
Geosci. Model Dev., 10, 3793–3803, 2017
https://doi.org/10.5194/gmd-10-3793-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Sensitivity analysis of the meteorological preprocessor MPP-FMI 3.0
using algorithmic differentiation
John Backman1, Curtis R. Wood1, Mikko Auvinen1,2, Leena Kangas1, Hanna Hannuniemi1, Ari Karppinen1, and
Jaakko Kukkonen1

1Atmospheric Composition Research, Finnish Meteorological Institute, Helsinki, Finland
2Department of Physics, Division of Atmospheric Sciences, University of Helsinki, Helsinki, Finland

Correspondence to: John Backman (john.backman@fmi.fi)

Received: 16 December 2016 – Discussion started: 13 January 2017
Revised: 30 August 2017 – Accepted: 3 September 2017 – Published: 17 October 2017

Abstract. The meteorological input parameters for urban-
and local-scale dispersion models can be evaluated by pre-
processing meteorological observations, using a boundary-
layer parameterisation model. This study presents a sensitiv-
ity analysis of a meteorological preprocessor model (MPP-
FMI) that utilises readily available meteorological data as
input. The sensitivity of the preprocessor to meteorological
input was analysed using algorithmic differentiation (AD).
The AD tool used was TAPENADE. The AD method numer-
ically evaluates the partial derivatives of functions that are
implemented in a computer program. In this study, we focus
on the evaluation of vertical fluxes in the atmosphere and in
particular on the sensitivity of the predicted inverse Obukhov
length and friction velocity on the model input parameters.
The study shows that the estimated inverse Obukhov length
and friction velocity are most sensitive to wind speed and
second most sensitive to solar irradiation. The dependency
on wind speed is most pronounced at low wind speeds. The
presented results have implications for improving the mete-
orological preprocessing models. AD is shown to be an effi-
cient tool for studying the ranges of sensitivities of the pre-
dicted parameters on the model input values quantitatively.
A wider use of such advanced sensitivity analysis methods
could potentially be very useful in analysing and improving
the models used in atmospheric sciences.

1 Introduction

Any urban- or local-scale dispersion model requires spe-
cific information about the state of the atmospheric bound-
ary layer (ABL) as input values. This information can be
estimated from available meteorological observations by so-
called meteorological preprocessors (e.g. Van Ulden and
Holtslag, 1985). This allows for the use of advanced mete-
orological input data into the models, even when no atmo-
spheric turbulence measurements would be available. These
evaluations are commonly done by applying an energy-flux
method that estimates turbulent heat and momentum fluxes in
the boundary layer to derive desired boundary-layer scaling
parameters (e.g. Fisher et al., 2001; Van Ulden and Holtslag,
1985).

The urban-scale dispersion models at the Finnish Meteoro-
logical Institute (FMI) rely on advanced meteorological input
from a meteorological preprocessor that is mainly based on
the boundary-layer parameterisation of Van Ulden and Holt-
slag (1985). These dispersion models include, e.g. a Gaus-
sian road network dispersion model (CAR-FMI, Kukkonen
et al., 2001; Kauhaniemi et al., 2008) and an urban mul-
tiple source Gaussian dispersion model (UDM-FMI; Karp-
pinen et al., 2000b). The models are used to model emissions,
dispersion, and transformation of pollution for urban-scale
areas. The present work focuses on the meteorological pre-
processor model and its sensitivity to model input, whereas
dispersion models (not discussed here) motivate the study.

Model sensitivity studies can be done with precision us-
ing algorithmic differentiation (AD), which is a technique
to compute accurate partial derivatives of functions that are
implemented by computer programmes. In the context of
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AD, a computer program is viewed as a complex function
that is composed of a sequence of basic mathematical oper-
ations. AD is a systematic technique to apply the chain rule
of differentiation to this sequence of numerical operations
in a manner that does not involve inaccuracies (Griewank
and Walther, 2008). In this study, a source-transformation
AD tool called TAPENADE (Hascoet and Pascual, 2013) is
employed to differentiate the procedures of a meteorologi-
cal preprocessor. TAPENADE was chosen because it is an
easy-to-use Fortran source-transformation tool that is free for
academic use, actively supported and developed, and is well
documented.

Other source-transformation AD tools for Fortran are
also available (e.g. OpenAD) and a representative list
can be found from the community-driven portal for algo-
rithmic differentiation (http://www.autodiff.org). A source-
transformation tool approaches the differentiation by
analysing the source code of a given computer program and
generating an augmented source code which contains, in ad-
dition to the original operations, instructions that carry out
their chain rule differentiated versions. As these differenti-
ated statements accompany each relevant mathematical op-
eration in the source code, they propagate the derivative in-
formation across the entire program, providing exact sensi-
tivity information (to machine precision) on how the inputs
of the program influence its results. In this way, a standard
(Fortran in this case) compiler can be used, which is not the
case for the other AD methods (such as operator overloading
and AD-enabled compilers).

AD has applications that span multiple disciplines of sci-
ence such as engineering, physics, chemistry, and medicine,
where it can be used for sensitivity analyses, optimisation,
and inverse problem solving, etc. (Griewank and Walther,
2008). In fact, AD has applications wherever partial deriva-
tives of computer programmes can be made useful. It is not
the intention to give a full literature review of research that
has benefited from AD but rather a brief overview of its
applications in geophysical research and in particular using
TAPENADE.

The AD tool TAPENADE has been used for a variety of
different physics models as follows. A general purpose atmo-
spheric radiative transfer model for remote sensing applica-
tions made use of the superior numerical accuracy of AD, in
comparison to finite difference perturbations, for evaluation
of satellite trace gas spectra (Schreier et al., 2014). Moreover,
the AD method was later recommended for the same model
due to lower computational cost and greater numerical accu-
racy when solving non-linear inverse radiative transfer prob-
lem through iteration (Schreier et al., 2015). A meteorology–
chemistry coupled model also made use of AD source trans-
formation when developing a four-dimensional variational
data assimilation procedure for the model (Guerrette and
Henze, 2015). TAPENADE has also been used for a sensi-
tivity study of a sea-ice model to determine optimal model
parameters in a minimisation algorithm (Kim et al., 2006).

More information and literature on AD can be found at
www.autodiff.org.

The sensitivity on input data of the above-mentioned me-
teorological preprocessing method has not previously been
systematically investigated. The aim of this study is to quan-
titatively determine the sensitivities of meteorological output
parameters on model input for the meteorological preproces-
sor MPP-FMI (Karppinen et al., 1997, 2000a). This proce-
dure is useful for analysing in detail the functioning of the
computer program corresponding to the model MPP-FMI.
The modelled sensitivities can also be compared to what
would be physically feasible, based on a consideration of the
relevant atmospheric processes. This will provide a useful
additional test regarding the correct functioning of the com-
puter code and the numerical procedures of the MPP-FMI
model. Such a thorough and quantitative sensitivity analy-
sis also provides new information and insights regarding the
further refinement of such models.

2 Methods

2.1 The meteorological preprocessor MPP-FMI

The meteorological preprocessor is used to estimate turbu-
lent fluxes, atmospheric stability, and boundary-layer scal-
ing parameters based on meteorological observations at fixed
locations. The scope of this study is to determine the sen-
sitivity of this model for deriving the vertical fluxes in the
boundary layer. However, we have not addressed the rou-
tines within the MPP-FMI model that deal with the verti-
cal temperature gradient and hence mixing height which are
obtained from temperature profiles provided by radiosondes
(Karppinen et al., 2001). Mixing height is another key pa-
rameter for the modelling of dispersion of pollutants because
it determines the spread of pollutants particularly vertically,
and so any future dispersion-model sensitivity study, based
on the present work, would naturally also use mixing height
as an input. The scope of the present study is depicted in
Fig. 1.

The meteorological observations used by the MPP-FMI
model as input comprise temperature (T2), wind speed (U )
and wind direction at a height of 10 m, amount of predomi-
nant clouds (CC), cloud height (CZ), sunshine fraction, state
of the ground (wet, dry, snow, ice, etc.), and precipitation.
These are needed by the preprocessor in order to model
boundary-layer scaling parameters required by urban-scale
dispersion models.

MPP-FMI is originally based on the work by Van Ulden
and Holtslag (1985) with modifications that make the param-
eterisation more suitable for high latitudes and urban areas
(Karppinen et al., 1997, 2000a). Central to this method is the
surface heat-budget equation:

Q∗−QG =QH+QE. (1)
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Figure 1. A schematic diagram on the flow of information of the
meteorological preprocessor MPP-FMI.

In Eq. (1),Q∗ is the surface net radiation,QG is the soil heat
flux, QH is the sensible heat flux, and QE is the latent heat
flux. The terms that comprise Eq. (1) are not commonly avail-
able from measurements (although there are measurements
of eddy covariance at some research sites; Wood et al., 2013)
and are therefore estimated by the meteorological prepro-
cessor. A comprehensive description of MPP-FMI is already
available in the literature (Karppinen et al., 1997). However,
a brief overview of the model structure will be presented in
the following for convenience.

First, the meteorological preprocessor estimates available
energyQ∗−QG by decomposing the terms into components
of (i) net shortwave radiation using incoming shortwave ra-
diation and albedo, (ii) net longwave radiation from surface
radiative temperature and cloud-base radiation temperature
(specific for MPP-FMI) using a constant dry adiabatic lapse-
rate and cloud-base height, and (iii) estimated heat flux into
the ground from estimated temperature difference between
the ground and a reference height of 50 m. Then, the term
QE is estimated using a simplified Penman–Monteith equa-
tion (Van Ulden and Holtslag, 1985). Consequently, an es-
timate of the sign of QH is obtained, which will determine
if the subsequent calculations are to be done using stability
functions for stable or unstable conditions.

According to surface-layer similarity theory, both friction
velocity (u∗) and temperature scale for turbulent heat trans-
fer (θ∗) can be expressed as vertical profiles. For u∗, which
is a measure of the surface production of turbulent kinetic
energy, the equation is

u∗ =
U (z)k

ln
(
z
z0

)
−ψM

(
z
L

)
+ψM

(
z0
L

) . (2)

In Eq. (2), U is wind speed at height z, z0 is the surface
roughness length, k is the von Karman constant, and the
terms ψM are stability functions; see Appendix A for details.
L is the Obukhov length, which is an atmospheric stabil-
ity measure that describes the relative importance of surface
production of turbulence due to shear stress and buoyancy
forces.

Similarly to u∗, θ∗ can be written as

θ∗ =
k [θ (z2)− θ (z1)]

ln
(
z2
z1

)
−ψH

(
z2
L

)
+ψH

(
z1
L

) , (3)

where z1 and z2 are arbitrary heights in the surface layer, θ
is the potential temperature at the respective heights, and the
terms ψH are stability functions. Both Eqs. (2) and (3) and
their respective stability functions are used as described in
Van Ulden and Holtslag (1985). Using Eq. (3), θ(z2) at a ref-
erence height of 50 m can be modelled from measurements
of θ(z1). This is done by solving θ∗ from the definition of L,

L=
u2
∗θ

kgθ∗
, (4)

and substituting it into Eq. (3). In Eq. (4), g is the accelera-
tion due to gravity. This completes the modelling of θ∗ using
surface-layer similarity theory using the profile method (Van
Ulden and Holtslag, 1985).

In addition to Eqs. (3) and (4), θ∗ can also be estimated
using the energy-budget method derived from the modified
Penman–Monteith equation:

θ∗ =

(
αS

S+ 1
− 1

)(
Q∗−G

ρcpu∗

)
+αθd, (5)

where α is the Priestley–Taylor moisture parameter, S is the
saturation enthalpy curve of water vapour, ρ the density of
air, cp is the specific heat capacity of air, and θd is an empiri-
cal temperature scale. The derivation of Eq. (5) is done using
the equations in Van Ulden and Holtslag (1985). In MPP-
FMI, however, the parameterisation of S is different from
that of Van Ulden and Holtslag (1985) in order to extend the
temperature range of the parameterisation. Both parameter-
isations are very similar and are solely functions of surface
temperature.

Finally, the value for L is found iteratively by changing
L until θ∗ from the profile method is equal to θ∗ from the
energy-budget method of Eq. (5); namely, Eq. (5) is equal
to u2

∗θ/(k gL). This iteration will consequently impact u∗
and θ∗ as described above. In addition, Q∗, G, QH, and QE
will also change during the iteration because of the stability
functions of Eqs. (2) and (3).

2.2 Algorithmic differentiation

Algorithmic differentiation (AD) deals with the numerical
evaluation of derivatives of functions that are implemented
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in a computer programme. Any computer program, no matter
how complex, performs a sequence of arithmetic operations
(addition, subtraction, division, etc.) or elementary func-
tions (exponential, trigonometric, etc.) whose derivatives are
known. AD exploits this fact by applying the chain rule of
differentiation to the entire sequence of operations within the
program (Griewank and Walther, 2008). This systematic ap-
proach yields numerical derivative values at machine preci-
sion, which describe how the program’s results (i.e. outputs)
depend on its inputs. The AD method performs each differ-
entiation operation at machine precision and does not em-
ploy approximate techniques, such as finite differences. For
this reason, AD does not suffer from truncation or round-off
errors. The evaluation of finite differences is further com-
plicated if input variables differ by orders of magnitude. By
choosing the AD method, the tedious and imprecise evalua-
tion can be avoided.

AD is further separated into two modes: a forward mode
or a reverse mode (Griewank and Walther, 2008). Here, the
discussion will be limited to the forward mode, which has
been employed in this study. As a starting point, consider
an arbitrary computer program that takes n input variables
and returns m outputs. It can be described as a vector-valued
function:

y = F (x) , (6)

such that the function F maps Rn→ Rm where x ∈ Rn de-
fines the input and y ∈ Rm the output vectors.

Application of the forward-mode AD to Eq. (6) yields
a new implementation of the program, which, in addition to
the original function evaluation, evaluates its differential:

ẏk = F
′ (x) ẋk. (7)

In Eq. (7), F ′ (x) ∈ Rm×n defines the Jacobian matrix, which
contains all first-order partial derivatives ∂y/∂x, and ẋk =

(∂x1/∂xk, . . .,∂xk/∂xk, . . .,∂xn/∂xk)
T is the seeding vector,

which can be viewed as the kth unit vector that operates on
the Jacobian. The result is the kth column from the Jaco-
bian matrix ẏk = (∂y1/∂xk,∂y2/∂xk, . . .,∂ym/∂xk)

T which
yields the dependency of all outputs with respect to the user-
specified xk input parameter. In the forward-mode differenti-
ated computer program, the derivative evaluations based on
the chain rule contained in Eq. (7) are performed following
the same order as the associated operations in Eq. (6), but al-
ways such that the derivative operations are executed before
their corresponding step in the original program have com-
pleted.

A typical goal in sensitivity analysis is to obtain the full
Jacobian. Utilising forward-mode AD, this is achieved by re-
peating the computation of Eq. (7) n times to yield all the
columns of the Jacobian matrix. This is best illustrated with
an example matrix (Eq. 8) where the first column of the Ja-
cobian is chosen. Thus, for a given input x, one can construct

the Jacobian using AD and extract the derivatives of the out-
put of interest at that point. This procedure can then be re-
peated for any number of points.

ẏ1 =
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∂x1
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∂x1
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∂xn
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F ′(x)∈Rm×n


1
0
...

0


︸︷︷︸

ẋk=1∈Rm×n

(8)

The reverse mode of AD is not applied in this work be-
cause the number of input variables is roughly the same as
the number of output variables (m≈ n). The reverse mode
should be favoured when n�m because the reverse mode
constructs the Jacobian one row at a time and is therefore
more efficient (Griewank and Walther, 2008). Again, the dif-
ferentiation was performed using the AD tool called TAPE-
NADE (Hascoet and Pascual, 2013). TAPENADE has been
developed by the French National Institute for computer sci-
ence and applied mathematics (Inria) and is free of charge
through a web-based user interface (http://www-tapenade.
inria.fr:8080/tapenade/).

3 Results

The source transformation of the computer program was
done using the multi-directional tangent (i.e. forward) mode
of TAPENADE. The multi-directional mode allows for effi-
cient execution of the program because redundant executions
of primal operations are avoided. The source-transformed
computer program was thus used to construct full Jacobian
matrices and took just 4.5 times longer to run than the orig-
inal program. Since the Jacobian matrices were not sparse,
optimisation based on sparsity was not motivated.

In this work, if an input variable to the model was solely
used in a lookup table, that input was replaced by the parame-
ter that results from the lookup table (Appendix B). Namely,
precipitation and state-of-the-ground input data are used in
a lookup table to estimate a value for the Priestley–Taylor
moisture parameter α, whereas state of the ground is used
to estimate the surface albedo (r). From a sensitivity study
point of view, it makes more sense to be able to assess the
sensitivity to α and r directly, rather than the sensitivity in-
volving the lookup table procedure. Therefore, in this work,
the lookup table variables r and α are included as inputs to
the MPP-FMI, which also reduces the number of input vari-
ables to be analysed. Thus, the sensitivity analysis becomes
more straightforward to interpret because inherent step func-
tions of lookup tables are circumvented.
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In addition to replacing the lookup table with parame-
ters that result from the lookups, the sunshine fraction has
been replaced with net incoming solar radiation at the sur-
face (RS). Replacing the sunshine fraction with RS is mo-
tivated by an increased availability of direct measurements
of RS. Originally, the sunshine fraction is used in a regres-
sion to derive RS (Karppinen et al., 1997).

3.1 Obukhov length sensitivity

We have selected the ranges of the input parameters for the
sensitivity analysis to be the commonly occurring ones in
the meteorological and environmental conditions in the city
of Helsinki, Finland. For instance, the ambient temperatures
were assumed to range from −20 to +30 ◦C. These ranges
have been presented in Table 1.

The values in Table 1 were then used to construct the Ja-
cobian (Eq. 8) for every combination of the meteorological
input variables. The rows of interest for this work are those
rows in the Jacobian containing the sensitivity information
of L−1 and u∗ since they are needed in Gaussian dispersion
models such as CAR-FMI and UDM-FMI to model turbulent
dispersion. In addition toL−1 and u∗, the Jacobian comprises
sensitivity information for the quantitiesQH,QE,Q∗, and θ∗
to the respective input variables listed in Table 1.

The range and units of the input variables vary greatly.
Therefore, the intercomparison of partial derivatives of the
outputs with respect to the input data as such is not desirable.
In order to make the partial derivatives intercomparable, the
partial derivatives have been normalised by 10 % of the in-
put range of the respective input variables denoted 1xi . The
range of the input data is listed in Table 1. In Fig. 2, the sen-
sitivity of the inverse Obukhov length (L−1) is shown for all
combinations of the input parameters listed in Table 1. L−1

describes the atmospheric stability; for neutral conditions,
L−1
≈ 0. When L−1

� 0, the atmosphere is unstable, and
when L−1

� 0, the atmosphere is stable. For clarity, Fig. 2
is further separated into a low wind-speed situation with all
other input variables varied (the main figure). The insert fig-
ure contains all combinations of input parameters associated
with wind speeds in the range of 4–20 ms−1. The figure is
separated into low and high wind-speed situations because
the model is much more sensitive to input data when the wind
speed is low; U ≈ 1 ms−1.

An obvious conclusion based on the results in Fig. 2 is
that the wind speed U is the most important parameter, and
the solar irradiation RS is the second most important one,
with respect to the predicted values of the inverse Obukhov
length. This result could also be physically expected, since
wind speed is the most obvious factor in terms of the forma-
tion of mechanical turbulence, whereas solar irradiation is
a crucial parameter for the thermally induced turbulence. As
can be seen from Fig. 2, L−1 is most sensitive to a change in
U . When compared to the insert (4ms−1

≤ U ≤ 20 ms−1),
the sensitivity to a change in wind speed is more pronounced

Figure 2. Sensitivity of inverse Obukhov length (L−1) with respect
to input variables of MPP-FMI. The main figure shows sensitivi-
ties to all the input variables when the wind speed (U ) is 1 ms−1.
The insert shows sensitivities for wind speeds in the range of 4–
20 ms−1. In the figure, the partial derivatives have been normalised
by the range of the input parameters (1xi ) described in Table 1 in
order to make them intercomparable.

at low wind speeds. When L−1 is negative, which is the
case of unstable and neutral conditions, the partial derivative
∂L−1/∂U is positive. That means that an increase in U will
always favour the modelled stability to become more neutral.
That is, a negative L−1 and a positive partial derivative of
∂L−1/∂U will tend to move L−1 towards neutral given that
U increases. Conversely, when L−1 > 0 (i.e. stable to neu-
tral), then ∂L−1/∂U is always negative. This means that an
increase in U will therefore, again, tend to make L−1 move
towards neutral. This is in agreement with what one would
expect in nature since an increase in U will induce mechan-
ical turbulence regardless of the initial stability and hence
favour neutral conditions. At higher values of U , seen in the
insert of Fig. 2, the L−1 range is now restricted to roughly
the range of −0.03–0.01 m−1 (i.e. neutral).

The second most important input variable for the pre-
processor with regard to L−1 is RS. The partial derivative
∂L−1/∂RS for all considered combinations of input val-
ues remains exclusively negative and even more so when
L−1 > 0. This means that an increase inRS will always move
the stability towards unstable. This follows the intuition that
an increase inRS will increase buoyancy-induced turbulence,
therefore favouring an unstable boundary layer. At low wind
speeds, it has to be noted that the spread in the sensitivity
of L−1 to RS is an indication that other meteorological in-
put variables influence the results, especially when L−1 > 0.
This is evident from the fact that the sensitivity to RS does
not follow a single line but is spread out. For example, when
L−1
= 0.3 m−1, then ∂L−1/∂RS is in the range of −0.1–

0.6 m−1. The highest sensitivity to a change in RS, at low
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Table 1. Range of parameters used for studying the sensitivity of L−1. For each range, six points were linearly spaced within the range.
This amounts to 68 (1.7 million) combinations of input variables to be evaluated, resulting in 68 Jacobian matrices. In the table, z0 is the
roughness length, r is the surface albedo, T2 is the temperature at the height of 2 m, CC is the cloud cover, U is the wind speed at 10 m, α is
the Priestley–Taylor moisture parameter, and RS is the solar irradiance.

Inputs z0 (m) r T2 (◦C) CC CZ (m) U (ms−1) α RS (Wm−2)

Range 0.3–1.3 0.05–0.7 −20–30 0–1 30–6000 1–20 0.5–1.0 0–900

Figure 3. Sensitivity of friction velocity (u∗) with respect to in-
put variables of MPP-FMI. The main figure shows sensitivities of
the most important input variables, whereas the inserts show the
less sensitive input variables. The partial derivatives have been nor-
malised by the range of the input parameters (1xi ) described in
Table 2 in order to make them intercomparable.

wind speeds, is when RS is close to zero and the surface
albedo (r) is low. This information is, however, not colour
coded into the figure (so as not to degenerate the clarity of
the figure).

3.2 Friction velocity sensitivity

Another important scaling parameter for Gaussian models is
u∗. Moreover, u∗ is also central for the iteration procedure
in the preprocessor when finding a value for L−1. Table 2
summarises the input variable ranges for the u∗ sensitivity
analysis. The variable range used for the sensitivity study of
u∗ differs from that of L−1 in the case of the selected wind
speeds; the extremely high wind speeds (from 12 to 20 ms−1)
have been omitted in the case of the u∗ sensitivity analysis.
The latter selection was made in order to be able to present
the results more clearly; the highest wind speeds also occur
only for a small fraction of time. The sensitivity of u∗ to dif-
ferent input variables is depicted in Fig. 3.

As for the corresponding results for L−1, the wind speed
U was the most important parameter, and the solar irradia-
tion RS was the second most important one. This result is

physically to be expected also in the case of the sensitivity of
u∗.

Amongst the input parameters, only U and z0 are present
in the equation for u∗. The rest of the sensitivity of u∗ is,
to a varying degree, related to the cross sensitivity between
L−1 and u∗ through Eqs. (2)–(5). Since u∗ is a scaling pa-
rameter for the production of turbulent kinetic energy due to
shear stress, u∗ is generally high for high values of U . Thus,
a generalisation can be made that u∗ is most sensitive to U
at low wind speeds. Furthermore, the stability functions ψM
of Eq. (2) will increase u∗ the more negative (unstable) L−1

becomes and decrease u∗ the more positive (stable) L−1 be-
comes; see Appendix A. For neutral stability (L−1

≈ 0), the
stability functions ψM of Eq. (2) yield very similar results
for u∗. At higher wind speeds, the value of z0 determines to
a greater extent the sensitivity of ∂u∗/∂U . This is clearly vis-
ible when u∗ > 1 m s−1 as six vertically separated groups of
points in Fig. 3; six groups are used because of six differ-
ent values of z0. This is, however, not colour coded into the
figure so as not to degenerate the clarity of the figure.

The second most important input parameter for u∗ is RS.
This holds true for low values of u∗. Based on the discus-
sion regarding the sensitivity of L−1, this is expected. How-
ever, from Eq. (2), it is not that clear that u∗ is sensitive to
the solar radiation input into the preprocessor. Again, as RS
changes, this will impact the absolute values that comprise
the energy budget equation; see Eq. (1). This in turn will im-
pact θ∗ which consequently impacts L−1 and ultimately u∗
through the stability functions. However, at high u∗, the im-
portance of z0 will be more important for the modelled value
of u∗ than RS as depicted in the figure. Opposite to the sen-
sitivities to U , RS, and z0, an increase in surface albedo (r)
will lower u∗ through L−1.

3.3 Cross sensitivity

The sensitivity study of L−1 and u∗ has shown that U is the
most important parameter for MPP-FMI. L−1 is highly sen-
sitive to a change in U when U ≈ 1 ms−1. Moreover, u∗ is
also most sensitive to U . Because u∗ is a function of L−1

(Eq. 2) and L−1 is a function of u∗ (Eq. 4), these scaling pa-
rameters are interconnected. Thus, these scaling parameters
are cross sensitive.

Figure 4 shows the cross sensitivity between ∂u∗/∂U and
L−1. The figure shows that the largest sensitivity of ∂u∗/∂U
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Table 2. Range of parameters used for studying the sensitivity of u∗. Six points were linearly spaced within the range, except for U which
comprises 10 logarithmically spaced points which amount to roughly 2.8 million combinations of input variables. In the table, z0 is the
roughness length, r is the surface albedo, T2 is the temperature at the height of 2 m, CC is the cloud cover, U is the wind speed at 10 m, α is
the Priestley–Taylor moisture parameter, and RS is the solar irradiance.

Inputs z0 (m) r T2 (◦C) CC CZ (m) U (ms−1) α RS (Wm−2)

Range 0.3–1.3 0.05–0.7 −20–30 0–1 30–6000 1–12 0.5–1.0 0–900

Figure 4. Cross sensitivity between atmospheric stability (L−1) and
friction velocity (u∗) with respect to wind speed (U ) for different
surface roughness lengths (z0). Not all z0 values in the range are
plotted for clarity. Note that the y axis of Fig. 4 is not scaled as in
the previous figures because there is no intercomparison between
different input data in this figure.

will be when L−1 is around 0.1 m−1, i.e. mildly stable. The
different behaviour of ∂u∗/∂U when L−1 > 0 is likely due
to the increased complexity of the stability functions (ψM
in Eq. 2) for stable conditions than for unstable conditions;
see Appendix A for details. This behaviour is not captured
in Figs. 2 and 3 although it could perhaps be inferred. This
behaviour is also likely to be the case for real atmospheric
conditions since a mildly stable boundary layer would be
susceptible to increasing U and consequently the produc-
tion of wind-shear-induced turbulence which would cause u∗
to increase. For highly stable conditions, the sensitivity of
∂u∗/∂U levels out and is below the sensitivity for unstable
conditions.

For unstable conditions (L−1
� 0), the sensitivity of

∂u∗/∂U is less complex and the degree of sensitivity is
largely dictated by z0, which also holds true for mildly sta-
ble conditions. Without the stability functions ψM and ψH,
a cross sensitivity would still remain; however, it is not as
intricate as depicted in Fig. 4.

4 Conclusions and discussion

The sensitivities of the meteorological preprocessor model
MPP-FMI on its input values were examined by the means of
algorithmic differentiation. The differentiation of the prepro-
cessor was carried out by a source-transformation AD tool
called TAPENADE, yielding a program that evaluates the de-
sired sensitivity derivatives with machine precision. We fo-
cused on the evaluation of vertical fluxes in the atmosphere
and in particular on the sensitivity of the predicted inverse
Obukhov length and friction velocity on the model input pa-
rameters. These two quantities were selected as they are key
parameters in view of air pollution.

The study shows that the predicted inverse Obukhov length
and friction velocity are most sensitive to wind speed and,
second most importantly, to solar irradiation. The depen-
dency on wind speed is most pronounced at low wind speeds.
For both predicted inverse Obukhov length and friction ve-
locity, the third most important factors are the roughness
length and the surface albedo, for unstable and stable condi-
tions, respectively. The surface roughness length determines
how sensitive the friction velocity is to wind speed.

The presented results have implications for improving the
meteorological preprocessing models and for selecting and
preparing the measured input values for such models. For in-
stance, the high sensitivity of the preprocessor to the values
of the wind speed at the height of 10 m implies that the wind
observations have to be selected very carefully. Clearly, the
wind-speed observations should be as representative as pos-
sible for the whole of the domain to be considered and should
not be affected or substantially influenced by any local dis-
turbances.

Finally, another key parameter worthy of study for atmo-
spheric dispersion models is mixing height, because the mix-
ing height describes the depth of lowermost layer in which
pollutants disperse.

This study gave more confidence that AD, in general, and
the TAPENADE tool in particular are useful tools of assess-
ment for studying quantitatively the ranges of sensitivities of
the predicted parameters. The analysis is more comprehen-
sive and versatile compared with the use of previously ap-
plied sensitivity analysis methods. The sensitivities could be
analysed for a wide range of input conditions both accurately
and effectively.

www.geosci-model-dev.net/10/3793/2017/ Geosci. Model Dev., 10, 3793–3803, 2017



3800 J. Backman et al.: Sensitivity analysis of MPP-FMI using AD

The AD procedure is also useful for analysing the func-
tioning of computer programs, and for improving their opti-
misation in terms of computing resources. In this study, all
the dependencies of the predicted parameters on the model
input values were found to be physically understandable and
feasible. However, the procedure could also be useful for
finding out potential inaccuracies of the numerical solutions,
or even mistakes in the structure of the computer codes.

The meteorological preprocessor parameterisation scheme
(that is originally based on van Ulden and Holtslag) used
in this study is in fairly common use in other countries
within meteorological preprocessors and dispersion models.
The initial conditions used in the model computations cor-
responded to the climate and environmental conditions in
Helsinki. However, the range of conditions at such a north-
ern latitude vary substantially (for instance, the ambient tem-
peratures were assumed to range from −20 to +30 ◦C), and
the more moderate climatic conditions that are common for
most of central Europe are actually included in the selected
wide variability. The main insights and conclusions found out
in this study are therefore probably similar for several other
preprocessors used in Europe that use the same or a similar
boundary-layer scaling method.

Future research could address the determination of how
the sensitivity of MPP-FMI impacts the modelled concentra-
tions of pollutants. Such research could be done by source
transforming a chain of models using AD, instead of only
one model. The next chain of models to be investigated could
be a combination of a meteorological preprocessor and an
urban-scale dispersion model. The sensitivity of the com-
bined modelling system could also be evaluated in terms of
other input values of the dispersion model, in addition to the
meteorological ones.

Code availability. The source code for the meteorological pre-
processor (MPP-FMI 3.0) is included in the Supplement. The
source-transformed code is also included in the Supplement. The
source-transformed code is subject to the TAPENADE licence
agreement which limits the use of the code to academic re-
search (see www-sop.inria.fr/tropics/tapenade/downloading.html).
The Supplement also contains the code that was used to produce
the input data and a wrapper to handle data input and output.
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Appendix A

The empirical stability functions of Eq. (2) as implemented
in the meteorological preprocessor are

ψM = (1− 16z/L)1/4− 1 for L < 0

ψM =−17
(

1− e−0.29z/L
)

for L > 0. (A1)

The stability functions of Eq. (A1) are taken from Karppinen
et al. (1997). Figure A1 shows u∗ as a function of L−1 for
two different wind speeds (1 and 4 ms−1). Note that −L−1

and L−1 are plotted on the same x axis.

Figure A1. Friction velocity (u∗) as a function of inverse Obukhov
length (L−1) for two different wind speeds (U ) using a rough-
ness length (z0) of 0.5 m and wind-speed measurement height (z)
of 10 m.

Appendix B

This appendix covers the lookup table parameters that are
used to estimate the surface albedo (r) and the Priestley–
Taylor moisture parameter (α).

The state of the ground is used in a lookup table to obtain
an estimate for the surface albedo according to surface type
and the state of the ground. The lookup table procedure is
shown in Table B1.

The Priestley–Taylor parameter estimate is estimated us-
ing a lookup table involving weather codes, solar elevation
angle, state of the ground, and precipitation during the last
12 h (Karppinen et al., 1997). The lookup table is illustrated
by a flow chart in Fig. B1.

Figure B1. Flow chart of how the Priestley–Taylor moisture param-
eter (α) is estimated from input parameters that comprise state of
the ground, current weather, weather during the last hour, weather
during the last 3 h, precipitation during last 12 h, and solar elevation
angle.
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Table B1. Lookup table for surface albedo (r) based on surface type and state of the ground.

State of the ground

Soil Ice Snow cover (%)

Dry Moist Wet Dry Wet < 50 50< 100 100 50< 100 100

Surface Melting Melting Melting Dry snow Dry snow

Sea 0.06 0.06 0.06 0.06 0.06 0.30 0.30 0.70 0.71 0.71
Lake 0.05 0.05 0.05 0.15 0.15 0.18 0.38 0.71 0.71 0.71
Wasteland 0.13 0.13 0.13 0.13 0.33 0.44 0.55 0.67 0.67 0.67
Field 0.2 0.2 0.2 0.13 0.11 0.33 0.55 0.67 0.67 0.67
Forest 0.11 0.11 0.11 0.11 0.17 0.26 0.34 0.39 0.39 0.39
City 0.22 0.22 0.22 0.13 0.11 0.17 0.22 0.28 0.28 0.39

Geosci. Model Dev., 10, 3793–3803, 2017 www.geosci-model-dev.net/10/3793/2017/



J. Backman et al.: Sensitivity analysis of MPP-FMI using AD 3803

The Supplement related to this article is available
online at https://doi.org/10.5194/gmd-10-3793-2017-
supplement.

Competing interests. The authors declare that they have no conflict
of interest.

Acknowledgements. This work was funded by the Maj and
Tor Nessling Foundation (grants 2014044, 201600449, and
201700305).

Edited by: David Ham
Reviewed by: Laurent Hascoet and one anonymous referee

References

Fisher, B., Kukkonen, J., and Schatzmann, M.: Meteorology ap-
plied to urban air pollution problems COST 715, Int. J. Environ.
Pollut., 16, 560–570, https://doi.org/10.1504/IJEP.2001.000650,
2001.

Griewank, A. and Walther, A.: Evaluating Derivatives Principles
and Techniques of Algorithmic Differentiation, vol. 2, Society
for Industrial and Applied Mathematics, Philadelphia, USA, 1–
56, 2008.

Guerrette, J. J. and Henze, D. K.: Development and application
of the WRFPLUS-Chem online chemistry adjoint and WRFDA-
Chem assimilation system, Geosci. Model Dev., 8, 1857–1876,
https://doi.org/10.5194/gmd-8-1857-2015, 2015.

Hascoet, L. and Pascual, V.: The Tapenade Automatic
Differentiation Tool: principles, model, and speci-
fication, ACM T. Math. Software, 39, 20:1–20:43,
https://doi.org/10.1145/2450153.2450158, 2013.

Karppinen, A., Joffre, S. M., and Vaajama, P.: Boundary-layer pa-
rameterization for Finnish regulatory dispersion models, Int. J.
Environ. Pollut., 8, 3–6, 1997.

Karppinen, A., Joffre, S. M., and Kukkonen, J.: The re-
finement of a meteorological preprocessor for the ur-
ban environment, Int. J. Environ. Pollut., 14, 1–9,
https://doi.org/10.1504/IJEP.2000.000580, 2000a.

Karppinen, A., Kukkonen, J., Elolähde, T., Konttinen, M., Kosken-
talo, T., and Rantakrans, E.: A modelling system for predict-
ing urban air pollution: model description and applications in
the Helsinki metropolitan area, Atmos. Environ., 34, 3723–3733,
https://doi.org/10.1016/S1352-2310(00)00074-1, 2000b.

Karppinen, A., Joffre, S. M., Kukkonen, J., and Bremer, P.: Evalua-
tion of inversion strengths and mixing heights during extremely
stable atmospheric stratification, Int. J. Environ. Pollut., 16, 1–6,
https://doi.org/10.1504/IJEP.2001.000653, 2001.

Kauhaniemi, M., Karppinen, A., Härkönen, J., Kousa, A., Alaviip-
pola, B., Koskentalo, T., Aarnio, P., Elolähde, T., and Kukko-
nen, J.: Evaluation of a modelling system for predicting the
concentrations of PM2.5 in an urban area, Atmos. Environ.,
42, 4517–4529, https://doi.org/10.1016/j.atmosenv.2008.01.071,
2008.

Kim, J. G., Hunke, E. C., and Lipscomb, W. H.: Sen-
sitivity analysis and parameter tuning scheme for
global sea-ice modeling, Ocean Model., 14, 61–80,
https://doi.org/10.1016/j.ocemod.2006.03.003, 2006.

Kukkonen, J., Härkönen, J., Walden, J., Karppinen, A., and
Lusa, K.: Validation of the dispersion model CAR-FMI against
measurements near a major road, Atmos. Environ., 35, 949–960,
https://doi.org/10.1016/S1352-2310(00)00337-X, 2001.

Schreier, F., Gimeno García, S., Hedelt, P., Hess, M., Mendrok, J.,
Vasquez, M., and Xu, J.: GARLIC – a general purpose atmo-
spheric radiative transfer line-by-line infrared-microwave code:
implementation and evaluation, J. Quant. Spectrosc. Ra., 137,
29–50, https://doi.org/10.1016/j.jqsrt.2013.11.018, 2014.

Schreier, F., Gimeno García, S., Vasquez, M., and Xu, J.: Al-
gorithmic vs. finite difference Jacobians for infrared atmo-
spheric radiative transfer, J. Quant. Spectrosc. Ra., 164, 147–160,
https://doi.org/10.1016/j.jqsrt.2015.06.002, 2015.

Van Ulden, A. P. and Holtslag, A. A. M.: Estimation of atmospheric
boundary layer parameters for diffusion applications, J. Clim.
Appl. Meteorol., 24, 1196–1207, https://doi.org/10.1175/1520-
0450(1985)024<1196:EOABLP>2.0.CO;2, 1985.

Wood, C. R., Järvi, L., Kouznetsov, R. D., Nordbo, A., Joffre, S.,
Drebs, A., Vihma, T., Hirsikko, A., Suomi, I., Fortelius, C.,
O’Connor, E., Moiseev, D., Haapanala, S., Moilanen, J.,
Kangas, M., Karppinen, A., Vesala, T., and Kukkonen, J.:
An overview of the urban boundary layer atmosphere net-
work in Helsinki, B. Am. Meteorol. Soc., 94, 1675–1690,
https://doi.org/10.1175/BAMS-D-12-00146.1, 2013.

www.geosci-model-dev.net/10/3793/2017/ Geosci. Model Dev., 10, 3793–3803, 2017

https://doi.org/10.5194/gmd-10-3793-2017-supplement
https://doi.org/10.5194/gmd-10-3793-2017-supplement
https://doi.org/10.1504/IJEP.2001.000650
https://doi.org/10.5194/gmd-8-1857-2015
https://doi.org/10.1145/2450153.2450158
https://doi.org/10.1504/IJEP.2000.000580
https://doi.org/10.1016/S1352-2310(00)00074-1
https://doi.org/10.1504/IJEP.2001.000653
https://doi.org/10.1016/j.atmosenv.2008.01.071
https://doi.org/10.1016/j.ocemod.2006.03.003
https://doi.org/10.1016/S1352-2310(00)00337-X
https://doi.org/10.1016/j.jqsrt.2013.11.018
https://doi.org/10.1016/j.jqsrt.2015.06.002
https://doi.org/10.1175/1520-0450(1985)024<1196:EOABLP>2.0.CO;2
https://doi.org/10.1175/1520-0450(1985)024<1196:EOABLP>2.0.CO;2
https://doi.org/10.1175/BAMS-D-12-00146.1

	Abstract
	Introduction
	Methods
	The meteorological preprocessor MPP-FMI
	Algorithmic differentiation

	Results
	Obukhov length sensitivity
	Friction velocity sensitivity
	Cross sensitivity

	Conclusions and discussion
	Code availability
	Appendix A
	Appendix B
	Competing interests
	Acknowledgements
	References

