2001.
Griewank, A. and Walther, A.: Evaluating Derivatives Principles and Techniques of Algorithmic Differentiation, vol. 2, Society for Industrial and Applied Mathematics, Philadelphia, USA, 1–56, 2008.
Guerrette, J. J. and Henze, D. K.: Development and application of the WRFPLUS-Chem online chemistry adjoint and WRFDA-Chem assimilation system, Geosci. Model Dev., 8, 1857–1876, https://doi.org/10.5194/gmd-8-1857-2015, 2015.
Hascoet, L. and Pascual, V.: The Tapenade Automatic Differentiation Tool: principles, model, and specification, ACM T. Math. Software, 39, 20:1–20:43, https://doi.org/10.1145/2450153.2450158, 2013.
Karppinen, A., Joffre, S. M., and Vaajama, P.: Boundary-layer parameterization for Finnish regulatory dispersion models, Int. J. Environ. Pollut., 8, 3–6, 1997.
Download
Short summary
Meteorological input parameters for urban- and local-scale dispersion models can be derived from meteorological observations. This study presents a sensitivity analysis of a meteorological model that utilises readily available meteorological data to derive specific parameters required to model the atmospheric dispersion of pollutants. The study shows that wind speed is the most fundamental meteorological input parameter followed by solar radiation.
Share