Articles | Volume 10, issue 9
https://doi.org/10.5194/gmd-10-3277-2017
https://doi.org/10.5194/gmd-10-3277-2017
Development and technical paper
 | 
05 Sep 2017
Development and technical paper |  | 05 Sep 2017

SUPECA kinetics for scaling redox reactions in networks of mixed substrates and consumers and an example application to aerobic soil respiration

Jin-Yun Tang and William J. Riley

Related authors

Impacts of tile drainage on hydrology, soil biogeochemistry, and crop yield in the U.S. Midwestern agroecosystems
Zewei Ma, Kaiyu Guan, Bin Peng, Wang Zhou, Robert Grant, Jinyun Tang, Murugesu Sivapalan, Ming Pan, Li Li, and Zhenong Jin
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-340,https://doi.org/10.5194/hess-2024-340, 2024
Preprint under review for HESS
Short summary
Technical Note: A modified formulation of dynamic energy budget theory for faster computation of biological growth
Jinyun Tang and William J. Riley
EGUsphere, https://doi.org/10.5194/egusphere-2024-2282,https://doi.org/10.5194/egusphere-2024-2282, 2024
Short summary
Deriving a Transformation Rate Map of Dissolved Organic Carbon over the Contiguous U.S.
Lingbo Li, Hong-Yi Li, Guta Abeshu, Jinyun Tang, L. Ruby Leung, Chang Liao, Zeli Tan, Hanqin Tian, Peter Thornton, and Xiaojuan Yang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-43,https://doi.org/10.5194/essd-2024-43, 2024
Preprint under review for ESSD
Short summary
A chemical kinetics theory for interpreting the non-monotonic temperature dependence of enzymatic reactions
Jinyun Tang and William J. Riley
Biogeosciences, 21, 1061–1070, https://doi.org/10.5194/bg-21-1061-2024,https://doi.org/10.5194/bg-21-1061-2024, 2024
Short summary
KGML-ag: a modeling framework of knowledge-guided machine learning to simulate agroecosystems: a case study of estimating N2O emission using data from mesocosm experiments
Licheng Liu, Shaoming Xu, Jinyun Tang, Kaiyu Guan, Timothy J. Griffis, Matthew D. Erickson, Alexander L. Frie, Xiaowei Jia, Taegon Kim, Lee T. Miller, Bin Peng, Shaowei Wu, Yufeng Yang, Wang Zhou, Vipin Kumar, and Zhenong Jin
Geosci. Model Dev., 15, 2839–2858, https://doi.org/10.5194/gmd-15-2839-2022,https://doi.org/10.5194/gmd-15-2839-2022, 2022
Short summary

Related subject area

Biogeosciences
BOATSv2: new ecological and economic features improve simulations of high seas catch and effort
Jerome Guiet, Daniele Bianchi, Kim J. N. Scherrer, Ryan F. Heneghan, and Eric D. Galbraith
Geosci. Model Dev., 17, 8421–8454, https://doi.org/10.5194/gmd-17-8421-2024,https://doi.org/10.5194/gmd-17-8421-2024, 2024
Short summary
A dynamical process-based model for quantifying global agricultural ammonia emissions – AMmonia–CLIMate v1.0 (AMCLIM v1.0) – Part 1: Land module for simulating emissions from synthetic fertilizer use
Jize Jiang, David S. Stevenson, and Mark A. Sutton
Geosci. Model Dev., 17, 8181–8222, https://doi.org/10.5194/gmd-17-8181-2024,https://doi.org/10.5194/gmd-17-8181-2024, 2024
Short summary
Simulating Ips typographus L. outbreak dynamics and their influence on carbon balance estimates with ORCHIDEE r8627
Guillaume Marie, Jina Jeong, Hervé Jactel, Gunnar Petter, Maxime Cailleret, Matthew J. McGrath, Vladislav Bastrikov, Josefine Ghattas, Bertrand Guenet, Anne Sofie Lansø, Kim Naudts, Aude Valade, Chao Yue, and Sebastiaan Luyssaert
Geosci. Model Dev., 17, 8023–8047, https://doi.org/10.5194/gmd-17-8023-2024,https://doi.org/10.5194/gmd-17-8023-2024, 2024
Short summary
Biological nitrogen fixation of natural and agricultural vegetation simulated with LPJmL 5.7.9
Stephen Björn Wirth, Johanna Braun, Jens Heinke, Sebastian Ostberg, Susanne Rolinski, Sibyll Schaphoff, Fabian Stenzel, Werner von Bloh, Friedhelm Taube, and Christoph Müller
Geosci. Model Dev., 17, 7889–7914, https://doi.org/10.5194/gmd-17-7889-2024,https://doi.org/10.5194/gmd-17-7889-2024, 2024
Short summary
Learning from conceptual models – a study of the emergence of cooperation towards resource protection in a social–ecological system
Saeed Harati-Asl, Liliana Perez, and Roberto Molowny-Horas
Geosci. Model Dev., 17, 7423–7443, https://doi.org/10.5194/gmd-17-7423-2024,https://doi.org/10.5194/gmd-17-7423-2024, 2024
Short summary

Cited articles

Achat, D. L., Augusto, L., Gallet-Budynek, A., and Loustau, D.: Future challenges in coupled C-N-P cycle models for terrestrial ecosystems under global change: a review, Biogeochem., 131, 173–202, https://doi.org/10.1007/s10533-016-0274-9, 2016.
Aksnes, D. L. and Egge, J. K.: A theoretical-model for nutrient-uptake in phytoplankton, Mar. Ecol. Prog. Ser., 70, 65–72, 1991.
Allison, S. D.: A trait-based approach for modelling microbial litter decomposition, Ecol. Lett., 15, 1058–1070, 2012.
Armstrong, R. A.: Nutrient uptake rate as a function of cell size and surface transporter density: A Michaelis-like approximation to the model of Pasciak and Gavis, Deep-Sea Res. Pt. I, 55, 1311–1317, 2008.
Download
Short summary
We proposed the SUPECA kinetics to scale from single biogeochemical reactions to a network of mixed substrates and consumers. The framework for the first time represents single-substrate reactions, two-substrate reactions, and mineral surface sorption reactions in a scaling consistent manner. This new theory is theoretically solid and outperforms existing theories, particularly for substrate-limiting systems. The test with aerobic soil respiration showed its strengths for pragmatic application.