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Abstract. Several land biogeochemical models used for
studying carbon–climate feedbacks have begun explicitly
representing microbial dynamics. However, to our knowl-
edge, there has been no theoretical work on how to achieve
a consistent scaling of the complex biogeochemical reac-
tions from microbial individuals to populations, communi-
ties, and interactions with plants and mineral soils. We fo-
cus here on developing a mathematical formulation of the
substrate–consumer relationships for consumer-mediated re-

dox reactions of the form A+B
E
→ products, where products

could be, e.g., microbial biomass or bioproducts. Under the
quasi-steady-state approximation, these substrate–consumer
relationships can be formulated as the computationally diffi-
cult full equilibrium chemistry problem or approximated an-
alytically with the dual Monod (DM) or synthesizing unit
(SU) kinetics. We find that DM kinetics is scaling inconsis-
tently for reaction networks because (1) substrate limitations
are not considered, (2) contradictory assumptions are made
regarding the substrate processing rate when transitioning
from single- to multi-substrate redox reactions, and (3) the
product generation rate cannot be scaled from one to mul-
tiple substrates. In contrast, SU kinetics consistently scales
the product generation rate from one to multiple substrates
but predicts unrealistic results as consumer abundances reach
large values with respect to their substrates. We attribute this
deficit to SU’s failure to incorporate substrate limitation in
its derivation. To address these issues, we propose SUPECA
(SU plus the equilibrium chemistry approximation – ECA)
kinetics, which consistently imposes substrate and consumer
mass balance constraints. We show that SUPECA kinetics
satisfies the partition principle, i.e., scaling invariance across

a network of an arbitrary number of reactions (e.g., as in
Newton’s law of motion and Dalton’s law of partial pres-
sures). We tested SUPECA kinetics with the equilibrium
chemistry solution for some simple problems and found SU-
PECA outperformed SU kinetics. As an example application,
we show that a steady-state SUPECA-based approach pre-
dicted an aerobic soil respiration moisture response function
that agreed well with laboratory observations. We conclude
that, as an extension to SU and ECA kinetics, SUPECA pro-
vides a robust mathematical representation of complex soil
substrate–consumer interactions and can be applied to im-
prove Earth system model (ESM) land models.

1 Introduction

Near-surface soils hold more than twice the carbon in the
current atmosphere; therefore, a small change in land car-
bon dynamics can imply significant feedbacks to the on-
going climate warming (Ciais et al., 2013). This sensitivity
has motivated research to better understand Earth’s land bio-
geochemical cycles, both for prediction and assessing the
efficacy of climate mitigation and adaptation strategies. To
date, however, soil biogeochemical models suffer from high
uncertainty (e.g., Arora et al., 2013; Bouskill et al., 2014;
Friedlingstein et al., 2014; He et al., 2016). For instance,
eight CMIP5 Earth system models (ESMs) predicted that net
land carbon uptake varies from 22 to 456 Pg C for the 2006–
2100 period under the Representative Concentration Pathway
4.5 (RCP4.5; Shao et al., 2013). Similarly, Todd-Brown et
al. (2013) estimated that 16 CMIP5 ESMs predicted con-
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temporary global soil carbon stocks ranging from 510 to
3040 Pg C to 1 m depth, while the most recent empirical esti-
mation is 1408± 154 Pg C to 1 m depth and 2060± 217 Pg C
to 2 m depth (Batjes, 2016).

The predictive power of existing land biogeochemical
models is diminished by uncertainties from structural design,
numerical implementation, model parameterization, initial
conditions, and forcing data (Tang and Zhuang, 2008; Tang
et al., 2010; Luo et al., 2015; Wieder et al., 2015a; Blanke et
al., 2016; Tang and Riley, 2016). Among these, developing
better model structures and mathematical formulations have
been identified as priorities. One proposed structural im-
provement is to include explicit microbial dynamics (Wieder
et al., 2015b), which may enable better predictions of global
soil carbon stocks (Wieder et al., 2013), priming effects (Sul-
man et al., 2014), vertical soil carbon profiles (Riley et al.,
2014; Dwivedi et al., 2017), and respiratory temperature sen-
sitivity (Tang and Riley, 2015). A second proposal is to ex-
plicitly resolve ecosystem nutrient cycles, following the hy-
pothesis that the potential for increasing land ecosystem car-
bon uptake from atmospheric CO2 fertilization could be lim-
ited by nutrient availability (Vitousek, 1982; Shi et al., 2016;
Wieder et al., 2015c).

A common feature that underlies these two proposed
model structural improvements is substrate–consumer in-
teractions, which affect microbial substrate decomposition
(Grant et al., 1993; Tang and Riley, 2013a; Riley et al., 2014;
Le Roux et al., 2016), mineral soil interactions with adsorp-
tive substrates (Smith, 1979; Grant et al., 1993; Resat et al.,
2012; Tang and Riley, 2015; Dwivedi et al., 2017), and plant–
microbe competition for nutrients (Grant, 2013; Zhu et al.,
2016a, b, 2017). In soil, because there are many consumers
competing for many substrates in different places at differ-
ent times, soil biogeochemical models must be able to scale
consistently across space, time, and processes. Scaling across
spatial and temporal dimensions is achieved through spatial
and temporal discretization and integration, which has been
intensively studied elsewhere (e.g., Kolditz et al., 1998; Mao
et al., 2006). Here, we examine scaling along the less-studied
third dimension (process), focusing on development of a con-
sistent mathematical formulation of substrate–consumer in-
teractions.

Previously, we studied a simple configuration of this
consumer–substrate interaction, i.e., the network of single-
substrate Monod-type reactions (discussed later), and devel-
oped a scaling method, the equilibrium chemistry approxi-
mation (ECA) kinetics (Tang and Riley, 2013a). ECA kinet-
ics significantly improved the modeling of plant–microbial
nutrient competition in the ACME land biogeochemical
model (Zhu and Riley, 2015; Zhu et al., 2016a, b, 2017) and
was recently cited as one of the most promising methods
to improve representation of nutrient competition in ESMs
(Achat et al., 2016; Niu et al., 2016). The ECA method also
successfully explained why organomineral interactions can
slow soil organic matter decomposition rates and how lignin–

cellulose ratios (Melillo et al., 1989) can be stabilized during
litter decomposition (Tang and Riley, 2013a, 2015).

Following Tang and Riley (2013a), we start our analy-
sis here by assuming a certain homogeneous space–time–
process unit in soil, within which there are generally
three types of substrate–consumer relationships: (1) single-
substrate Monod-type (also known as A–E type) reac-

tions in the form of A
E
→ products; (2) two-substrate (also

known as AB–E type) redox reactions in the form of A+

B
E
→ products, where substrate A and B are called comple-

mentary because they both are required for the redox re-
action to proceed; and (3) multi-substrate (> 2) reactions∑
i

Ai
E
→ products. The scaling of single-substrate Monod-

type reactions has been extensively discussed in Tang and
Riley (2013a) and is resolved with ECA kinetics (further dis-
cussion on ECA kinetics for process scaling will be provided
in later sections when discussing SUPECA kinetics). Further,
because many multi-substrate reactions can be separated into
a combination of single-substrate reactions and redox reac-
tions, our discussion below focuses on achieving a consistent
kinetic scaling from a single redox reaction to many reactions
in a network.

Mathematically, the problem can be addressed with an
explicit formulation of all kinetic processes using ordinary
differential equations accounting for all substrates and con-
sumers (Chellaboina et al., 2009). However, such a for-
mulation would require too many parameters and would
be numerically very difficult to solve because of its multi-
temporal scale nature. By making the quasi-steady-state ap-
proximation (QSSA), i.e., assuming that product generation
from the consumer–substrate complex is much slower than
equilibration between consumers, substrates, and consumer–
substrate complexes (Briggs and Haldane, 1925; Pedersen et
al., 2008), the full kinetic problem is reduced to the sim-
pler equilibrium chemistry (EC) form (e.g., Chellaboina et
al., 2009). However, the EC formulation is also usually very
difficult to solve numerically. Therefore, analytical approxi-
mations to the EC formulation are generally made.

Two classic analytical approximations for modeling re-
dox reactions are dual Monod (DM) kinetics (e.g., Yeh et
al., 2001) and the synthesizing unit (SU) approach (Kooi-
jman, 1998; Brandt et al., 2003). Although both of these
are special cases of the EC formulation (Kooijman, 2010;
Tang and Riley, 2013a), they make different assumptions
regarding the relative magnitudes of involved kinetic pa-
rameters. For this, Kooijman (2010) has shown that DM
kinetics requires the consumer–substrate complex dissoci-
ation rate to be much larger than the product generation
rate from the complexes. In contrast, single-substrate Monod
kinetics (Monod, 1949) or Michaelis–Menten (MM) kinet-
ics (Michaelis and Menten, 1913, which is mathematically
identical to the empirical Monod kinetics) does not impose
this requirement on its parameters. Moreover, in applications
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to r-K scaling (e.g., Tilman, 1982; Litchman and Klaus-
meier, 2008), single-substrate Monod kinetics requires the
product-generation rate to be faster than the dissociation rate
of consumer–substrate complexes. This contrasting require-
ment on the relative magnitudes of parameters, as we will
show later, implies that DM kinetics cannot achieve consis-
tent scaling of substrate–consumer interactions for generic
biogeochemical modeling.

We define a kinetic formulation to have consistent process
scaling when the formulated substrate–consumer relation-
ship (1) can seamlessly transition from a single substrate–
consumer pair to a network of many substrate–consumer
pairs without changing its mathematical form (also known as
the partition principle as in Newton’s second law of motion;
Feynman et al., 1963) and (2) does not predict any singular-
ity over the range of substrate and consumer concentrations
(also known as the non-singular principle; e.g., Schnell and
Maini, 2000; Tang, 2015). The full kinetics and EC formula-
tions both satisfy these two criteria, which can be explained
using the following example network of consumer–substrate
relationships:

Si +Ej
k+1,ij
↔
k−1,ij

EjSi
k+2,ij
→ Pij +Ej , (1)

where substrate Si complexes with consumer Ej to form
complex EjSi , which is then degraded into product Pij and
a free consumer. Throughout this study, forward and back-
ward kinetic parameters are indicated with superscript “+”
and “−”, respectively. Unless an ambiguity needs clarifica-
tion, we assume all variable units are consistently defined.

The full kinetic formulation for the network of Eq. (1) is

d[Si]
dt
=− [Si]

∑
j

(
k+1,ij

[
Ej
])
+

∑
j

(
k−1,ij

[
EjSi

])
(2)

d
[
EjSi

]
dt

= k+1,ij [Si]
[
Ej
]
−

(
k−1,ij + k

+

2,ij

)[
EjSi

]
(3)

d
[
Ej
]

dt
=−

[
Ej
]∑

i

(
k+1,ij [Si]

)
+

∑
i

((
k−1,ij

+k+2,ij

)[
EjSi

])
, (4)

where [x] indicates the concentration of x.
The first summation in Eqs. (2) and (4) satisfies the par-

tition principle. For instance, for Eq. (4), by defining an ap-
propriate mean specific substrate affinity k+1,j , the summa-

tion
∑
i

(
k+1,ij [Si]

)
can be recast into k+1,j [S], in which [S]=∑

i

[Si] resembles Dalton’s law of partial pressures (and many

other similar relationships in physics, e.g., Newton’s second
law of motion; Feynman et al., 1963).

Meanwhile, that the full kinetic formulation satisfies the
non-singular principle can be verified by noting that, at any

time,

[Si]+
∑
j

[
EjSi

]
= [Si]T , (5)

and that consumption of Si is through generation of product
from

[
EjSi

]
. Therefore, by combining Eqs. (2), (3), and (5),

the overall consumption rate of Si (i.e.,
∑
j

k+2,ij
[
EjSi

]
) is al-

ways smaller than [Si]T
∑
j

k+2,ij , even when consumers have

high abundances relative to their substrates, a common situ-
ation in in vivo cells (Sols and Marco, 1970) and in plant–
microbial competition for limited soil nutrients (Vitousek,
1982; Schimel and Bennett, 2004; Vitousek et al., 2010).

Since the EC formulation is obtained by applying the
QSSA to the full kinetic formulation (i.e., d

[
EjSi

]/
dt ≈ 0

for Eq. 3), it automatically satisfies the two criteria for con-
sistent process scaling. However, Monod kinetics is scal-
ing inconsistently when it is applied, for example, to single-
substrate competition by multiple populations or to multi-
substrate consumption by a single population (e.g., Williams,
1973; Schnell and Mendoza, 2000; Tang et al., 2010; Riley et
al., 2011, 2014; Allison, 2012; Bouskill et al., 2012; Wieder
et al., 2013, 2014). Specifically, the notion that Monod ki-
netics violates the partition principle can be shown from the
following inequality:

Fj =
[
Ej
]∑

i

k+2,ij [Si]

Kij + [Si]
6=
[
Ej
] ∑i k+2,ij [Si]

/
Kij

1+
∑
i

[Si]
/
Kij

. (6)

Here, Fj describes the uptake of all substrates Si by con-
sumer Ej . The left-hand side of the inequality is the uptake
computed by directly applying Monod kinetics, while the
right-hand side is obtained by applying competitive Monod
kinetics (e.g., Litchman and Klausmeier, 2008). Inequal-
ity (6) is even true when Kij is independent of i. Besides be-
ing inconsistent with the partition principle, Monod kinetics
also violates the non-singular principle, which can be demon-
strated by observing that as

[
Ej
]

approaches very large val-
ues so does Fj . This linear dependence of Fj on

[
Ej
]

re-
sults in large biases of predicted parametric sensitivities un-
der high ratios of

[
Ej
]

with respect to substrates (Schnell
and Maini, 2000; Tang and Riley, 2013a; Tang, 2015) and is
inconsistent with the non-singularity implied in Eq. (5).

For competitive Monod kinetics on the right-hand side of

inequality (6), we may define Kj = [S]
/(∑

i

[Si]
/
Kij

)
(e.g., Murdoch, 1973), resulting in

Fj =
[
Ej
] k+2,j

(∑
i

[Si]
)/

Kj

1+
(∑
i

[Si]
)/

Kj

=
[
Ej
] k+2,j [S]

/
Kj

1+ [S]
/
Kj
, (7)
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where [S]=
∑
i

[Si] designates the total free concentrations

of all substrates. Equation (7) therefore carries the same par-
tition principle implied in the first summation in Eq. (4) of the
full kinetic formulation, suggesting that competitive Monod
kinetics satisfies the partition principle for consistent scaling
of substrate–consumer relationships. Nevertheless, because
competitive Monod kinetics is linear in

[
Ej
]
, as is classic

Monod kinetics, it still violates the non-singular principle for
consistent scaling.

In Tang (2015) (and also in Borghans et al., 1996 and Tang
and Riley, 2013a), it was shown that the linear dependence of
Fj on

[
Ej
]
, as predicted by Monod kinetics and similarly by

competitive Monod kinetics, is due to their failure to impose
the substrate mass (or surface area) balance in deriving their
mathematical formulations. This problem has been rectified
in ECA kinetics (Tang and Riley, 2013a), which was shown
to predict much more accurate parametric sensitivity than
Monod kinetics when compared with analytical solutions
(Tang, 2015). Since the success of all model calibrations re-
lies on the accuracy of modeled response variables’ sensitiv-
ity to model parameters (e.g., Wang et al., 2001; Williams
et al., 2005; Tang and Zhuang, 2009; van Werkhoven et al.,
2009; Qian et al., 2015), and plant–microbial competitions
of nutrients often occur under high consumer abundances
with respect to their substrates (as corroborated by the nitro-
gen and phosphorus limitations that are commonly observed
in natural ecosystems; e.g., Vitousek et al., 2010), develop-
ing robust biogeochemical models requires substrate kinet-
ics that gives accurate parametric sensitivities under a wide
range of parameter values.

We therefore ask the question: how should we achieve
a consistent scaling from the simplest redox reaction A+

B
E
→ products (i.e., AB–E type) to a network that mixes

many redox reactions and even single-substrate Monod-type
reactions? Aside from the two criteria (i.e., the partition prin-
ciple and non-singularity) discussed above, we suggest a
third criterion that a consistent scaling of substrate–consumer
relationships should seamlessly transition from a single-
substrate A–E Monod-type reaction to the AB–E type re-
dox reaction without making contradictory assumptions of
the parameters in its theoretical derivation.

In the following, we address the above process-scaling
question by first presenting the step-by-step derivation of
DM kinetics and SU kinetics from the EC formulation of the
redox reactionA+B

E
→ products. Conceptually, DM kinetics

can be viewed as a direct application of chemical kinetics that
the reaction rate of substrates A and B with consumer E is
determined by the product of A and B’s binding probability
toE (which in Monod form is [A]

/
(KA+ [A]) for substrate

A, and [B]
/
(KB + [B]) for substrate B). Kooijman (1998)

was the first to derive SU kinetics using queue theory (e.g.,
Gross et al., 2011), and Brandt et al. (2003) discussed its
use forAB–E type redox reactions. The following derivation
stresses scaling inconsistencies implied in DM and SU kinet-

ics, and we will show that DM kinetics cannot be extended
for consistent process scaling of substrate–consumer rela-
tionships. We then present SUPECA kinetics, which reme-
dies the inconsistencies in SU kinetics. We demonstrate the
benefits of using SUPECA kinetics in terms of numerical ac-
curacy and present a proof-of-concept example by model-
ing the moisture control of aerobic soil respiration. Finally,
we discuss how one can apply SUPECA kinetics to trait-
based modeling approaches in various biogeochemical sys-
tems (e.g., Bouskill et al., 2012; Follows et al., 2007; Litch-
man and Klausmeier, 2008).

2 Derivation of ECA kinetics for AB–E type redox
reaction A + B

E
→ products

2.1 Governing equations

We schematically represent the enzymatic redox reaction
network as

E + A
k+A
↔
k−A

EA

+ +

B B

k−B l k
+

B k−B l k
+

B

EB + A
k+A
↔
k−A

EAB
k+2
→ E + P,

(8)

where it is assumed that the order of substratesA andB bind-
ing to consumer E does not affect the kinetic coefficients, as
is done in most modeling studies (e.g., Yeh et al., 2001).

By law of mass action and the total QSSA (tQSSA; see
Borghans et al., 1996; Tang and Riley, 2013a), we have the
governing equations (Appendix A):

d[A]T
dt
=−k+2 [EAB] (9)

d[B]T
dt
=−k+2 [EAB] (10)

k+A [E] [A]+ k−B [EAB]=
(
k−A + k

+

B [B]
)

[EA] (11)

k+B [E] [B]+ k−A [EAB]=
(
k−B + k

+

A [A]
)

[EB] (12)

k+A [EB] [A]+ k+B [EA] [B]=
(
k−A + k

−

B + k
+

2
)

[EAB] ,
(13)

where

[A]T = [A]+ [EA]+ [EAB] (14)
[B]T = [B]+ [EB]+ [EAB] (15)
[B]T = [B]+ [EB]+ [EAB] . (16)

The derivation of substrate kinetics is therefore equiva-
lent to solving for [EAB] from the EC problem defined by
Eqs. (11)–(16). However, because this set of equations is
non-linear, and no analytical solutions are available (to our
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knowledge), some linearization is warranted to obtain ana-
lytical approximations. As we describe below, linearization
with different assumptions can lead to DM, SU, and SU-
PECA kinetics.

To clarify, we note that obtaining the substrate kinetics
only requires solving Eqs. (11)–(16); various production and
destruction terms can be added to Eqs. (9) and (10) to form
a full dynamic model (e.g., Maggi and Riley, 2009) without
affecting our derivation below.

2.2 Dual Monod kinetics and synthesizing unit kinetics

One method to linearize Eqs. (11)–(16) is to assume that con-
centrations of consumer–substrate complexes are so small
that free substrate concentrations are effectively equal to bulk
concentrations (e.g., for substrate A: [A]T = [A]). This ap-
proach, when combined with different assumptions on the
relative magnitudes of kinetic parameters, leads to the popu-
lar DM kinetics and the two-substrate SU kinetics.

2.2.1 Dual Monod kinetics

We now derive DM kinetics. Adopting the equilibrium ap-
proximation that forward binding between consumer and
substrate is in rapid equilibrium with backward dissociation
of consumer–substrate complex (e.g., Michaelis and Menten,
1913; Pyun, 1971), we have the following:

[EA] [B]=
k−B

k+B
[EAB]=KB [EAB] (17)

[EB] [A]=
k−A

k+A
[EAB]=KA [EAB] , (18)

which then transforms Eqs. (11) and (12) into

[E] [A]=
k−A

k+A
[EA]=KA [EA] (19)

[E] [B]=
k−B

k+B
[EB]=KB [EB] . (20)

By solving for [EAB] from Eqs. (14)–(16) using
Eqs. (17)–(20), we obtain the consumer–substrate complex
for DM kinetics (see Appendix B):

d[A]T
dt
=−k+2 [E]T

[A]
KA+ [A]

[B]
KB + [B]

. (21)

As one substrate, e.g., [A], becomes unlimited, Eq. (21)
can be reduced to the classical MM kinetics:

d[A]T
dt
=−k+2

[E]T [B]
KB + [B]

. (22)

We note that the half-saturation coefficient KB = k−B
/
k+B

in Eq. (22) is different from its usual definition (i.e., KB =(
k+2 + k

−

B

)/
k+B ) if one derives MM kinetics rigorously start-

ing from a single-substrate and single-consumer system (e.g.,

Tang, 2015). For this reason, we assert that DM kinetics can-
not achieve a self-consistent scaling from a one-substrate re-
action to multiple-substrate reactions. More specifically, by
substituting Eqs. (17) and (18) into Eq. (13), one obtains
k+2 = 0, or at least k+2 �max

(
k−A ,k

−

B

)
, which states that

the consumer is very inefficient in processing the substrate.
However, MM kinetics does not require the dissociation rate
to be much higher than the product generation rate from the
consumer–substrate complex, i.e., k+2 �max

(
k−A ,k

−

B

)
(e.g.,

Briggs and Haldane, 1925). Nor do the high dissociation
rates of [EA], [EB], and [EAB] favor the consumer’s as-
similation of substrates under usual substrate concentrations
(e.g., Van Slyke and Cullen, 1914), even though a high disso-
ciation rate of the enzyme–substrate complexes may possess
some theoretical advantage under high substrate concentra-
tions when the consumer is a single enzyme (Reuveni et al.,
2014). On the contrary, most existing applications tend to
assume k+2 � k−A and k+2 � k−B (e.g., Holling, 1959, 1966;
Aksnes and Egge, 1991; Armstrong, 2008; Bonachela et al.,
2011), such that KB ≈ k+2

/
k+B for MM kinetics and r-K

selection can be explained by linking k+2 with growth rate,
and k+A and k+B with substrate competitive ability (e.g., Litch-
man and Klausmeier, 2008). Therefore, for biogeochemical
modeling, DM and MM (or Monod) kinetics are based on
different assumptions of the relative magnitudes of kinetic
parameters, and no smooth transition from single- (MM) to
multi-substrate (DM) kinetics exists.

2.2.2 Synthesizing unit kinetics

In deriving SU kinetics for the redox reaction network rep-
resented in Eq. (8), consumer E is viewed as a generalized
enzyme that generates bioproducts by processing substrates
A and B. SU computes the specific reaction rate per unit con-
centration of E as the product generation rate k+2 times the
probability thatE binds with both substratesA and B (which
is [EAB]

/
[E]T ). SU kinetics requires the sufficient flux

condition k+A [A]� k−B and k+B [B]� k−A (Kooijman, 2010).
Defining k̃+2 = k

−

A + k
−

B + k
+

2 , Eqs. (11)–(13) become

k+A [E] [A]= k+B [B] [EA] (23)

k+B [E] [B]= k+A [A] [EB] (24)

k+A [EB] [A]+ k+B [EA] [B]= k̃+2 [EAB] . (25)

From Eqs. (23)–(25), we obtain (see Appendix C)

d[A]T
dt
=−

k+2 [E]T
/
k̃+2

1
k̃+2
+

1
k+A [A]

+
1

k+B [B]
−

1
k+A [A]+k+B [B]

. (26)

The two-substrate SU kinetics (Eq. 26) can also be viewed
as a special case of the general SU kinetics for any number of
complementary substrates, which was first derived by Kooij-
man (1998) based on queue theory (e.g., Gross et al., 2011).
Kooijman (1998) assumed that consumers act like synthe-
sizing units, which process substrates in two steps: binding
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and production. He then assumed that all flux rates (includ-
ing production rates k+2 and substrate-binding rates k+A [A]
and k+B [B]) are of Poisson distributions, and calculated the
overall specific substrate consumption rate as the reciprocal
of the expected total processing time (i.e., the denominator of
Eq. 26). The last term in the denominator of Eq. (26) comes
from the assumption of parallel binding of substrates A and
B to E, which disappears if sequential binding is assumed
(e.g., Brandt et al., 2003).

As one substrate, e.g., A, becomes unlimited, single-
substrate Monod kinetics is recovered from Eq. (26):

d[A]T
dt
=−

k+2 [E]T

1+ k̃+2
k+B [B]

=−
k+2 [E]T [B]
k̃+2
k+B
+ [B]

, (27)

which has a half-saturation coefficient similar to what would
be derived for a single-substrate, single-consumer reaction
(e.g., Tang, 2015). By assuming Poisson distribution of the
kinetic parameters, it can also be shown for a single enzyme
molecule that MM kinetics represents the statistical mean of
the fluctuating activity of the enzyme (English et al., 2006;
Reuveni et al., 2014). That kinetics of both single-substrate
reactions and two-substrate redox reactions can be similarly
derived using statistical theory and that Eqs. (26) and (27)
can be obtained from the EC formulation using consistent
assumptions of the relative magnitudes of kinetic parameters
indicates, in contrast to DM kinetics, that SU kinetics is able
to scale consistently between one- and two-substrate redox
reactions.

2.3 SUPECA kinetics

In Tang and Riley (2013a) and Tang (2015), it was shown that
the derivation of MM kinetics ignores the substrate mass bal-
ance constraint, resulting in MM kinetics predicting inaccu-
rate parametric sensitivity over the wide range of substrate to
consumer ratios (e.g., Fig. 1 in Tang, 2015). This problem is
particularly acute when consumer abundances are high with
respect to their substrates, a situation that may occur in in
vivo conditions (Sols and Marco, 1970; Schnell and Maini,
2000) or when consumers interact with mineral surfaces,
such as microbial decomposition of soil organic matter or
plant–microbial competition for soil nutrients (Schimel and
Bennett, 2004; Vitousek et al., 2010; Resat et al., 2012; Tang
and Riley, 2015; Zhu et al., 2016a). In the above, we also
note that the substrates’ mass balance constraints (Eqs. 14
and 15) are not used in deriving DM and SU kinetics, sug-
gesting that both DM and SU kinetics may suffer from the
same deficiency as MM kinetics. Further, since DM kinetics
fails to consistently scale from one to two substrates, we fo-
cus below on combining SU and ECA kinetics into SUPECA
kinetics to achieve a scalable and non-singular formulation of
redox reactions.

As implied in Eqs. (9)–(16), the derivation of substrate ki-
netics requires solving for [EAB] from non-linear Eqs. (11)–

(16), whose analytical solutions are not available. To ob-
tain improved solutions as compared to SU kinetics, we ap-
plied a first-order closure approach (Appendix D) which is
the perturbation method truncated to first-order accuracy that
describes the first-order term using appropriate mean states
(e.g., Shankar, 1994; Tang et al., 2007) to the system formed
by Eqs. (11)–(16), leading to SUPECA kinetics:

d[A]T
dt
=−

[E]T
1
k+2

f̄Af̄BfAB
fAfB f̄AB

+
1
fA
+

1
fB
−
fAf̄B+f̄AfB−f̄Af̄B

fAfB f̄AB

=−
k+2 [E]T

(
fA
/
k+2
)(
fB
/
k+2
)

f̄Af̄B
k+2 f̄AB

fAB
k+2
+
fAB
k+2
−
fAf̄B+f̄AfB−f̄Af̄B

k+2 f̄AB

,

(28)

where fA = k
+

A [A]T , fB = k
+

B [B]T , f̄A = fA+ k
+

A [E]T ,
f̄B = fB+k

+

B [E]T , fAB = fA+fB , and f̄AB = f̄A+ f̄B . In
Eq. (28), we assumed k+2 � k−A and k+2 � k−B , so that k+2 ≈
k̃+2 (this relationship will be used throughout the remainder
of this paper). It can then be verified that if [E]T � [A]T and
[E]T � [B]T , SUPECA kinetics as represented in Eq. (28)
becomes SU kinetics in Eq. (26). Further, if one of the two
substrates, say [B]T , becomes unlimited, Eq. (28) is reduced
to
d[A]T

dt
=−

[E]T
1
k+2

f̄A
fA
+

1
fA

=−
fA[E]T

1+ f̄A
k+2

, (29)

which, by using the definition of fA and f̄A, becomes the
single-substrate ECA kinetics equation (Tang, 2015).

3 SUPECA kinetics for a network of reactions

In actual biogeochemical systems, it is more common for
many substrates to be processed by many consumers concur-
rently (and such an assumption is implicitly assumed in the
space–time–process unit of any biogeochemical model). To
consistently handle such situations, Tang and Riley (2013a)
derived ECA kinetics (see Fig. 1 for a graphic demonstra-
tion) for calculating the consumption of a substrate Si by
a consumer Ej in a network of single-substrate reactions

A
E
→ products:

d[Si]T ,j
dt

=−
k+2,ij

[
Ej
]
T

(
[Si]T

/
Kij

)
1+

l=I∑
l=1

(
[Sl]T

/
Klj

)
+

l=J∑
l=1

(
[El]T

/
Kil
) .

(30)

By defining the normalized substrate flux (with subscript
“c” designating that the summation is over a column of the
graph in Fig. 1),

Fc,j =

l=I∑
l=1

(
[Sl]T

/
Klj

)
=

l=I∑
l=1

F
{l}
c,j , (31)
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E1 E2 Ej EJ-1 EJ

S1 K11 K12 K1j K1,J-1 K1J

S2 K21 K22 K2j K2,J-1 K2J

Si Ki1 Ki2 Kij Ki,J-1 KiJ

SI-1 KI-1,1 KI-1,2 KI-1,j KI-1,J-1 KI-1,J

SI KI1 KI2 KIj KIJ

=
=

=

=
=

=

=
+

+ +

Figure 1. Graphical representation of ECA kinetics as derived in
Tang and Riley (2013a). The equation below the table shows the
uptake of substrate Si by consumer Ej as a function the normal-
ized substrate flux Fc,j and its conjugate flux Fr,i . Subscript “c”
designates column, and “r” designates row. When Kij is very large
compared to other entries in the matrix, the interaction between sub-
strate Si and consumer Ej can be ignored.

and its conjugate (with subscript “r” designating that the
summation is over a row of the graph in Fig. 1),

Fr,i =

l=J∑
l=1

(
[El]T

/
Kil
)
=

l=J∑
l=1

F
{l}
r,i . (32)

Equation (30) can then be rewritten as

d[Si]T ,j
dt

=−k+2,ij
[
Ej
]
T

(
F
{i}
c,j

1+Fr,i +Fc,j

)

=−k+2,ij [Si]T

(
F
{j}

r,i

1+Fr,i +Fc,j

)
. (33)

The normalized substrate flux as defined in Eq. (31) and its
conjugate in Eq. (32) implies that the consumption of sub-
strate Si by consumer Ej as described by ECA kinetics in
Eq. (33) may be interpreted as either (i) the potential sub-
strate processing rate of Ej (i.e., k+2,ij

[
Ej
]
) weighted by the

relevant importance of the reaction pathway Si
Ej
→ products

(i.e., F {i}c,j ) under the influence of all competing substrate

fluxes F {l}c,j (towards consumer Ej ) and all competing agents’

demands F {l}r,i (towards substrate Si) or (ii) the linear decay
potential of Si (i.e., k+2,ij [Si]T ) weighted by the relevant im-

portance of F {j}r,i under the influence of all competing sub-
strate fluxes and competing agents’ demands.

We note that Eqs. (31) and (32) define some very interest-
ing scaling relationships. For instance, from Eq. (31), we can

define the effective substrate affinity for the bulk substrates
(
[
S̄
]
T

, defined as the total of all substrates) that are accessible
for consumer Ej as

KE,j =

(
l=I∑
l=1

[Sl]T

)/
Fc,j =

[
S̄
]
T

/
Fc,j . (34)

Similarly, we can define the effective affinity for substrate
Si resulting from all competing agents as

KS,i =

(
l=J∑
l=1

[El]T

)/
Fr,i =

[
Ē
]
T

/
Fr,i . (35)

Then, by substituting Eqs. (34) and (35) into Eq. (33), we
obtain

d[Si]T ,j
dt

=−
k+2,ij

[
Ej
]
T

([
S̄
]
T

/
KE,j

)
1+

[
S̄
]
T

/
KE,j +

[
Ē
]
T

/
KS,i

F
{i}
c,j

Fc,j

=−
k+2,ij [Si]T

([
Ē
]
T

/
KS,i

)
1+

[
S̄
]
T

/
KE,j +

[
Ē
]
T

/
KS,i

F
{j}

r,i

Fr,i

, (36)

which again shows the linear partition in terms of F {i}c,j

/
Fc,j

and F {j}r,i

/
Fr,i .

By applying the above two scaling relationships and the
three consistent scaling criteria (as we proposed in the intro-
duction section) to SUPECA kinetics in Eq. (28), we obtain
(in Appendix E) the network form of SUPECA kinetics:

d[Ai]T ,jk
dt

= (37)

−
k+2,ijk[Ek]T F

{i}
c,A,kF

{j}

c,B,k
GA,ikGB,jk
GAB,ijk

Fc,AB,k +Fc,AB,k −
Fc,A,kGB,jk+GA,ikFc,B,k−GA,ikGB,jk

GAB,ijk

,

where

Fc,A,k =
∑
l

F
{l}
c,A,k =

∑
l

[Al]T
/
KA,lk (38)

Fc,B,k =
∑
l

F
{l}
c,B,k =

∑
l

[Bl]T
/
KB,lk (39)

Fc,AB,k = Fc,A,k +Fc,B,k (40)

Fr,A,i =
∑
l

[El]T
/
KA,il (41)

Fr,B,j =
∑
l

[El]T
/
KB,jl (42)

GA,ik = Fc,A,k +Fr,A,i (43)
GB,jk = Fc,B,k +Fr,B,j (44)
GAB,ijk =GA,ik +GB,jk. (45)

For Eq. (37), one can verify that if Fc,B,k (or Fc,A,k) goes
to very large values, SUPECA kinetics is reduced to ECA ki-
netics (Eq. 33). Therefore, SUPECA kinetics as formulated
in Eq. (37) is an extension of SU and ECA kinetics, and
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An example unit block for applying the network-oriented SUPECA kinetics 

Figure 2. Graphic representation for the relationships between sub-
strates, consumers, and normalized fluxes and their conjugates for a
block unit of a large substrate–consumer network.

SUPECA is applicable for consistent scaling of substrate–
consumer networks involving both single-substrate reactions
and redox reactions (a visual demonstration of SUPECA ki-
netics is in Fig. 2).

4 Numerical accuracy of SUPECA kinetics

Following Tang and Riley (2013a), we assume that the EC
formulation is a good approximation to the law of mass ac-
tion and use it to evaluate the numerical accuracy of SU-
PECA kinetics. Because of numerical complexity, we re-
stricted the comparison to the AB–E problem as formulated
by Eqs. (11)–(16) with the assumption of k−A = k

−

B = 0 and
included a substrate sorbent to mimic a class of biogeochem-
istry problems in soil, such as aerobic soil ammonium nitri-
fication and aerobic soil organic carbon decomposition (for-
mulated in Appendix F; a graphic representation is available
in the Supplement).

We evaluated the numerical accuracy of SUPECA (Eq. 37)
and SU (Eq. 26) over a wide range of parameter values. We
fixed both substrates at a nominal value of 40 mol m−3, and
k+2 , the maximum substrate processing rate at 48 s−1. Then
we sampled the affinity parameters exponentially over the
range [0,1000] mol m−3 and the microbe and sorbent con-
centrations uniformly over the range [0,1000] mol m−3. Us-
ing a total of 1000 sets of randomly paired parameters, we
compared how close SUPECA and SU approximations are to
the EC solution in terms of root mean square error (RMSE)
and goodness of linear fit. Because SU kinetics does not
allow a direct integration of the Langmuir adsorption into
the calculation of microbe–substrate complexes, we followed
Resat et al. (2012) and first solved the Langmuir isotherm
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Figure 3. Benchmark of the SU (left column) and SUPECA (right
column) predictions against those by the full EC formulation. We
note that the y axes of the left panels are of much larger scale than
those on the right. The problem is formulated in Appendix F. Pan-
els (a) and (b) are for the case when M = 0; panels (c) and (d) are
for uniformly distributed M > 0. The black solid lines are the lin-
ear regression of SU or SUPECA predictions with respect to the
EC solution, whose statistics are shown in the figure. The related
distributions of parameters are in Fig. S1 of the Supplement.

to obtain the free substrate concentrations and then entered
these free substrate concentrations into SU to obtain the
microbe–substrate complex. This artificial ordering in cal-
culation (as needed by the SU approach) suggests that the
SU implementation may lead to significant numerical errors
(similar numerical difficulties are associated with the popular
MM kinetics; Resat et al., 2012; Tang and Riley, 2013a).

Our comparison (Figs. 3 and 4) indicates that SUPECA ki-
netics is superior to SU kinetics in computing the microbe–
substrate complex in the presence of substrate binding com-
petition between microbes and sorbent. SUPECA predictions
are more accurate than SU predictions in terms of goodness
of linear fitting and RMSE (for which the linear regressions
are shown as black solid lines in Fig. 3). In magnitude, the
RMSEs of SUPECA predictions are less than 10 % of that of
SU predictions (and also note that the y-axis ranges for SU
predictions are 20 times of those for SUPECA predictions).
The slope of linear fitting from SUPECA predictions is also
much closer to the ideal value 1.0, whereas that from SU
predictions is far greater than 1.0, suggesting that SU kinet-
ics significantly overestimates microbe–substrate complexes
under a wide range of conditions. When the model predic-
tions are evaluated as a function of the relative abundances
of consumers and substrates (Fig. 4), SU overestimates are
found under high ratios of consumer abundances with respect
to substrates (Fig. 4a, c). In contrast, SUPECA predictions
agree well with EC predictions over the whole range of rela-
tive abundances (Fig. 4b, d). This very large overestimation
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Figure 4. Model predicted consumer–substrate complexes as a
function of the relative abundance of consumers with respect to
substrates. Corresponding to Fig. 3, panels (a) and (b) are for the
case when M = 0; panels (c) and (d) are for uniformly distributed
M > 0.

by SU calculations is explained by the linear dependence of
the consumer–substrate complexes on microbial abundances
in deriving SU kinetics (Eq. 26). Therefore, combined with
the better numerical performance of ECA (Tang and Riley,
2013a; Tang, 2015) than MM kinetics, we contend that SU-
PECA kinetics is numerically more convenient and more ac-
curate than SU kinetics in calculating the microbe–substrate
complexes for situations involving microbes, enzymes, sub-
strates, and soil minerals (e.g., Tang and Riley, 2015). In
particular, because nutrient limitations tend to occur under
high relative consumer abundances with respect to their sub-
strates, the larger prediction bias of SU than SUPECA sug-
gests that SUPECA should be preferred for soil biogeochem-
ical modeling. However, for applications to real problems,
the validity of SUPECA kinetics depends on the EC formu-
lation and the tQSSA, and there are situations where even
the EC formulation might fail (e.g., Maggi and Riley, 2009;
Pedersen et al., 2008).

5 Example application to modeling aerobic
heterotrophic respiration

As a proof-of-concept example, we applied SUPECA kinet-
ics to predict the moisture stress on aerobic soil respiration.
We note that we are not suggesting that SUPECA kinetics
should replace existing soil biogeochemical (BGC) models,
but rather that mechanistic analysis using a SUPECA-based
model can inform process understanding and thereby im-
prove such models. Following the CENTURY-like models’
approach in modeling topsoil soil carbon dynamics (Cole-
man and Jenkinson, 1999; Parton and Rasmussen, 1994) and
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f(s) = 0.0254 + 3.245s− 2.702s2, with s = θ/θsat

Figure 5. Comparison of predicted normalized soil moisture re-
sponse functions to that derived from incubation data from Fran-
zluebbers (1999). All response functions are normalized with their
respective peak respiration. The R2 coefficients of determination
for the different response function curves from top to bottom are,
respectively, 0.82, 0.81, 0.77, 0.71, and 0.84. Note that the curve of
f (s) has been normalized to set its maximum value at 1, making it
slightly above the majority of the data points.

the set up of Franzluebbers’ (1999) soil incubation experi-
ments (from which the data were used for our model eval-
uation), this example (Appendix G) considers a homoge-
nous 10 cm thick topsoil with 2.0 mol C m−3 microbes and
3.0 mol C m−3 DOC (i.e., dissolvable organic carbon; differ-
ent DOC values affected our results negligibly as long as they
were larger than 0.5 mol C m−3). We conceptualize transport
of substrates (i.e., oxygen and DOC) in soil as a two-stage
diffusion process (e.g., Grant, 1991) with the first stage from
the bulk soil matrix to the water film covering the microbial
microsites and the second stage from the water film to the
microbial transporters where substrates are processed. The
diffusion processes in soil are calculated based on soil mois-
ture status and the hydraulic properties of a hypothesized soil
with a texture of 40 % clay and 30 % sand. The pedotransfer
functions used for calculating soil hydraulic properties are
from CLM4.5 (Oleson et al., 2013).

Our approach assumes that the inter-microsite (or aggre-
gate) transport dominates intra-aggregate transport, consis-
tent with pore-scale simulations (Yang et al., 2014). The
model is solved to steady state by assuming that the mi-
crobes, atmospheric oxygen, and DOC are in balance un-
der the influence of Langmuir-type DOC sorption by soil
minerals. Calculations are conducted for three levels of
soil minerals (with adsorption capacities at 0, 90, and
180 mol C m−3) and two levels of microbial oxygen affin-
ity (with default KO2,w = 3× 10−5 mol m−3 and elevated
KO2,w = 3× 10−3 mol m−3; Figs. 5 and 6).
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Figure 6. Simulated moisture response functions using elevated
affinity parameter for O2. The respiration data are normalized with
the peak value from the case with zero soil minerals (i.e., black line
in the figure).

The calculation with elevated KO2,w (compared to the de-
fault KO2,w) indicates the effect of soil aggregates on mois-
ture control of decomposition (see also Appendix G). We
evaluated (1) how close our predicted moisture response
function is to incubation data from Franzluebbers (1999) and
(2) how soil mineral DOC adsorption would affect the soil
moisture response function. We also tested a widely used re-
sponse function approach (e.g., Sierra et al., 2015) for com-
parison.

When the respiration curves are normalized, we found that
all curves have the same pattern where soil respiration first
increases from dry soil with increasing moisture and then
levels off after reaching a peak value (where the respira-
tion is co-limited by oxygen and DOC bioavailability). The
curve with the highest mineral soil carbon adsorption capac-
ity (180 mol C m−3) and elevated KO2,w value best approx-
imates the incubation data from Franzluebbers (1999). As
the sorption capacity becomes smaller, the moisture response
function becomes sharper.

When the oxygen affinity parameter is reduced to its
default value (while keeping the adsorption capacity at
180 mol C m−3; see explanation in Appendix G), the soil
moisture response function becomes the sharpest with the
highest threshold moisture where the respiration peaks (see
green line in Fig. 5). Unlike Kausch and Pallud (2013) and
Yang et al. (2014), we have not explicitly simulated the oxy-
gen distribution inside the aggregates. Since the apparent
oxygen affinity parameter (which we use here) generally in-
creases with aggregate size (Griffin, 1968), the poorer agree-
ment between data and predictions using the default oxy-
gen affinity parameter indicates that soil aggregates may play
an important role in controlling microbes’ response to soil
moisture stress. Indeed, Franzluebbers (1999) indicated in

his Fig. 1 that there are many aggregates in his incubated
soil. Moreover, the higher moisture threshold (where respira-
tion peaks) with the default apparent oxygen affinity param-
eter is consistent with measurements that aggregates may fa-
cilitate anaerobic processes under well-ventilated conditions
(by increasing the range of soil moisture conditions where
oxygen limits aerobic processes; Renault and Stengel, 1994;
Keiluweit et al., 2016).

When the moisture response function is evaluated, we
found a higher R2 (0.84) than those predicted from
SUPECA-based methods, which (from top to bottom as in
the legends) are 0.82, 0.81, 0.77, and 0.71 for the blue, red,
black, and green lines, respectively. However, the response
function approach overestimated the observed aerobic soil
respiration rate at high soil moisture contents. This exam-
ple illustrates that a higher overall R2 from the empirical re-
sponse function can mask an important feature of soil respi-
ration’s dependence on soil moisture.

Higher adsorption capacity resulted in significantly lower
soil respiration (Fig. 6), consistent with results for tempera-
ture sensitivity described in Tang and Riley (2015). Combin-
ing results from Figs. 5 and 6, we conclude that because the
soil moisture response function emerges from interactions
between biotic and abiotic factors that co-regulate soil or-
ganic carbon decomposition (Manzoni et al., 2016), its func-
tional shape is not deterministic. This result contradicts the
popular approach used in many soil BGC models (including
our own, e.g., Koven et al., 2013; Tang et al., 2013; and oth-
ers, e.g., Sierra et al., 2015), where a deterministic soil mois-
ture response function is applied to the moisture-unstressed
decomposition rate. We also note that there are many differ-
ent functional forms for the soil moisture response function
used in soil BGC models (Sierra et al., 2015).

At the default oxygen affinity value (3×
10−5 mol O2 m−3), the derived soil moisture response
function is essentially insensitive to mineral soil carbon
adsorption capacity (not shown). Since the oxygen affinity
parameter reflects the impacts of aggregates, these results
demonstrate how soil aggregates may influence soil carbon
decomposition rates, an insight that cannot be obtained by
fitting response functions to a single dataset.

6 Potential applications of SUPECA kinetics for
trait-based biogeochemical modeling

Besides the example application above, SUPECA kinetics
could be a powerful tool for trait-based modeling in various
biogeochemical systems (e.g., Follows et al., 2007; Bouskill
et al., 2012; Litchman and Klausmeier, 2008; Merico et al.,
2009). As we show above and below, SUPECA kinetics will
enable more robust predictions with better numerical con-
sistency and smaller parametric sensitivities than the popu-
lar family of Monod kinetics, and SUPECA will be applica-
ble for any biogeochemical system that involves substrate–
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consumer binding and binding competition (of the AB–E or
A–E type).

The assertion of smaller parametric sensitivity as predicted
by SUPECA (than by Monod kinetics) can be verified using
the single-substrate reaction network as an example. In this
case, SUPECA is reduced to ECA kinetics, and for some sub-
strate Si in the reaction network, ECA kinetics predicts the
sensitivity of its consumption by consumer

[
Ej
]

with respect
to the maximum processing rate k+2,ij as
∣∣∣∣∣ ∂

∂k+2,ij

(
d[Si ]T ,j

dt

)∣∣∣∣∣=
[
Ej
]
T
F
{i}
c,j

1+Fr,i +Fc,j
<

[
Ej
]
T
F
{i}
c,j

1+Fc,j
<

[
Ej
]
T
F
{i}
c,j

1+F {i}c,j
ECA Competitive Monod

Monod

,

where the term after the first “<” is prediction by compet-
itive Monod kinetics and that after the second “<” is by
Monod kinetics, suggesting that models using Monod kinet-
ics for substrate competition are more sensitive to parameters
and therefore more difficult to calibrate (e.g., Tang and Riley,
2013a).

To quantitatively evaluate our assertion that SUPECA
kinetics predicts lower parametric sensitivity, we applied
Eq. (46) to 100 competing substrate fluxes of equal magni-
tude. We then have Fc,j = 100F {i}c,j . Meanwhile, if F {i}c,j > 1,
then the sensitivity predicted by competitive Monod kinet-
ics is less than 1 % of that by Monod kinetics. Further, if
the competing efforts from all agents are comparable to the
overall substrate fluxes, i.e., Fr,i ≈ Fc,j , then the parametric
sensitivity predicted by ECA is about 50 % of that by com-
petitive Monod kinetics. Therefore, ECA (and by extension,
SUPECA) prediction is much less sensitive with respect to
k+2,ij than that by competitive Monod kinetics and Monod
kinetics. Moreover, with Eqs. (30) and (37), one can verify
that the more substrates and consumers are represented in
the system, the smaller the resulting sensitivity predicted by
ECA (and SUPECA) kinetics for each k+2,ij . One can also
verify lower SUPECA uncertainty for other parameters, in-
cluding substrates and consumer abundances. That includ-
ing more substrates and consumers will lead to more robust
model predictions is a premise underlying trait-based mod-
eling (e.g., Follows et al., 2007; Bouskill et al., 2012), and
SUPECA kinetics explicitly integrates this presumption in
its formulation.

The assertion of wide applicability with SUPECA kinetics
has been demonstrated by a number of successful applica-
tions that we have published with ECA kinetics. In a series of
studies (Zhu and Riley, 2015; Zhu et al., 2016a, b, 2017), we
showed that ECA kinetics significantly improved the mod-
eling of nutrient competition between plants, microbes, and
mineral soils. In Tang and Riley (2013a), where ECA kinetics
was first proposed, lignin decomposition dynamics were ac-
curately captured without a priori imposing a target lignocel-
lulose index. In Tang and Riley (2013a, 2015) and this study,
ECA kinetics was able to seamlessly incorporate Langmuir-
type substrate adsorption without invoking an ad hoc numer-

ical order that is prerequisite to MM (or Monod) kinetics for
modeling mineral, microbe, and substrate interactions.

Finally, we expect SUPECA kinetics will provide
a robust approach to resolve the redox ladder in soil
biogeochemistry. Existing approaches have imposed
the redox ladder following some specific order, e.g.,
O2 (H2O) , NO−3 (N2) ,MnO2

(
Mn2+) , Fe(OH)3

(
Fe2+) ,

SO2−
4 (H2S) ,CO2 (CH4), and H2O (H2) (e.g., Grant, 2001).

In contrast, SUPECA kinetics will allow all these redox
couples to operate concurrently (in any space–time–process
unit), a situation that is more consistent with natural soils.
Such a feature will also allow microbial biogeochemistry
models (most of which are considered to be valid at pore
scale) to be valid at the scale of well-mixed bulk soils
(∼ cm3).

7 Conclusions

In this study, we showed that the popular Monod family
kinetics and SU kinetics are not scaling consistently for a

reaction network involving mixed A
E
→ products type and

A+B
E
→ products type reactions. SUPECA kinetics, by ac-

counting for mass balance constraints of substrates and con-
sumers, is able to represent an arbitrary number of substrates
and consumers without changing mathematical formulation.
Our numerical tests indicate that SUPECA kinetics is su-
perior to SU kinetics both in numerical accuracy and nu-
merical robustness, particularly under high relative abun-
dances of consumers with respect to substrates (a typical
feature in plant–microbial competition for limited soil nutri-
ents; Schimel and Bennett, 2004; Vitousek et al., 2010). SU-
PECA kinetics was also able to predict the moisture response
function of aerobic soil respiration, providing mechanistic in-
sights not available from the response function approach. Fi-
nally, because SUPECA kinetics represents measurable mi-
crobial traits and the mechanisms by which they affect soil
biogeochemical dynamics, we conclude that this approach
can benefit interpretation of observed dynamics and thereby
improve soil BGC models.

Code and data availability. The source code and data used in this
paper are available upon request to the corresponding author.
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Appendix A: Deriving the governing equations

The law of mass action formulation of the redox reac-
tion (Eq. 8) is

d[EA]
dt
= k+A [E] [A]+ k−B [EAB]

−
(
k−A + k

+

B [B]
)

[EA] (A1)
d[EB]

dt
= k+B [E] [B]+ k−A [EAB]

−
(
k−B + k

+

A [A]
)

[EB] (A2)
d[EAB]

dt
= k+A [EB] [A]+ k+B [EA] [B]

−
(
k−A + k

−

B + k
+

2
)

[EAB] (A3)
d[P ]

dt
= k+2 [EAB] (A4)

d[A]
dt
=−k+A ([E]+ [EB]) [A]

+ k−A ([EA]+ [EAB]) (A5)
d[B]

dt
=−k+B ([E]+ [EA]) [B]

+ k−B ([EB]+ [EAB]) . (A6)

We now apply the total quasi-steady-state approxima-
tion (e.g., Borghans et al., 1996) to obtain the equilibrium
chemistry formulation of the system. Specifically, we obtain
Eqs. (11)–(13) by, respectively, setting the time derivatives of
Eqs. (A1)–(A3) to zero. Equation (9) is obtained by adding
together Eqs. (A1), (A3), and (A5), and using the definition
of [A]T by Eq. (14). Equation (10) is obtained by adding to-
gether Eqs. (A2), (A3), and (A6) with the definition of [B]T
by Eq. (15).

Appendix B: Deriving the dual Monod kinetics in
Eq. (21)

Replacing [EA] in Eq. (17) with that obtained from Eq. (19),
we obtain

[EAB]=
[A]
KA

[B]
KB

[E] . (B1)

By solving [EA] from Eq. (19), [EB] from Eq. (20) and
combining these with Eq. (B1) into Eq. (16), we find

[E]T =
(

1+
[A]
KA

)(
1+

[B]
KB

)
[E] . (B2)

Now we solve [E] from Eq. (B2) and enter the result into
Eq. (B1) and then get

[EAB]=
(

[A]
KA+ [A]

)(
[B]

KA+ [B]

)
[E]T . (B3)

We thence obtain dual Monod kinetics by entering
Eq. (B3) into Eq. (9).

Appendix C: Deriving the synthesizing unit kinetics in
Eq. (26)

Since SU kinetics assumes that substrates are not limiting the
biogeochemical reaction, we then, from Eqs. (23) and (24),
obtain

[EA]=
k+A [A]

k+B [B]
[E] (C1)

[EB]=
k+B [B]

k+A [A]
[E] . (C2)

By entering Eqs. (C1) and (C2) into Eq. (13), and solving
for [EAB], we find

[EAB]=
[E]

k+2 + k
−

A + k
−

B

(
k+A [A]+ k+B [B]

)
=

[E]

k̃+2

(
k+A [A]+ k+B [B]

)
, (C3)

Now, if we combine Eqs. (C1)–(C3) with Eq. (16), we get

[E]=
[E]T

1+ k+A [A]
k+B [B]

+
k+B [B]
k+A [A]

+
k+A [A]+k+B [B]

k̃+2

=
[E]T(

k+A [A]+k+B [B]
)2(

k+A [A]
)(
k+B [B]

) + k+A [A]+k+B [B]
k̃+2

− 1

, (C4)

which, when combined with Eq. (C3), leads to

[EAB]=
k+A [A]+ k+B [B]

k̃+2

[E]T(
k+A [A]+k+B [B]

)2(
k+A [A]

)(
k+B [B]

) + k+A [A]+k+B [B]
k̃+2

− 1

=
[E]T

/
k̃+2

1
k̃+2
+

k+A [A]+k+B [B](
k+A [A]

)(
k+B [B]

) − 1
k+A [A]+k+B [B]

=
[E]T

/
k̃+2

1
k̃+2
+

1
k+A [A]

+
1

k+B [B]
−

1
k+A [A]+k+B [B]

.

(C5)

When [EAB] from eq. (C5) is entered into Eq. (9), we obtain
Eq. (26).

Appendix D: Deriving SUPECA kinetics Eq. (28)

We first derive the set of linear equations using the first-order
closure approach (i.e., the perturbation method truncated to
first-order accuracy; Shankar, 1994; Tang et al., 2007). By
entering Eqs. (14)–(16) into Eq. (23), we have

k+B [EA]([B]T − [EB]− [EAB])= k+A
([A]T − [EA]− [EAB])
×([E]T − [EA]− [EB]− [EAB])

. (D1)
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Now, if we expand Eq. (D1) and keep only the zeroth- and
first-order terms of [EA], [EB], and [EAB], we obtain

k+B [B]T [EA]= k+A [E]T ([A]T − [EA]− [EAB])
−k+A [A]T ([EA]+ [EB]+ [EAB])

, (D2)

which, after some rearrangement, becomes(
k+A [A]T + k

+

A [E]T + k
+

B [B]T
)

[EA]+ k+A [A]T [EB]
+k+A ([A]T + [E]T ) [EAB]= k+A [A]T [E]T

.

(D3)

Using the definitions of fA = k+A [A]T , fB = k+B [B]T and
f̄A = fA+ k

+

A [E]T , we may rewrite Eq. (D3) as(
f̄A+ fB

)
[EA]+ fA [EB]+ f̄A [EAB]= fA[E]T . (D4)

Because substrates A and B are symmetric in forming the
consumer substrate complexes, a similar linear equation can
be derived by switchingA and B in Eq. (D4) (or by repeating
procedures to the derivation of Eq. D4 but using Eqs. 14–16
and 24):

fB [EA]+
(
fA+ f̄B

)
[EB]+ f̄B [EAB]= fB [E]T . (D5)

Now, by substituting Eqs. (14)–(16), (23), and (24) into
Eq. (25) and assuming k̃+2 ≈ k

+

2 (i.e., unbinding is much
smaller compared to the product genesis rate), we have{
k+A ([A]T − [EA]− [EAB])
+k+B ([B]T − [EB]− [EAB])

}
×([E]T − [EA]− [EB]− [EAB])= k+2 [EAB]

. (D6)

Once again, by dropping the second- and higher-order
terms of the consumer–substrate complexes, Eq. (D6) can be
reduced to(
k+A [A]T + k

+

B [B]T
)

[E]T =
(
k+A [A]T + k

+

B [B]T
)

×([EA]+ [EB]+ [EAB])+ k+A [E]T ([EA]+ [EAB])
+k+B [E]T ([EB]+ [EAB])+ k+2 [EAB]

,

(D7)

which by aid of fA = k+A [A]T , fB = k+B [B]T , f̄A = fA+
k+A [E]T , f̄B = fB + k+B [E]T , fAB = fA+ fB , and f̄AB =

f̄A+ f̄B becomes(
f̄A+ fB

)
[EA]+

(
fA+ f̄B

)
[EB]+

(
k+2 + f̄AB

)
[EAB]

= fAB [E]T . (D8)

Now, we solve for [EAB] from the set of linear Eqs. (D4),
(D5), and (D8) using Cramer’s rule (e.g., Habgood and Arel,
2012) and find

det(Md)=

∣∣∣∣∣∣
f̄A+ fB fA f̄A
fB fA+ f̄B f̄B

f̄A+ fB fA+ f̄B k+2 + f̄AB

∣∣∣∣∣∣ , (D9)

and the numerator as

det(Mn)= [E]T

∣∣∣∣∣∣
f̄A+ fB fA fA
fB fA+ f̄B fB

f̄A+ fB fA+ f̄B fAB

∣∣∣∣∣∣ . (D10)

Equations (D9) and (D10) together will lead to

[EAB]=
det(Mn)

det(Md)
=

fAfB f̄AB [E]T
k+2
(
fAf̄A+ fB f̄B + f̄Af̄B

)
+ f̄Af̄BfAB

=
fAfB f̄AB [E]T

k+2
(
fAB f̄AB − fAf̄B − f̄AfB + f̄Af̄B

)
+ f̄Af̄BfAB

=
[E]T

k+2

(
fAB
fAfB
−
fAf̄B+f̄AfB−f̄Af̄B

fAfB f̄AB

)
+
f̄Af̄BfAB
fAfB f̄AB

=
[E]T

/
k+2

1
k+2

f̄Af̄BfAB
fAfB f̄AB

+

(
1
fA
+

1
fB
−
fAf̄B+f̄AfB−f̄Af̄B

fAfB f̄AB

)

,

(D11)

which, when entered into Eq. (9), leads to Eq. (28).

Appendix E: Deriving SUPECA for a network of
substrates and consumers

In the second equation of Eq. (33), we show that the con-
sumption of a certain substrate as represented in ECA ki-
netics is determined by the consumer reaction potential
k+2,ij

[
Ej
]
T

multiplied with the relative contribution of the
specific consumption pathway with respect to all compet-
ing pathways (F {r}c,j

/ (
1+Fr,j +Fc,j

)
). Since SUPECA ki-

netics is a compatible extension of ECA kinetics, SUPECA
kinetics should have its numerator indicating the potential
reaction rate of the specific pathway, and its denominator
indicating the efforts of all interacting pathways. Bearing
this partition equivalence in mind, therefore, we assert that
f̄A
/
k+2 in Eq. (29) should be equivalent to Fr,i +Fc,j in

Eq. (33). This assertion then leads to Eqs. (38), (41), and
(43) for A substrates. Similarly, Eqs. (39), (42), and (44) are
for B substrates. With the definitions of fA

/
k+2 , fB

/
k+2 ,

f̄A
/
k+2 and f̄B

/
k+2 , using the partition equivalence, we

can easily define the network form of fAB in Eq. (40)
and the network form of f̄AB in Eq. (45). Further, we ob-
serve that the denominator of the last equation in Eq. (28)

could be rewritten as (f̄A/k
+

2 )(f̄B/k
+

2 )(fAB/k
+

2 )

(f̄AB/k
+

2 )
+ (fAB/k

+

2 )−

(fA/k
+

2 )(f̄B/k
+

2 )+(f̄A/k
+

2 )(fB/k
+

2 )−(f̄A/k
+

2 )(f̄B/k
+

2 )

(f̄AB/k
+

2 )
which, after re-

placing fA
/
k+2 , fB

/
k+2 , f̄A

/
k+2 , f̄B

/
k+2 , fAB

/
k+2 , and

f̄AB
/
k+2 with their corresponding network forms (i.e.,

Eqs. 38–45), leads to SUPECA kinetics (Eq. 37).
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Appendix F: Formulation of the kinetics-benchmarking
problem

Following Eqs. (23)–(25), the EC problem used to bench-
mark synthesizing unit (SU) and SUPECA predictions is de-
fined as

kBS1 [B] [S1]= kBS2 [S2] [BS1] (F1)
kBS2 [B] [S2]= kBS1 [S1] [BS2] (F2)

kBS1 [BS2] [S1]+ kBS2 [BS1] [S2]= k+2 [BS1S2] (F3)
KMS1 [MS1]= [M] [S1] , (F4)

which are subject to the constraints

[S1]T = [S1]+ [MS1]+ [BS1]+ [BS1S2] (F5)
[S2]T = [S2]+ [BS2]+ [BS1S2] (F6)
[B]T = [B]+ [BS1]+ [BS2]+ [BS1S2] (F7)
[B]T = [B]+ [BS1]+ [BS2]+ [BS1S2] . (F8)

To relate these equations to a dynamic system, S1 and S2
are substrates, B is microbial population, andM is some sor-
bent that can reversibly adsorb substrate S1. The correspond-
ing graphic representation of the problem is available in the
Supplement.

For benchmarking, [BS1S2] is solved from Eqs. (F1)–(F8)
using a fixed-point iteration algorithm (see the Supplement)
for each set of parameters. Unlike the Newton–Raphson iter-
ation, the fixed-point iteration ensures positive mass of all
variables, and mass balance relationships from Eqs. (F5)–
(F8) are automatically satisfied by the numerical solution.

Appendix G: Derivation of relevant kinetic parameters
for the steady state aerobic respiration problem

The aerobic respiration problem is formulated as

d[O2]g,s

dt
=

(
[O2]a− [O2]g,s

)
(Ra+Rs)Z

−F
(
B, [O2]g,s,S,M

)
, (G1)

where [O2]g,s is gaseous oxygen concentration in bulk
soil. [O2]a is atmospheric oxygen concentration (set to
8.45 mol m−3), S is dissolvable organic carbon (DOC) con-
centration (set to 3 mol m−3; we note that SUPECA is able to
accommodate more specific carbon compounds (like in Riley
et al., 2014), yet our recent analysis (Dwivedi et al., 2017)
suggests that a lumped DOC is sufficient for simple applica-
tions like the one we present here), andM is soil mineral sor-
bent concentration (with variable values). All concentrations
are defined with units (mol m−3). Ra is aerodynamic resis-
tance, which is set to 50 s m−1. Rs is soil resistance (s m−1)

calculated using the approach in Tang and Riley (2013b). Z
is soil depth (set to 10 cm, following the incubation set up
of Franzluebbers, 1999). F

(
B, [O2]g,s,S,M

)
is the oxygen

consumption rate calculated using SUPECA kinetics, whose

kinetic parameters are derived as the following. The steady-
state problem is solved by setting the temporal derivative
of Eq. (G1) to zero, and solved for [O2]g,s through itera-
tions. The shape of the flux F

(
B, [O2]g,s,S,M

)
is then com-

pared to that derived from incubation studies in Franzlueb-
bers (1999).

In this aerobic respiration problem, microbes are assumed
to form microsites sitting uniformly inside pores of the bulk
soil. O2 approaches the microsites through both aqueous and
gaseous diffusion, and only the aqueous phase is used for
microbial respiration. These assumptions will lead to the re-
lationship between near-cell aqueous O2 concentration and
the diffusive flux:

vm
d[O2]w,0

dt
=−kO2,w,1 [X] [O2]w,0

+ κO2 ([O2]w − [O2]0) , (G2)

where the conductance κO2 is(κO2

4π

)−1
=

δ

Dw,O2rm (rm+ δ)
+

1
DO2 (rm+ δ)

, (G3)

and rm is the radius of the microsite (or aggregate), δ is thick-
ness of the water film that covers the microsite (Grant and
Rochette, 1994), νm is the microsite volume (m3 site−1), and
[O2] is the aqueous oxygen concentration in the bulk soil ma-
trix. [X] is the cell density (mol cell site−1). The unit of kO2,1
is then m3 (mol cell)−1 s−1.

The bulk aqueous diffusivity in Eq. (G3) is

DO2 = θDO2,w+
ε

αO2

DO2,g. (G4)

Now, if we assume the steady state (also known as
d[O2]0

/
dt ≈ 0) of Eq. (G2), we obtain

[O2]w,0 =
[O2]w

1+
kO2,w,1[X]

κO2

, (G5)

which leads to the revised affinity parameter:

K̃O2 =
k2

kO2,w,1

(
1+

kO2,w,1[X]T
κO2

)
, (G6)

where the zero-order approximation is made by taking [X]≈
[X]T .

Now assume that the ball-like microbe is covered with
N disc-like transporters, whose mean radius is rp. Assum-
ing that the binding is limited by diffusion, then using the
chemoreception theory by Berg and Purcell (1977), we have

kO2,w,1 = 4πDO2,w,0rc
Nrp

Nrp +πrc
cell−1, (G7)

where the term Nrp
/ (
Nrp +πrc

)
accounts for the interfer-

ence between different transporters of a cell. Thus, assuming
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[X]T =m cell site−1, we get

K̃O2 =
k2

kO2,w,1

(
1+

kO2,1[X]T
κO2

)
(G8)

=KO2,w

(
1+

Nrp

Nrp +πrc

mrc

rm+ δ

(
δ

rm
+
DO2,w,0

DO2

))
.

With a similar procedure for DOC, we have the following:

K̃DOC =
k2

kDOC,w,1

(
1+

kDOC,w,1[X]T
κDOC

)
(G9)

=KDOC

(
1+

Nrp

Nrp +πrc

mrc

rm+ δ

(
δ

rm
+
DDOC,w,0

DDOC

))
,

and

kDOC,w,1 = 4πDDOC,w,0rcNA
Nrp

Nrp +πrc

(molcell)−1, (G10)

where NA = 6.02× 1023 mol−1.
Below, we provide some estimates for the parameters to

support the above model of moisture dependence of mi-
crobial decomposition. The microbial cell radius rc is on
the order of 10−6 m, and rp

/
rc is about 10−3. At 25 ◦C,

the aqueous diffusivity of O2 is about 2.9× 10−9 m2 s−1;
therefore, assuming N = 3000 transporters per cell (which
covers only 0.3 % of the cell’s surface area), we have
kO2,w,1 = 1.0×1010 m3( mol cell)−1 s−1. Similarly, since the
aqueous diffusivity of DOC is about 10−9 m2 s−1, assum-
ing N = 3000 transporters per cell, we have kDOC,w,1 =

3.7×109 m3 (mol cell)−1 s−1. Suppose the respiration is bot-
tlenecked by a single respiratory enzyme, and since the en-
zyme activity varies on the order of 10–1000 s−1 (English
et al., 2006), then by taking k2 = 100N s−1

= 3× 105 s−1

per cell, we have KO2,w = 3× 10−5 mol m−3, which agrees
well with parameters reported for microbes in aqueous so-
lutions in Button (1985). However, Grant (1991) estimated
KO2,w = 3.0×10−3 mol m−3; Borden and Bedient (1986) es-
timated KO2,w = 3.1× 10−3 mol m−3 for application in soil.
We therefore elevated the numerical value to KO2,w = 3.0×
10−3 mol m−3. According to Eqs. (G7) and (G8), such ele-
vation could occur either by increasing the maximum sub-
strate processing rate k2 or decreasing the diffusion kO2,w,1
controlled parameter (through the formation of micropores in
aggregates; e.g., Kausch and Pallud, 2013; Yang et al., 2014).
Based on similar magnitude analysis, we obtain KDOC,w =

8.1× 10−5 mol m−3, which falls to the lower end of the val-
ues reported for many hydrocarbon compounds as reported
in Button (1985). We did not elevate the value of KDOC,w
because it could vary over 4 orders of magnitude (Button,
1985), and our number leads to a good fit between model
predictions and data.

Taking all these numbers together, we have

K̃O2,w =KO2,w

(
1+ 0.48×

mrc

rm+ δ

(
δ

rm
+
DO2,w,0

DO2

))
= 3× 10−3

(
1+ 0.48×

mrc

rm+ δ

(
δ

rm
+
DO2,w,0

DO2

)) (G11)

K̃DOC =KDOC

(
1+ 0.48×

mrc

rm+ δ

(
δ

rm
+
DDOC,w,0

DDOC

))
= 8.1× 10−5

(
1+ 0.48×

mrc

rm+ δ

(
δ

rm
+
DDOC,w,0

DDOC

)). (G12)

Since, at 25 ◦C, the Bunsen solubility coefficient of oxy-
gen is 0.032, we have

K̃O2,g =
K̃O2,w

0.032
= 9.4× 10−2

(
1+ 0.48×

mrc

rm+ δ(
δ

rm
+
DO2,w,0

DO2

))
. (G13)

The water film thickness is a function of soil water potential
(Tokunaga, 2009) and we calculate it using the approach in
ECOSYS (Grant, 2001), which is

δ =max
(

10−6,exp(−13.65− 0.857log(−ψ))
)
, (G14)

where the soil matric potential is in meters, and water film
thickness is restricted to at least 1 µm.

For model applications, microbes are often in units of
mol C m−3. Bratbak and Dundas (1984) reported that the wet
biomass density of bacteria is over the range 1.1–1.2 g cm−3,
of which about 40 % is dry biomass, and about 50 % of dry
biomass is carbon. Therefore, with the medium cell den-
sity 1.15 g cm−3, 1 mol C m−3 microbial biomass is about
52.17 cm3; by further taking rc = 10−6 m= 10−4 cm, the cell
number density is 2.1× 10−11 mol cell m−3. Therefore, for
k2 = 100 s−1 per porter, given each cell has 3000 trans-
porters, the maximum respiration rate is 6.3× 10−6 s−1 for
1 mol C m−3 dry microbial biomass, which was then elevated
to 3.8×10−4 s−1 to obtain a better fit between data and model
prediction. This required elevation in maximum respiration
rate indicates that the data as obtained (after 24 days of in-
cubation) in Franzluebbers (1999) are representative of fast-
growing microbes.
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