Articles | Volume 10, issue 1
https://doi.org/10.5194/gmd-10-189-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue:
https://doi.org/10.5194/gmd-10-189-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
The Brazilian developments on the Regional Atmospheric Modeling System (BRAMS 5.2): an integrated environmental model tuned for tropical areas
Saulo R. Freitas
CORRESPONDING AUTHOR
Centro de Previsão de Tempo e Estudos Climáticos, Instituto
Nacional de Pesquisas Espaciais, Cachoeira Paulista, SP, Brazil
now at: Universities Space
Research Association/Goddard Earth Sciences Technology and Research at the
Global Modeling and Assimilation Office, NASA Goddard Space Flight Center,
Greenbelt, MD, USA
Jairo Panetta
Divisão de Ciência da Computação, Instituto
Tecnológico de Aeronáutica, São José dos Campos, SP, Brazil
Karla M. Longo
Centro de Previsão de Tempo e Estudos Climáticos, Instituto
Nacional de Pesquisas Espaciais, Cachoeira Paulista, SP, Brazil
now at: Universities Space
Research Association/Goddard Earth Sciences Technology and Research at the
Global Modeling and Assimilation Office, NASA Goddard Space Flight Center,
Greenbelt, MD, USA
Luiz F. Rodrigues
Centro de Previsão de Tempo e Estudos Climáticos, Instituto
Nacional de Pesquisas Espaciais, Cachoeira Paulista, SP, Brazil
Demerval S. Moreira
Universidade Estadual Paulista (Unesp), Faculdade de Ciências,
Bauru, SP, Brazil
Centro de Meteorologia de Bauru (IPMet), Bauru,
SP, Brazil
Nilton E. Rosário
Departamento de Ciências Ambientais, Universidade
Federal de São Paulo, Diadema, SP, Brazil
Pedro L. Silva Dias
Instituto de
Astronomia, Geofísica e Ciências Atmosféricas, Universidade de
São Paulo, São Paulo, SP, Brazil
Maria A. F. Silva Dias
Instituto de
Astronomia, Geofísica e Ciências Atmosféricas, Universidade de
São Paulo, São Paulo, SP, Brazil
Enio P. Souza
Departamento de
Ciências Atmosféricas, Universidade Federal de Campina Grande,
Campina Grande, PB, Brazil
Edmilson D. Freitas
Instituto de
Astronomia, Geofísica e Ciências Atmosféricas, Universidade de
São Paulo, São Paulo, SP, Brazil
Marcos Longo
Embrapa Informática
Agropecuária, Campinas, SP, Brazil
Ariane Frassoni
Centro de Previsão de Tempo e Estudos Climáticos, Instituto
Nacional de Pesquisas Espaciais, Cachoeira Paulista, SP, Brazil
Alvaro L. Fazenda
Instituto de Ciência e
Tecnologia, Universidade Federal de São Paulo, São José dos
Campos, SP, Brazil
Cláudio M. Santos e Silva
Departamento de Ciências Atmosféricas
e Climáticas/Programa de Pós graduação em ciências
Climáticas, Universidade Federal do Rio Grande do Norte,
Natal, RN, Brazil
Cláudio A. B. Pavani
Centro de Previsão de Tempo e Estudos Climáticos, Instituto
Nacional de Pesquisas Espaciais, Cachoeira Paulista, SP, Brazil
Denis Eiras
Centro de Previsão de Tempo e Estudos Climáticos, Instituto
Nacional de Pesquisas Espaciais, Cachoeira Paulista, SP, Brazil
Daniela A. França
Centro de Previsão de Tempo e Estudos Climáticos, Instituto
Nacional de Pesquisas Espaciais, Cachoeira Paulista, SP, Brazil
Daniel Massaru
Centro de Previsão de Tempo e Estudos Climáticos, Instituto
Nacional de Pesquisas Espaciais, Cachoeira Paulista, SP, Brazil
Fernanda B. Silva
Centro de Previsão de Tempo e Estudos Climáticos, Instituto
Nacional de Pesquisas Espaciais, Cachoeira Paulista, SP, Brazil
Fernando C. Santos
Centro de Ciências do Sistema Terrestre,
Instituto Nacional de Pesquisas Espaciais, São Jose dos Campos, SP,
Brazil
Gabriel Pereira
Departamento de Geociências, Universidade Federal de
São João del-Rei, MG, Brazil
Gláuber Camponogara
Instituto de
Astronomia, Geofísica e Ciências Atmosféricas, Universidade de
São Paulo, São Paulo, SP, Brazil
Gonzalo A. Ferrada
Centro de Previsão de Tempo e Estudos Climáticos, Instituto
Nacional de Pesquisas Espaciais, Cachoeira Paulista, SP, Brazil
Haroldo F. Campos Velho
Laboratório Associado de
Computação e Matemática Aplicada, Instituto Nacional de Pesquisas
Espaciais, São José dos Campos, SP, Brazil
Isilda Menezes
Instituto de Ciências Agrárias e Ambientais
Mediterrânicas, Universidade de Évora, Évora, Portugal
Centro Interdisciplinar de Desenvolvimento em Ambiente, Gestão
Aplicada e Espaço, Universidade Lusófona de
Humanidades e Tecnologia, Campo Grande, Lisbon, Portugal
Julliana L. Freire
Centro de Previsão de Tempo e Estudos Climáticos, Instituto
Nacional de Pesquisas Espaciais, Cachoeira Paulista, SP, Brazil
Marcelo F. Alonso
Faculdade de Meteorologia, Universidade Federal de Pelotas,
Pelotas, RS, Brazil
Madeleine S. Gácita
Centro de Previsão de Tempo e Estudos Climáticos, Instituto
Nacional de Pesquisas Espaciais, Cachoeira Paulista, SP, Brazil
Maurício Zarzur
Laboratório Associado de
Computação e Matemática Aplicada, Instituto Nacional de Pesquisas
Espaciais, São José dos Campos, SP, Brazil
Rafael M. Fonseca
Centro de Previsão de Tempo e Estudos Climáticos, Instituto
Nacional de Pesquisas Espaciais, Cachoeira Paulista, SP, Brazil
Rafael S. Lima
Centro de Previsão de Tempo e Estudos Climáticos, Instituto
Nacional de Pesquisas Espaciais, Cachoeira Paulista, SP, Brazil
Ricardo A. Siqueira
Centro de Previsão de Tempo e Estudos Climáticos, Instituto
Nacional de Pesquisas Espaciais, Cachoeira Paulista, SP, Brazil
Rodrigo Braz
Centro de Previsão de Tempo e Estudos Climáticos, Instituto
Nacional de Pesquisas Espaciais, Cachoeira Paulista, SP, Brazil
Simone Tomita
Centro de Previsão de Tempo e Estudos Climáticos, Instituto
Nacional de Pesquisas Espaciais, Cachoeira Paulista, SP, Brazil
Valter Oliveira
Centro de Previsão de Tempo e Estudos Climáticos, Instituto
Nacional de Pesquisas Espaciais, Cachoeira Paulista, SP, Brazil
Leila D. Martins
Universidade Tecnológica Federal do
Paraná, Londrina, PR, Brazil
Related authors
Yunyao Li, Daniel Tong, Siqi Ma, Saulo R. Freitas, Ravan Ahmadov, Mikhail Sofiev, Xiaoyang Zhang, Shobha Kondragunta, Ralph Kahn, Youhua Tang, Barry Baker, Patrick Campbell, Rick Saylor, Georg Grell, and Fangjun Li
Atmos. Chem. Phys., 23, 3083–3101, https://doi.org/10.5194/acp-23-3083-2023, https://doi.org/10.5194/acp-23-3083-2023, 2023
Short summary
Short summary
Plume height is important in wildfire smoke dispersion and affects air quality and human health. We assess the impact of plume height on wildfire smoke dispersion and the exceedances of the National Ambient Air Quality Standards. A higher plume height predicts lower pollution near the source region, but higher pollution in downwind regions, due to the faster spread of the smoke once ejected, affects pollution exceedance forecasts and the early warning of extreme air pollution events.
Gonzalo A. Ferrada, Meng Zhou, Jun Wang, Alexei Lyapustin, Yujie Wang, Saulo R. Freitas, and Gregory R. Carmichael
Geosci. Model Dev., 15, 8085–8109, https://doi.org/10.5194/gmd-15-8085-2022, https://doi.org/10.5194/gmd-15-8085-2022, 2022
Short summary
Short summary
The smoke from fires is composed of different compounds that interact with the atmosphere and can create poor air-quality episodes. Here, we present a new fire inventory based on satellite observations from the Visible Infrared Imaging Radiometer Suite (VIIRS). We named this inventory the VIIRS-based Fire Emission Inventory (VFEI). Advantages of VFEI are its high resolution (~500 m) and that it provides information for many species. VFEI is publicly available and has provided data since 2012.
Aditya Kumar, R. Bradley Pierce, Ravan Ahmadov, Gabriel Pereira, Saulo Freitas, Georg Grell, Chris Schmidt, Allen Lenzen, Joshua P. Schwarz, Anne E. Perring, Joseph M. Katich, John Hair, Jose L. Jimenez, Pedro Campuzano-Jost, and Hongyu Guo
Atmos. Chem. Phys., 22, 10195–10219, https://doi.org/10.5194/acp-22-10195-2022, https://doi.org/10.5194/acp-22-10195-2022, 2022
Short summary
Short summary
We use the WRF-Chem model with new implementations of GOES-16 wildfire emissions and plume rise based on fire radiative power (FRP) to interpret aerosol observations during the 2019 NASA–NOAA FIREX-AQ field campaign and perform model evaluations. The model shows significant improvements in simulating the variety of aerosol loading environments sampled during FIREX-AQ. Our results also highlight the importance of accurate wildfire diurnal cycle and aerosol chemical mechanisms in models.
Saulo R. Freitas, Georg A. Grell, and Haiqin Li
Geosci. Model Dev., 14, 5393–5411, https://doi.org/10.5194/gmd-14-5393-2021, https://doi.org/10.5194/gmd-14-5393-2021, 2021
Short summary
Short summary
Convection parameterization (CP) is a component of atmospheric models aiming to represent the statistical effects of subgrid-scale convective clouds. Because the atmosphere contains circulations with a broad spectrum of scales, the truncation needed to run models in computers requires the introduction of parameterizations to account for processes that are not explicitly resolved. We detail recent developments in the Grell–Freitas CP, which has been applied in several regional and global models.
Fernando Santos, Karla Longo, Alex Guenther, Saewung Kim, Dasa Gu, Dave Oram, Grant Forster, James Lee, James Hopkins, Joel Brito, and Saulo Freitas
Atmos. Chem. Phys., 18, 12715–12734, https://doi.org/10.5194/acp-18-12715-2018, https://doi.org/10.5194/acp-18-12715-2018, 2018
Short summary
Short summary
We investigated the impact of biomass burning on the chemical composition of trace gases in the Amazon. The findings corroborate the influence of biomass burning activity not only on direct emissions of particulate matter but also on the oxidative capacity to produce secondary organic aerosol. The scientists plan to use this information to improve the numerical model simulation with a better representativeness of the chemical processes, which can impact on global climate prediction.
Paulo R. Teixeira, Saulo R. de Freitas, Francis W. Correia, and Antonio O. Manzi
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-81, https://doi.org/10.5194/gmd-2018-81, 2018
Publication in GMD not foreseen
Short summary
Short summary
Emissions of gases and particulates in urban areas are associated with a mixture of various sources, both natural and anthropogenic. Understanding and quantifying these emissions is necessary in studies of climate change, local air pollution issues, and weather modification. This work will also contribute to improved air quality numerical simulations, provide more accurate scenarios for policymakers and regulatory agencies to develop strategies for controlling the vehicular emissions.
Demerval S. Moreira, Karla M. Longo, Saulo R. Freitas, Marcia A. Yamasoe, Lina M. Mercado, Nilton E. Rosário, Emauel Gloor, Rosane S. M. Viana, John B. Miller, Luciana V. Gatti, Kenia T. Wiedemann, Lucas K. G. Domingues, and Caio C. S. Correia
Atmos. Chem. Phys., 17, 14785–14810, https://doi.org/10.5194/acp-17-14785-2017, https://doi.org/10.5194/acp-17-14785-2017, 2017
Short summary
Short summary
Fire in the Amazon forest produces a large amount of smoke that is released into the atmosphere and covers a large portion of South America for about 3 months each year. The smoke affects the energy and CO2 budgets. Using a numerical atmospheric model, we demonstrated that the smoke changes the forest from a source to a sink of CO2 to the atmosphere. The smoke ultimately acts to at least partially compensate for the forest carbon lost due to fire emissions.
Madeleine Sánchez Gácita, Karla M. Longo, Julliana L. M. Freire, Saulo R. Freitas, and Scot T. Martin
Atmos. Chem. Phys., 17, 2373–2392, https://doi.org/10.5194/acp-17-2373-2017, https://doi.org/10.5194/acp-17-2373-2017, 2017
Short summary
Short summary
This study uses an adiabatic cloud model to simulate the activation of smoke aerosol particles in the Amazon region as cloud condensation nuclei (CCN). The relative importance of variability in hygroscopicity, mixing state, and activation kinetics for the activated fraction and maximum supersaturation is assessed. Our findings on uncertainties and sensitivities provide guidance on appropriate simplifications that can be used for modeling of smoke aerosols within general circulation models.
Carolin Walter, Saulo R. Freitas, Christoph Kottmeier, Isabel Kraut, Daniel Rieger, Heike Vogel, and Bernhard Vogel
Atmos. Chem. Phys., 16, 9201–9219, https://doi.org/10.5194/acp-16-9201-2016, https://doi.org/10.5194/acp-16-9201-2016, 2016
Short summary
Short summary
Buoyancy produced by vegetation fires can lead to substantial plume rise with consequences for the dispersion of aerosol emitted by the fires. To study this effect a 1-D plume rise model was included into the regional online integrated model system COSMO-ART. Comparing model results and satellite data for a case study of 2010 Canadian wildfires shows, that the plume rise model outperforms prescribed emission height. The radiative impact of the aerosol leads to a pronounced temperature change.
Gabriel Pereira, Ricardo Siqueira, Nilton E. Rosário, Karla L. Longo, Saulo R. Freitas, Francielle S. Cardozo, Johannes W. Kaiser, and Martin J. Wooster
Atmos. Chem. Phys., 16, 6961–6975, https://doi.org/10.5194/acp-16-6961-2016, https://doi.org/10.5194/acp-16-6961-2016, 2016
Short summary
Short summary
Fires associated with land use and land cover changes release large amounts of aerosols and trace gases into the atmosphere. Although several inventories of biomass burning emissions cover Brazil, there are still considerable uncertainties and differences among them. However, results indicate that emission derived via similar methods tend to agree with one other, but aerosol emissions from fires with particularly high biomass consumption still lead to an underestimation.
R. Paugam, M. Wooster, S. Freitas, and M. Val Martin
Atmos. Chem. Phys., 16, 907–925, https://doi.org/10.5194/acp-16-907-2016, https://doi.org/10.5194/acp-16-907-2016, 2016
Short summary
Short summary
Landscape fire plume height controls fire emissions release in the atmosphere, in particular their transport that may also affect the longevity, chemical conversion, and fate of the plumes chemical constituents. Here, we review how such landscape-scale fire smoke plume injection heights are represented in large-scale atmospheric transport models aiming to represent the impacts of wildfire emissions on component of the Earth system.
R. Paugam, M. Wooster, J. Atherton, S. R. Freitas, M. G. Schultz, and J. W. Kaiser
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-15-9815-2015, https://doi.org/10.5194/acpd-15-9815-2015, 2015
Revised manuscript not accepted
Short summary
Short summary
The transport of Biomass Burning emissions in Chemical Transport Model rely on parametrization of plumes injection height. Using fire observation selected to ensure match-up of fire-atmosphere-plume dynamics; a popular plume rise model was improved and optimized. The resulting model shows response to the effect of atmospheric stability consistent with previous findings and is able to predict higher injection height than any other tested parametrizations, giving a closer match with observation.
S. Archer-Nicholls, D. Lowe, E. Darbyshire, W. T. Morgan, M. M. Bela, G. Pereira, J. Trembath, J. W. Kaiser, K. M. Longo, S. R. Freitas, H. Coe, and G. McFiggans
Geosci. Model Dev., 8, 549–577, https://doi.org/10.5194/gmd-8-549-2015, https://doi.org/10.5194/gmd-8-549-2015, 2015
Short summary
Short summary
The regional WRF-Chem model was used to study aerosol particles from biomass burning in South America. The modelled estimates of fire plume injection heights were found to be too high, with serious implications for modelled aerosol vertical distribution, transport and impacts on local climate. A modified emission scenario was developed which improved the predicted injection height. Model results were compared and evaluated against in situ measurements from the 2012 SAMBBA flight campaign.
M. M. Bela, K. M. Longo, S. R. Freitas, D. S. Moreira, V. Beck, S. C. Wofsy, C. Gerbig, K. Wiedemann, M. O. Andreae, and P. Artaxo
Atmos. Chem. Phys., 15, 757–782, https://doi.org/10.5194/acp-15-757-2015, https://doi.org/10.5194/acp-15-757-2015, 2015
Short summary
Short summary
In the Amazon Basin, gases that lead to the formation of ozone (O3), an air pollutant and greenhouse gas, are emitted from fire, urban and biogenic sources. This study presents the first basin wide aircraft measurements of O3 during the dry-to-wet and wet-to-dry transition seasons, which show extremely low values above undisturbed forest and increases from fires. This work also demonstrates the capabilities and limitations of regional atmospheric chemistry models in representing O3 in Amazonia.
J. Brito, L. V. Rizzo, W. T. Morgan, H. Coe, B. Johnson, J. Haywood, K. Longo, S. Freitas, M. O. Andreae, and P. Artaxo
Atmos. Chem. Phys., 14, 12069–12083, https://doi.org/10.5194/acp-14-12069-2014, https://doi.org/10.5194/acp-14-12069-2014, 2014
Short summary
Short summary
This paper details the physical--chemical characteristics of aerosols in a region strongly impacted by biomass burning in the western part of the Brazilian Amazon region. For such, a large suite of state-of-the-art instruments for realtime analysis was deployed at a ground site. Among the key findings, we observe the strong prevalence of organic aerosols associated to fire emissions, with important climate effects, and indications of its very fast processing in the atmosphere.
G. A. Grell and S. R. Freitas
Atmos. Chem. Phys., 14, 5233–5250, https://doi.org/10.5194/acp-14-5233-2014, https://doi.org/10.5194/acp-14-5233-2014, 2014
A. F. dos Santos, S. R. Freitas, J. G. Z. de Mattos, H. F. de Campos Velho, M. A. Gan, E. F. P. da Luz, and G. A. Grell
Adv. Geosci., 35, 123–136, https://doi.org/10.5194/adgeo-35-123-2013, https://doi.org/10.5194/adgeo-35-123-2013, 2013
K. M. Longo, S. R. Freitas, M. Pirre, V. Marécal, L. F. Rodrigues, J. Panetta, M. F. Alonso, N. E. Rosário, D. S. Moreira, M. S. Gácita, J. Arteta, R. Fonseca, R. Stockler, D. M. Katsurayama, A. Fazenda, and M. Bela
Geosci. Model Dev., 6, 1389–1405, https://doi.org/10.5194/gmd-6-1389-2013, https://doi.org/10.5194/gmd-6-1389-2013, 2013
D. S. Moreira, S. R. Freitas, J. P. Bonatti, L. M. Mercado, N. M. É. Rosário, K. M. Longo, J. B. Miller, M. Gloor, and L. V. Gatti
Geosci. Model Dev., 6, 1243–1259, https://doi.org/10.5194/gmd-6-1243-2013, https://doi.org/10.5194/gmd-6-1243-2013, 2013
V. Beck, C. Gerbig, T. Koch, M. M. Bela, K. M. Longo, S. R. Freitas, J. O. Kaplan, C. Prigent, P. Bergamaschi, and M. Heimann
Atmos. Chem. Phys., 13, 7961–7982, https://doi.org/10.5194/acp-13-7961-2013, https://doi.org/10.5194/acp-13-7961-2013, 2013
M. Stuefer, S. R. Freitas, G. Grell, P. Webley, S. Peckham, S. A. McKeen, and S. D. Egan
Geosci. Model Dev., 6, 457–468, https://doi.org/10.5194/gmd-6-457-2013, https://doi.org/10.5194/gmd-6-457-2013, 2013
N. E. Rosário, K. M. Longo, S. R. Freitas, M. A. Yamasoe, and R. M. Fonseca
Atmos. Chem. Phys., 13, 2923–2938, https://doi.org/10.5194/acp-13-2923-2013, https://doi.org/10.5194/acp-13-2923-2013, 2013
S. Strada, S. R. Freitas, C. Mari, K. M. Longo, and R. Paugam
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmdd-6-721-2013, https://doi.org/10.5194/gmdd-6-721-2013, 2013
Preprint withdrawn
Guilherme Martins Pereira, Leonardo Yoshiaki Kamigauti, Rubens Fabio Pereira, Djacinto Monteiro dos Santos, Thayná da Silva Santos, José Vinicius Martins, Célia Alves, Cátia Gonçalves, Ismael Casotti Rienda, Nora Kováts, Thiago Nogueira, Luciana Rizzo, Paulo Artaxo, Regina Maura de Miranda, Marcia Akemi Yamasoe, Edmilson Dias de Freitas, Pérola de Castro Vasconcellos, and Maria de Fatima Andrade
EGUsphere, https://doi.org/10.5194/egusphere-2024-2212, https://doi.org/10.5194/egusphere-2024-2212, 2024
Short summary
Short summary
The chemical composition of fine particulate matter was studied in the megacity of São Paulo (Brazil) during a polluted period. Vehicular-related sources were dominant; however, a high contribution of biomass burning was observed and correlated with sample ecotoxicity. Emerging biomass burning sources, such as forest fires and sugarcane bagasse-based power plants, highlight the need for additional control measures alongside stricter rules concerning vehicular emissions.
Lingcheng Li, Yilin Fang, Zhonghua Zheng, Mingjie Shi, Marcos Longo, Charles D. Koven, Jennifer A. Holm, Rosie A. Fisher, Nate G. McDowell, Jeffrey Chambers, and L. Ruby Leung
Geosci. Model Dev., 16, 4017–4040, https://doi.org/10.5194/gmd-16-4017-2023, https://doi.org/10.5194/gmd-16-4017-2023, 2023
Short summary
Short summary
Accurately modeling plant coexistence in vegetation demographic models like ELM-FATES is challenging. This study proposes a repeatable method that uses machine-learning-based surrogate models to optimize plant trait parameters in ELM-FATES. Our approach significantly improves plant coexistence modeling, thus reducing errors. It has important implications for modeling ecosystem dynamics in response to climate change.
Ian Chang, Lan Gao, Connor J. Flynn, Yohei Shinozuka, Sarah J. Doherty, Michael S. Diamond, Karla M. Longo, Gonzalo A. Ferrada, Gregory R. Carmichael, Patricia Castellanos, Arlindo M. da Silva, Pablo E. Saide, Calvin Howes, Zhixin Xue, Marc Mallet, Ravi Govindaraju, Qiaoqiao Wang, Yafang Cheng, Yan Feng, Sharon P. Burton, Richard A. Ferrare, Samuel E. LeBlanc, Meloë S. Kacenelenbogen, Kristina Pistone, Michal Segal-Rozenhaimer, Kerry G. Meyer, Ju-Mee Ryoo, Leonhard Pfister, Adeyemi A. Adebiyi, Robert Wood, Paquita Zuidema, Sundar A. Christopher, and Jens Redemann
Atmos. Chem. Phys., 23, 4283–4309, https://doi.org/10.5194/acp-23-4283-2023, https://doi.org/10.5194/acp-23-4283-2023, 2023
Short summary
Short summary
Abundant aerosols are present above low-level liquid clouds over the southeastern Atlantic during late austral spring. The model simulation differences in the proportion of aerosol residing in the planetary boundary layer and in the free troposphere can greatly affect the regional aerosol radiative effects. This study examines the aerosol loading and fractional aerosol loading in the free troposphere among various models and evaluates them against measurements from the NASA ORACLES campaign.
Yunyao Li, Daniel Tong, Siqi Ma, Saulo R. Freitas, Ravan Ahmadov, Mikhail Sofiev, Xiaoyang Zhang, Shobha Kondragunta, Ralph Kahn, Youhua Tang, Barry Baker, Patrick Campbell, Rick Saylor, Georg Grell, and Fangjun Li
Atmos. Chem. Phys., 23, 3083–3101, https://doi.org/10.5194/acp-23-3083-2023, https://doi.org/10.5194/acp-23-3083-2023, 2023
Short summary
Short summary
Plume height is important in wildfire smoke dispersion and affects air quality and human health. We assess the impact of plume height on wildfire smoke dispersion and the exceedances of the National Ambient Air Quality Standards. A higher plume height predicts lower pollution near the source region, but higher pollution in downwind regions, due to the faster spread of the smoke once ejected, affects pollution exceedance forecasts and the early warning of extreme air pollution events.
Gonzalo A. Ferrada, Meng Zhou, Jun Wang, Alexei Lyapustin, Yujie Wang, Saulo R. Freitas, and Gregory R. Carmichael
Geosci. Model Dev., 15, 8085–8109, https://doi.org/10.5194/gmd-15-8085-2022, https://doi.org/10.5194/gmd-15-8085-2022, 2022
Short summary
Short summary
The smoke from fires is composed of different compounds that interact with the atmosphere and can create poor air-quality episodes. Here, we present a new fire inventory based on satellite observations from the Visible Infrared Imaging Radiometer Suite (VIIRS). We named this inventory the VIIRS-based Fire Emission Inventory (VFEI). Advantages of VFEI are its high resolution (~500 m) and that it provides information for many species. VFEI is publicly available and has provided data since 2012.
Aditya Kumar, R. Bradley Pierce, Ravan Ahmadov, Gabriel Pereira, Saulo Freitas, Georg Grell, Chris Schmidt, Allen Lenzen, Joshua P. Schwarz, Anne E. Perring, Joseph M. Katich, John Hair, Jose L. Jimenez, Pedro Campuzano-Jost, and Hongyu Guo
Atmos. Chem. Phys., 22, 10195–10219, https://doi.org/10.5194/acp-22-10195-2022, https://doi.org/10.5194/acp-22-10195-2022, 2022
Short summary
Short summary
We use the WRF-Chem model with new implementations of GOES-16 wildfire emissions and plume rise based on fire radiative power (FRP) to interpret aerosol observations during the 2019 NASA–NOAA FIREX-AQ field campaign and perform model evaluations. The model shows significant improvements in simulating the variety of aerosol loading environments sampled during FIREX-AQ. Our results also highlight the importance of accurate wildfire diurnal cycle and aerosol chemical mechanisms in models.
Jiaying Zhang, Rafael L. Bras, Marcos Longo, and Tamara Heartsill Scalley
Geosci. Model Dev., 15, 5107–5126, https://doi.org/10.5194/gmd-15-5107-2022, https://doi.org/10.5194/gmd-15-5107-2022, 2022
Short summary
Short summary
We implemented hurricane disturbance in a vegetation dynamics model and calibrated the model with observations of a tropical forest. We used the model to study forest recovery from hurricane disturbance and found that a single hurricane disturbance enhances AGB and BA in the long term compared with a no-hurricane situation. The model developed and results presented in this study can be utilized to understand the impact of hurricane disturbances on forest recovery under the changing climate.
Elias C. Massoud, A. Anthony Bloom, Marcos Longo, John T. Reager, Paul A. Levine, and John R. Worden
Hydrol. Earth Syst. Sci., 26, 1407–1423, https://doi.org/10.5194/hess-26-1407-2022, https://doi.org/10.5194/hess-26-1407-2022, 2022
Short summary
Short summary
The water balance on river basin scales depends on a number of soil physical processes. Gaining information on these quantities using observations is a key step toward improving the skill of land surface hydrology models. In this study, we use data from the Gravity Recovery and Climate Experiment (NASA-GRACE) to inform and constrain these hydrologic processes. We show that our model is able to simulate the land hydrologic cycle for a watershed in the Amazon from January 2003 to December 2012.
Sarah J. Doherty, Pablo E. Saide, Paquita Zuidema, Yohei Shinozuka, Gonzalo A. Ferrada, Hamish Gordon, Marc Mallet, Kerry Meyer, David Painemal, Steven G. Howell, Steffen Freitag, Amie Dobracki, James R. Podolske, Sharon P. Burton, Richard A. Ferrare, Calvin Howes, Pierre Nabat, Gregory R. Carmichael, Arlindo da Silva, Kristina Pistone, Ian Chang, Lan Gao, Robert Wood, and Jens Redemann
Atmos. Chem. Phys., 22, 1–46, https://doi.org/10.5194/acp-22-1-2022, https://doi.org/10.5194/acp-22-1-2022, 2022
Short summary
Short summary
Between July and October, biomass burning smoke is advected over the southeastern Atlantic Ocean, leading to climate forcing. Model calculations of forcing by this plume vary significantly in both magnitude and sign. This paper compares aerosol and cloud properties observed during three NASA ORACLES field campaigns to the same in four models. It quantifies modeled biases in properties key to aerosol direct radiative forcing and evaluates how these biases propagate to biases in forcing.
Xinxin Ye, Pargoal Arab, Ravan Ahmadov, Eric James, Georg A. Grell, Bradley Pierce, Aditya Kumar, Paul Makar, Jack Chen, Didier Davignon, Greg R. Carmichael, Gonzalo Ferrada, Jeff McQueen, Jianping Huang, Rajesh Kumar, Louisa Emmons, Farren L. Herron-Thorpe, Mark Parrington, Richard Engelen, Vincent-Henri Peuch, Arlindo da Silva, Amber Soja, Emily Gargulinski, Elizabeth Wiggins, Johnathan W. Hair, Marta Fenn, Taylor Shingler, Shobha Kondragunta, Alexei Lyapustin, Yujie Wang, Brent Holben, David M. Giles, and Pablo E. Saide
Atmos. Chem. Phys., 21, 14427–14469, https://doi.org/10.5194/acp-21-14427-2021, https://doi.org/10.5194/acp-21-14427-2021, 2021
Short summary
Short summary
Wildfire smoke has crucial impacts on air quality, while uncertainties in the numerical forecasts remain significant. We present an evaluation of 12 real-time forecasting systems. Comparison of predicted smoke emissions suggests a large spread in magnitudes, with temporal patterns deviating from satellite detections. The performance for AOD and surface PM2.5 and their discrepancies highlighted the role of accurately represented spatiotemporal emission profiles in improving smoke forecasts.
Saulo R. Freitas, Georg A. Grell, and Haiqin Li
Geosci. Model Dev., 14, 5393–5411, https://doi.org/10.5194/gmd-14-5393-2021, https://doi.org/10.5194/gmd-14-5393-2021, 2021
Short summary
Short summary
Convection parameterization (CP) is a component of atmospheric models aiming to represent the statistical effects of subgrid-scale convective clouds. Because the atmosphere contains circulations with a broad spectrum of scales, the truncation needed to run models in computers requires the introduction of parameterizations to account for processes that are not explicitly resolved. We detail recent developments in the Grell–Freitas CP, which has been applied in several regional and global models.
Kristina Pistone, Paquita Zuidema, Robert Wood, Michael Diamond, Arlindo M. da Silva, Gonzalo Ferrada, Pablo E. Saide, Rei Ueyama, Ju-Mee Ryoo, Leonhard Pfister, James Podolske, David Noone, Ryan Bennett, Eric Stith, Gregory Carmichael, Jens Redemann, Connor Flynn, Samuel LeBlanc, Michal Segal-Rozenhaimer, and Yohei Shinozuka
Atmos. Chem. Phys., 21, 9643–9668, https://doi.org/10.5194/acp-21-9643-2021, https://doi.org/10.5194/acp-21-9643-2021, 2021
Short summary
Short summary
Using aircraft-based measurements off the Atlantic coast of Africa, we found the springtime smoke plume was strongly correlated with the amount of water vapor in the atmosphere (more smoke indicated more humidity). We see the same general feature in satellite-assimilated and free-running models. Our analysis suggests this relationship is not caused by the burning but originates due to coincident continental meteorology plus fires. This air is transported over the ocean without further mixing.
Marcia Akemi Yamasoe, Nilton Manuel Évora Rosário, Samantha Novaes Santos Martins Almeida, and Martin Wild
Atmos. Chem. Phys., 21, 6593–6603, https://doi.org/10.5194/acp-21-6593-2021, https://doi.org/10.5194/acp-21-6593-2021, 2021
Short summary
Short summary
Spatio-temporal disparity to assess global dimming and brightening phenomena has been a critical topic. For instance, few studies addressed surface solar irradiation (SSR) long-term trend in South America. In this study, SSR, sunshine duration (SD) and the diurnal temperature range (DTR) are analysed for São Paulo, Brazil. We found a dimming phase, identified by SSR, SD and DTR, extending till 1983. Then, while SSR is still declining, consistent with cloud increasing, SD and DTR are increasing.
Jens Redemann, Robert Wood, Paquita Zuidema, Sarah J. Doherty, Bernadette Luna, Samuel E. LeBlanc, Michael S. Diamond, Yohei Shinozuka, Ian Y. Chang, Rei Ueyama, Leonhard Pfister, Ju-Mee Ryoo, Amie N. Dobracki, Arlindo M. da Silva, Karla M. Longo, Meloë S. Kacenelenbogen, Connor J. Flynn, Kristina Pistone, Nichola M. Knox, Stuart J. Piketh, James M. Haywood, Paola Formenti, Marc Mallet, Philip Stier, Andrew S. Ackerman, Susanne E. Bauer, Ann M. Fridlind, Gregory R. Carmichael, Pablo E. Saide, Gonzalo A. Ferrada, Steven G. Howell, Steffen Freitag, Brian Cairns, Brent N. Holben, Kirk D. Knobelspiesse, Simone Tanelli, Tristan S. L'Ecuyer, Andrew M. Dzambo, Ousmane O. Sy, Greg M. McFarquhar, Michael R. Poellot, Siddhant Gupta, Joseph R. O'Brien, Athanasios Nenes, Mary Kacarab, Jenny P. S. Wong, Jennifer D. Small-Griswold, Kenneth L. Thornhill, David Noone, James R. Podolske, K. Sebastian Schmidt, Peter Pilewskie, Hong Chen, Sabrina P. Cochrane, Arthur J. Sedlacek, Timothy J. Lang, Eric Stith, Michal Segal-Rozenhaimer, Richard A. Ferrare, Sharon P. Burton, Chris A. Hostetler, David J. Diner, Felix C. Seidel, Steven E. Platnick, Jeffrey S. Myers, Kerry G. Meyer, Douglas A. Spangenberg, Hal Maring, and Lan Gao
Atmos. Chem. Phys., 21, 1507–1563, https://doi.org/10.5194/acp-21-1507-2021, https://doi.org/10.5194/acp-21-1507-2021, 2021
Short summary
Short summary
Southern Africa produces significant biomass burning emissions whose impacts on regional and global climate are poorly understood. ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) is a 5-year NASA investigation designed to study the key processes that determine these climate impacts. The main purpose of this paper is to familiarize the broader scientific community with the ORACLES project, the dataset it produced, and the most important initial findings.
Breno Raphaldini, André S. W. Teruya, Pedro Leite da Silva Dias, Lucas Massaroppe, and Daniel Yasumasa Takahashi
Earth Syst. Dynam., 12, 83–101, https://doi.org/10.5194/esd-12-83-2021, https://doi.org/10.5194/esd-12-83-2021, 2021
Short summary
Short summary
Several recent studies suggest a modulation of the Madden–Julian oscillation (MJO) by the quasi-biennial oscillation (QBO). The physics behind this interaction, however, remain poorly understood. In this study, we investigated the QBO–MJO interaction and the role of stratospheric ozone as a forcing mechanism. A normal-mode decomposition procedure combined with causality analysis reveals significant interactions between MJO-related modes and QBO-related modes.
Maoyi Huang, Yi Xu, Marcos Longo, Michael Keller, Ryan G. Knox, Charles D. Koven, and Rosie A. Fisher
Biogeosciences, 17, 4999–5023, https://doi.org/10.5194/bg-17-4999-2020, https://doi.org/10.5194/bg-17-4999-2020, 2020
Short summary
Short summary
The Functionally Assembled Terrestrial Ecosystem Simulator (FATES) is enhanced to mimic the ecological, biophysical, and biogeochemical processes following a logging event. The model can specify the timing and aerial extent of logging events; determine the survivorship of cohorts in the disturbed forest; and modifying the biomass, coarse woody debris, and litter pools. This study lays the foundation to simulate land use change and forest degradation in FATES as part of an Earth system model.
Yohei Shinozuka, Pablo E. Saide, Gonzalo A. Ferrada, Sharon P. Burton, Richard Ferrare, Sarah J. Doherty, Hamish Gordon, Karla Longo, Marc Mallet, Yan Feng, Qiaoqiao Wang, Yafang Cheng, Amie Dobracki, Steffen Freitag, Steven G. Howell, Samuel LeBlanc, Connor Flynn, Michal Segal-Rosenhaimer, Kristina Pistone, James R. Podolske, Eric J. Stith, Joseph Ryan Bennett, Gregory R. Carmichael, Arlindo da Silva, Ravi Govindaraju, Ruby Leung, Yang Zhang, Leonhard Pfister, Ju-Mee Ryoo, Jens Redemann, Robert Wood, and Paquita Zuidema
Atmos. Chem. Phys., 20, 11491–11526, https://doi.org/10.5194/acp-20-11491-2020, https://doi.org/10.5194/acp-20-11491-2020, 2020
Short summary
Short summary
In the southeast Atlantic, well-defined smoke plumes from Africa advect over marine boundary layer cloud decks; both are most extensive around September, when most of the smoke resides in the free troposphere. A framework is put forth for evaluating the performance of a range of global and regional atmospheric composition models against observations made during the NASA ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) airborne mission in September 2016.
Kirk Knobelspiesse, Henrique M. J. Barbosa, Christine Bradley, Carol Bruegge, Brian Cairns, Gao Chen, Jacek Chowdhary, Anthony Cook, Antonio Di Noia, Bastiaan van Diedenhoven, David J. Diner, Richard Ferrare, Guangliang Fu, Meng Gao, Michael Garay, Johnathan Hair, David Harper, Gerard van Harten, Otto Hasekamp, Mark Helmlinger, Chris Hostetler, Olga Kalashnikova, Andrew Kupchock, Karla Longo De Freitas, Hal Maring, J. Vanderlei Martins, Brent McBride, Matthew McGill, Ken Norlin, Anin Puthukkudy, Brian Rheingans, Jeroen Rietjens, Felix C. Seidel, Arlindo da Silva, Martijn Smit, Snorre Stamnes, Qian Tan, Sebastian Val, Andrzej Wasilewski, Feng Xu, Xiaoguang Xu, and John Yorks
Earth Syst. Sci. Data, 12, 2183–2208, https://doi.org/10.5194/essd-12-2183-2020, https://doi.org/10.5194/essd-12-2183-2020, 2020
Short summary
Short summary
The Aerosol Characterization from Polarimeter and Lidar (ACEPOL) field campaign is a resource for the next generation of spaceborne multi-angle polarimeter (MAP) and lidar missions. Conducted in the fall of 2017 from the Armstrong Flight Research Center in Palmdale, California, four MAP instruments and two lidars were flown on the high-altitude ER-2 aircraft over a variety of scene types and ground assets. Data are freely available to the public and useful for algorithm development and testing.
Renato Kerches Braghiere, Marcia Akemi Yamasoe, Nilton Manuel Évora do Rosário, Humberto Ribeiro da Rocha, José de Souza Nogueira, and Alessandro Carioca de Araújo
Atmos. Chem. Phys., 20, 3439–3458, https://doi.org/10.5194/acp-20-3439-2020, https://doi.org/10.5194/acp-20-3439-2020, 2020
Short summary
Short summary
We evaluate how the interaction of smoke with sun light impacts the exchange of energy and mass between vegetation and the atmosphere using a machine learning technique. We found an effect of the smoke on CO2, energy, and water fluxes, linking the effects of smoke with temperature, humidity, and winds. CO2 exchange increased by up to 55 % in the presence of smoke. A decrease of 12 % was observed for a site with simpler vegetation. Energy fluxes were negatively impacted for all study sites.
Marcos Longo, Ryan G. Knox, David M. Medvigy, Naomi M. Levine, Michael C. Dietze, Yeonjoo Kim, Abigail L. S. Swann, Ke Zhang, Christine R. Rollinson, Rafael L. Bras, Steven C. Wofsy, and Paul R. Moorcroft
Geosci. Model Dev., 12, 4309–4346, https://doi.org/10.5194/gmd-12-4309-2019, https://doi.org/10.5194/gmd-12-4309-2019, 2019
Short summary
Short summary
Our paper describes the Ecosystem Demography model. This computer program calculates how plants and ground exchange heat, water, and carbon with the air, and how plants grow, reproduce and die in different climates. Most models simplify forests to an average big tree. We consider that tall, deep-rooted trees get more light and water than small plants, and that some plants can with shade and drought. This diversity helps us to better explain how plants live and interact with the atmosphere.
Marcos Longo, Ryan G. Knox, Naomi M. Levine, Abigail L. S. Swann, David M. Medvigy, Michael C. Dietze, Yeonjoo Kim, Ke Zhang, Damien Bonal, Benoit Burban, Plínio B. Camargo, Matthew N. Hayek, Scott R. Saleska, Rodrigo da Silva, Rafael L. Bras, Steven C. Wofsy, and Paul R. Moorcroft
Geosci. Model Dev., 12, 4347–4374, https://doi.org/10.5194/gmd-12-4347-2019, https://doi.org/10.5194/gmd-12-4347-2019, 2019
Short summary
Short summary
The Ecosystem Demography model calculates the fluxes of heat, water, and carbon between plants and ground and the air, and the life cycle of plants in different climates. To test if our calculations were reasonable, we compared our results with field and satellite measurements. Our model predicts well the extent of the Amazon forest, how much light forests absorb, and how much water forests release to the air. However, it must improve the tree growth rates and how fast dead plants decompose.
Marcos A. S. Scaranello, Michael Keller, Marcos Longo, Maiza N. dos-Santos, Veronika Leitold, Douglas C. Morton, Ekena R. Pinagé, and Fernando Del Bon Espírito-Santo
Biogeosciences, 16, 3457–3474, https://doi.org/10.5194/bg-16-3457-2019, https://doi.org/10.5194/bg-16-3457-2019, 2019
Short summary
Short summary
The coarse dead wood component of the tropical forest carbon pool is rarely measured. For the first time, we developed models for predicting coarse dead wood in Amazonian forests by using airborne laser scanning data. Our models produced site-based estimates similar to independent field estimates found in the literature. Our study provides an approach for estimating coarse dead wood pools from remotely sensed data and mapping those pools over large scales in intact and degraded forests.
Lianet Hernández Pardo, Luiz Augusto Toledo Machado, Micael Amore Cecchini, and Madeleine Sánchez Gácita
Atmos. Chem. Phys., 19, 7839–7857, https://doi.org/10.5194/acp-19-7839-2019, https://doi.org/10.5194/acp-19-7839-2019, 2019
Short summary
Short summary
This work analyzes the effects of changes in the environmental aerosol population on Amazonian clouds. The results confirm that the clouds can be very sensitive to changes in the aerosol properties, but the relative importance of each property is variable and depends on the values of the other aerosol characteristics, especially aerosol size. This is controlled by the degree to which the cloud mixes with the surrounding air and by the efficiency with which aerosols are consumed by droplets.
Fernando Santos, Karla Longo, Alex Guenther, Saewung Kim, Dasa Gu, Dave Oram, Grant Forster, James Lee, James Hopkins, Joel Brito, and Saulo Freitas
Atmos. Chem. Phys., 18, 12715–12734, https://doi.org/10.5194/acp-18-12715-2018, https://doi.org/10.5194/acp-18-12715-2018, 2018
Short summary
Short summary
We investigated the impact of biomass burning on the chemical composition of trace gases in the Amazon. The findings corroborate the influence of biomass burning activity not only on direct emissions of particulate matter but also on the oxidative capacity to produce secondary organic aerosol. The scientists plan to use this information to improve the numerical model simulation with a better representativeness of the chemical processes, which can impact on global climate prediction.
Matthew N. Hayek, Marcos Longo, Jin Wu, Marielle N. Smith, Natalia Restrepo-Coupe, Raphael Tapajós, Rodrigo da Silva, David R. Fitzjarrald, Plinio B. Camargo, Lucy R. Hutyra, Luciana F. Alves, Bruce Daube, J. William Munger, Kenia T. Wiedemann, Scott R. Saleska, and Steven C. Wofsy
Biogeosciences, 15, 4833–4848, https://doi.org/10.5194/bg-15-4833-2018, https://doi.org/10.5194/bg-15-4833-2018, 2018
Short summary
Short summary
We investigated the roles that weather and forest disturbances like drought play in shaping changes in ecosystem photosynthesis and carbon exchange in an Amazon forest. We discovered that weather largely influenced differences between years, but a prior drought, which occurred 3 years before measurements started, likely hampered photosynthesis in the first year. This is the first atmospheric evidence that drought can have legacy impacts on Amazon forest photosynthesis.
Paulo R. Teixeira, Saulo R. de Freitas, Francis W. Correia, and Antonio O. Manzi
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-81, https://doi.org/10.5194/gmd-2018-81, 2018
Publication in GMD not foreseen
Short summary
Short summary
Emissions of gases and particulates in urban areas are associated with a mixture of various sources, both natural and anthropogenic. Understanding and quantifying these emissions is necessary in studies of climate change, local air pollution issues, and weather modification. This work will also contribute to improved air quality numerical simulations, provide more accurate scenarios for policymakers and regulatory agencies to develop strategies for controlling the vehicular emissions.
Luiz A. T. Machado, Alan J. P. Calheiros, Thiago Biscaro, Scott Giangrande, Maria A. F. Silva Dias, Micael A. Cecchini, Rachel Albrecht, Meinrat O. Andreae, Wagner F. Araujo, Paulo Artaxo, Stephan Borrmann, Ramon Braga, Casey Burleyson, Cristiano W. Eichholz, Jiwen Fan, Zhe Feng, Gilberto F. Fisch, Michael P. Jensen, Scot T. Martin, Ulrich Pöschl, Christopher Pöhlker, Mira L. Pöhlker, Jean-François Ribaud, Daniel Rosenfeld, Jaci M. B. Saraiva, Courtney Schumacher, Ryan Thalman, David Walter, and Manfred Wendisch
Atmos. Chem. Phys., 18, 6461–6482, https://doi.org/10.5194/acp-18-6461-2018, https://doi.org/10.5194/acp-18-6461-2018, 2018
Short summary
Short summary
This overview discuss the main precipitation processes and their sensitivities to environmental conditions in the Central Amazon Basin. It presents a review of the knowledge acquired about cloud processes and rainfall formation in Amazonas. In addition, this study provides a characterization of the seasonal variation and rainfall sensitivities to topography, surface cover, and aerosol concentration. Airplane measurements were evaluated to characterize and contrast cloud microphysical properties.
Amy K. Hodgson, William T. Morgan, Sebastian O'Shea, Stéphane Bauguitte, James D. Allan, Eoghan Darbyshire, Michael J. Flynn, Dantong Liu, James Lee, Ben Johnson, Jim M. Haywood, Karla M. Longo, Paulo E. Artaxo, and Hugh Coe
Atmos. Chem. Phys., 18, 5619–5638, https://doi.org/10.5194/acp-18-5619-2018, https://doi.org/10.5194/acp-18-5619-2018, 2018
Short summary
Short summary
We flew a large atmospheric research aircraft across a number of different biomass burning environments in the Amazon Basin in September and October 2012. In this paper, we focus on smoke sampled very close to fresh fires (only 600–900 m above the fires and smoke that was 4–6 min old) to examine the chemical components that make up the smoke and their abundance. We found substantial differences in the emitted smoke that are due to the fuel type and combustion processes driving the fires.
Gláuber Camponogara, Maria Assunção Faus da Silva Dias, and Gustavo G. Carrió
Atmos. Chem. Phys., 18, 2081–2096, https://doi.org/10.5194/acp-18-2081-2018, https://doi.org/10.5194/acp-18-2081-2018, 2018
Short summary
Short summary
This study is one of the first that seeks to understand the microphysical effects of biomass burning aerosols from the Amazon Basin on mesoscale convective systems over the La Plata Basin (and neighboring regions). We observed an important link between biomass burning aerosols from the Amazon Basin on mesoscale convective systems over the La Plata Basin throughout numerical simulations. This result is an important step toward the understanding of biomass burning impacts in the Amazon.
Guilherme Augusto Verola Mataveli, Maria Elisa Siqueira Silva, Gabriel Pereira, Francielle da Silva Cardozo, Fernando Shinji Kawakubo, Gabriel Bertani, Julio Cezar Costa, Raquel de Cássia Ramos, and Viviane Valéria da Silva
Nat. Hazards Earth Syst. Sci., 18, 125–144, https://doi.org/10.5194/nhess-18-125-2018, https://doi.org/10.5194/nhess-18-125-2018, 2018
Short summary
Short summary
Orbital remote sensing showed that the Cerrado was the second/first biome for the occurrence of hotspots and burned area (BA), which were higher in the dry season and in the savanna land use and are tending to decrease. Spatial analysis showed that values for the entire biome can hide patterns and that there is a 2- to 3-month lag between precipitation and hotspots/BA, while minimum VCI and maximum hotspots/BA occur in the same month. VCI indicates the susceptibility of vegetation to ignition.
Demerval S. Moreira, Karla M. Longo, Saulo R. Freitas, Marcia A. Yamasoe, Lina M. Mercado, Nilton E. Rosário, Emauel Gloor, Rosane S. M. Viana, John B. Miller, Luciana V. Gatti, Kenia T. Wiedemann, Lucas K. G. Domingues, and Caio C. S. Correia
Atmos. Chem. Phys., 17, 14785–14810, https://doi.org/10.5194/acp-17-14785-2017, https://doi.org/10.5194/acp-17-14785-2017, 2017
Short summary
Short summary
Fire in the Amazon forest produces a large amount of smoke that is released into the atmosphere and covers a large portion of South America for about 3 months each year. The smoke affects the energy and CO2 budgets. Using a numerical atmospheric model, we demonstrated that the smoke changes the forest from a source to a sink of CO2 to the atmosphere. The smoke ultimately acts to at least partially compensate for the forest carbon lost due to fire emissions.
Scott E. Giangrande, Zhe Feng, Michael P. Jensen, Jennifer M. Comstock, Karen L. Johnson, Tami Toto, Meng Wang, Casey Burleyson, Nitin Bharadwaj, Fan Mei, Luiz A. T. Machado, Antonio O. Manzi, Shaocheng Xie, Shuaiqi Tang, Maria Assuncao F. Silva Dias, Rodrigo A. F de Souza, Courtney Schumacher, and Scot T. Martin
Atmos. Chem. Phys., 17, 14519–14541, https://doi.org/10.5194/acp-17-14519-2017, https://doi.org/10.5194/acp-17-14519-2017, 2017
Short summary
Short summary
The Amazon forest is the largest tropical rain forest on the planet, featuring
prolific and diverse cloud conditions. The Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) experiment was motivated by demands to gain a better understanding of aerosol and cloud interactions on climate and the global circulation. The routine DOE ARM observations from this 2-year campaign are summarized to help quantify controls on clouds and precipitation over this undersampled region.
Bruce K. N. Silva, Paulo S. Lucio, Cláudio M. S. Silva, Maria H. C. Spyrides, Madson T. Silva, and Lara M. B. Andradre
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2017-377, https://doi.org/10.5194/nhess-2017-377, 2017
Manuscript not accepted for further review
Sameh A. Abou Rafee, Leila D. Martins, Ana B. Kawashima, Daniela S. Almeida, Marcos V. B. Morais, Rita V. A. Souza, Maria B. L. Oliveira, Rodrigo A. F. Souza, Adan S. S. Medeiros, Viviana Urbina, Edmilson D. Freitas, Scot T. Martin, and Jorge A. Martins
Atmos. Chem. Phys., 17, 7977–7995, https://doi.org/10.5194/acp-17-7977-2017, https://doi.org/10.5194/acp-17-7977-2017, 2017
Short summary
Short summary
This paper evaluates the impact of the emissions from mobile and stationary sources in the Amazon rainforest by using the Weather Research and Forecasting with Chemistry (WRF-Chem) model. Results show that stationary sources have an important role in the contribution of human activity in Manaus; a future scenario of the expansion in the urban area demonstrates that it could increase air pollution; and the pollutant urban plume of Manaus has an impact over hundreds of kilometers in length.
Joana A. Rizzolo, Cybelli G. G. Barbosa, Guilherme C. Borillo, Ana F. L. Godoi, Rodrigo A. F. Souza, Rita V. Andreoli, Antônio O. Manzi, Marta O. Sá, Eliane G. Alves, Christopher Pöhlker, Isabella H. Angelis, Florian Ditas, Jorge Saturno, Daniel Moran-Zuloaga, Luciana V. Rizzo, Nilton E. Rosário, Theotonio Pauliquevis, Rosa M. N. Santos, Carlos I. Yamamoto, Meinrat O. Andreae, Paulo Artaxo, Philip E. Taylor, and Ricardo H. M. Godoi
Atmos. Chem. Phys., 17, 2673–2687, https://doi.org/10.5194/acp-17-2673-2017, https://doi.org/10.5194/acp-17-2673-2017, 2017
Short summary
Short summary
Particles collected from the air above the Amazon Basin during the wet season were identified as Saharan dust. Soluble minerals were analysed to assess the bioavailability of iron. Dust deposited onto the canopy and topsoil can likely benefit organisms such as fungi and lichens. The ongoing deposition of Saharan dust across the Amazon rainforest provides an iron-rich source of essential macronutrients and micronutrients to plant roots, and also directly to plant leaves during the wet season.
Madeleine Sánchez Gácita, Karla M. Longo, Julliana L. M. Freire, Saulo R. Freitas, and Scot T. Martin
Atmos. Chem. Phys., 17, 2373–2392, https://doi.org/10.5194/acp-17-2373-2017, https://doi.org/10.5194/acp-17-2373-2017, 2017
Short summary
Short summary
This study uses an adiabatic cloud model to simulate the activation of smoke aerosol particles in the Amazon region as cloud condensation nuclei (CCN). The relative importance of variability in hygroscopicity, mixing state, and activation kinetics for the activated fraction and maximum supersaturation is assessed. Our findings on uncertainties and sensitivities provide guidance on appropriate simplifications that can be used for modeling of smoke aerosols within general circulation models.
Carolin Walter, Saulo R. Freitas, Christoph Kottmeier, Isabel Kraut, Daniel Rieger, Heike Vogel, and Bernhard Vogel
Atmos. Chem. Phys., 16, 9201–9219, https://doi.org/10.5194/acp-16-9201-2016, https://doi.org/10.5194/acp-16-9201-2016, 2016
Short summary
Short summary
Buoyancy produced by vegetation fires can lead to substantial plume rise with consequences for the dispersion of aerosol emitted by the fires. To study this effect a 1-D plume rise model was included into the regional online integrated model system COSMO-ART. Comparing model results and satellite data for a case study of 2010 Canadian wildfires shows, that the plume rise model outperforms prescribed emission height. The radiative impact of the aerosol leads to a pronounced temperature change.
Gabriel Pereira, Ricardo Siqueira, Nilton E. Rosário, Karla L. Longo, Saulo R. Freitas, Francielle S. Cardozo, Johannes W. Kaiser, and Martin J. Wooster
Atmos. Chem. Phys., 16, 6961–6975, https://doi.org/10.5194/acp-16-6961-2016, https://doi.org/10.5194/acp-16-6961-2016, 2016
Short summary
Short summary
Fires associated with land use and land cover changes release large amounts of aerosols and trace gases into the atmosphere. Although several inventories of biomass burning emissions cover Brazil, there are still considerable uncertainties and differences among them. However, results indicate that emission derived via similar methods tend to agree with one other, but aerosol emissions from fires with particularly high biomass consumption still lead to an underestimation.
S. T. Martin, P. Artaxo, L. A. T. Machado, A. O. Manzi, R. A. F. Souza, C. Schumacher, J. Wang, M. O. Andreae, H. M. J. Barbosa, J. Fan, G. Fisch, A. H. Goldstein, A. Guenther, J. L. Jimenez, U. Pöschl, M. A. Silva Dias, J. N. Smith, and M. Wendisch
Atmos. Chem. Phys., 16, 4785–4797, https://doi.org/10.5194/acp-16-4785-2016, https://doi.org/10.5194/acp-16-4785-2016, 2016
Short summary
Short summary
The Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) Experiment took place in central Amazonia throughout 2014 and 2015. The experiment focused on the complex links among vegetation, atmospheric chemistry, and aerosol production on the one hand and their connections to aerosols, clouds, and precipitation on the other, especially when altered by urban pollution. This article serves as an introduction to the special issue of publications presenting findings of this experiment.
Douglas C. Morton, Jérémy Rubio, Bruce D. Cook, Jean-Philippe Gastellu-Etchegorry, Marcos Longo, Hyeungu Choi, Maria Hunter, and Michael Keller
Biogeosciences, 13, 2195–2206, https://doi.org/10.5194/bg-13-2195-2016, https://doi.org/10.5194/bg-13-2195-2016, 2016
Short summary
Short summary
Seasonal dynamics of tropical forest productivity remain an important source of uncertainty in assessments of the land carbon sink. This study confirms the potential for canopy structure and illumination geometry to alter the seasonal availability of light for canopy photosynthesis without changes in canopy composition. Our results point to the need for 3-D forest structure in ecosystem models to account the impact of changing illumination geometry on tropical forest productivity.
R. Paugam, M. Wooster, S. Freitas, and M. Val Martin
Atmos. Chem. Phys., 16, 907–925, https://doi.org/10.5194/acp-16-907-2016, https://doi.org/10.5194/acp-16-907-2016, 2016
Short summary
Short summary
Landscape fire plume height controls fire emissions release in the atmosphere, in particular their transport that may also affect the longevity, chemical conversion, and fate of the plumes chemical constituents. Here, we review how such landscape-scale fire smoke plume injection heights are represented in large-scale atmospheric transport models aiming to represent the impacts of wildfire emissions on component of the Earth system.
R. Paugam, M. Wooster, J. Atherton, S. R. Freitas, M. G. Schultz, and J. W. Kaiser
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-15-9815-2015, https://doi.org/10.5194/acpd-15-9815-2015, 2015
Revised manuscript not accepted
Short summary
Short summary
The transport of Biomass Burning emissions in Chemical Transport Model rely on parametrization of plumes injection height. Using fire observation selected to ensure match-up of fire-atmosphere-plume dynamics; a popular plume rise model was improved and optimized. The resulting model shows response to the effect of atmospheric stability consistent with previous findings and is able to predict higher injection height than any other tested parametrizations, giving a closer match with observation.
S. Archer-Nicholls, D. Lowe, E. Darbyshire, W. T. Morgan, M. M. Bela, G. Pereira, J. Trembath, J. W. Kaiser, K. M. Longo, S. R. Freitas, H. Coe, and G. McFiggans
Geosci. Model Dev., 8, 549–577, https://doi.org/10.5194/gmd-8-549-2015, https://doi.org/10.5194/gmd-8-549-2015, 2015
Short summary
Short summary
The regional WRF-Chem model was used to study aerosol particles from biomass burning in South America. The modelled estimates of fire plume injection heights were found to be too high, with serious implications for modelled aerosol vertical distribution, transport and impacts on local climate. A modified emission scenario was developed which improved the predicted injection height. Model results were compared and evaluated against in situ measurements from the 2012 SAMBBA flight campaign.
M. M. Bela, K. M. Longo, S. R. Freitas, D. S. Moreira, V. Beck, S. C. Wofsy, C. Gerbig, K. Wiedemann, M. O. Andreae, and P. Artaxo
Atmos. Chem. Phys., 15, 757–782, https://doi.org/10.5194/acp-15-757-2015, https://doi.org/10.5194/acp-15-757-2015, 2015
Short summary
Short summary
In the Amazon Basin, gases that lead to the formation of ozone (O3), an air pollutant and greenhouse gas, are emitted from fire, urban and biogenic sources. This study presents the first basin wide aircraft measurements of O3 during the dry-to-wet and wet-to-dry transition seasons, which show extremely low values above undisturbed forest and increases from fires. This work also demonstrates the capabilities and limitations of regional atmospheric chemistry models in representing O3 in Amazonia.
R. G. Knox, M. Longo, A. L. S. Swann, K. Zhang, N. M. Levine, P. R. Moorcroft, and R. L. Bras
Hydrol. Earth Syst. Sci., 19, 241–273, https://doi.org/10.5194/hess-19-241-2015, https://doi.org/10.5194/hess-19-241-2015, 2015
J. Brito, L. V. Rizzo, W. T. Morgan, H. Coe, B. Johnson, J. Haywood, K. Longo, S. Freitas, M. O. Andreae, and P. Artaxo
Atmos. Chem. Phys., 14, 12069–12083, https://doi.org/10.5194/acp-14-12069-2014, https://doi.org/10.5194/acp-14-12069-2014, 2014
Short summary
Short summary
This paper details the physical--chemical characteristics of aerosols in a region strongly impacted by biomass burning in the western part of the Brazilian Amazon region. For such, a large suite of state-of-the-art instruments for realtime analysis was deployed at a ground site. Among the key findings, we observe the strong prevalence of organic aerosols associated to fire emissions, with important climate effects, and indications of its very fast processing in the atmosphere.
J. R. Rozante, D. S. Moreira, R. C. M. Godoy, and A. A. Fernandes
Geosci. Model Dev., 7, 2333–2343, https://doi.org/10.5194/gmd-7-2333-2014, https://doi.org/10.5194/gmd-7-2333-2014, 2014
G. A. Grell and S. R. Freitas
Atmos. Chem. Phys., 14, 5233–5250, https://doi.org/10.5194/acp-14-5233-2014, https://doi.org/10.5194/acp-14-5233-2014, 2014
G. Camponogara, M. A. F. Silva Dias, and G. G. Carrió
Atmos. Chem. Phys., 14, 4397–4407, https://doi.org/10.5194/acp-14-4397-2014, https://doi.org/10.5194/acp-14-4397-2014, 2014
R. G. Knox, M. Longo, A. L. S. Swann, K. Zhang, N. M. Levine, P. R. Moorcroft, and R. L. Bras
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-10-15295-2013, https://doi.org/10.5194/hessd-10-15295-2013, 2013
Preprint withdrawn
A. F. dos Santos, S. R. Freitas, J. G. Z. de Mattos, H. F. de Campos Velho, M. A. Gan, E. F. P. da Luz, and G. A. Grell
Adv. Geosci., 35, 123–136, https://doi.org/10.5194/adgeo-35-123-2013, https://doi.org/10.5194/adgeo-35-123-2013, 2013
K. M. Longo, S. R. Freitas, M. Pirre, V. Marécal, L. F. Rodrigues, J. Panetta, M. F. Alonso, N. E. Rosário, D. S. Moreira, M. S. Gácita, J. Arteta, R. Fonseca, R. Stockler, D. M. Katsurayama, A. Fazenda, and M. Bela
Geosci. Model Dev., 6, 1389–1405, https://doi.org/10.5194/gmd-6-1389-2013, https://doi.org/10.5194/gmd-6-1389-2013, 2013
D. S. Moreira, S. R. Freitas, J. P. Bonatti, L. M. Mercado, N. M. É. Rosário, K. M. Longo, J. B. Miller, M. Gloor, and L. V. Gatti
Geosci. Model Dev., 6, 1243–1259, https://doi.org/10.5194/gmd-6-1243-2013, https://doi.org/10.5194/gmd-6-1243-2013, 2013
V. Beck, C. Gerbig, T. Koch, M. M. Bela, K. M. Longo, S. R. Freitas, J. O. Kaplan, C. Prigent, P. Bergamaschi, and M. Heimann
Atmos. Chem. Phys., 13, 7961–7982, https://doi.org/10.5194/acp-13-7961-2013, https://doi.org/10.5194/acp-13-7961-2013, 2013
M. Stuefer, S. R. Freitas, G. Grell, P. Webley, S. Peckham, S. A. McKeen, and S. D. Egan
Geosci. Model Dev., 6, 457–468, https://doi.org/10.5194/gmd-6-457-2013, https://doi.org/10.5194/gmd-6-457-2013, 2013
N. E. Rosário, K. M. Longo, S. R. Freitas, M. A. Yamasoe, and R. M. Fonseca
Atmos. Chem. Phys., 13, 2923–2938, https://doi.org/10.5194/acp-13-2923-2013, https://doi.org/10.5194/acp-13-2923-2013, 2013
S. Strada, S. R. Freitas, C. Mari, K. M. Longo, and R. Paugam
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmdd-6-721-2013, https://doi.org/10.5194/gmdd-6-721-2013, 2013
Preprint withdrawn
Related subject area
Atmospheric sciences
Modeling of polycyclic aromatic hydrocarbons (PAHs) from global to regional scales: model development (IAP-AACM_PAH v1.0) and investigation of health risks in 2013 and 2018 in China
LIMA (v2.0): A full two-moment cloud microphysical scheme for the mesoscale non-hydrostatic model Meso-NH v5-6
SLUCM+BEM (v1.0): a simple parameterisation for dynamic anthropogenic heat and electricity consumption in WRF-Urban (v4.3.2)
NAQPMS-PDAF v2.0: a novel hybrid nonlinear data assimilation system for improved simulation of PM2.5 chemical components
Source-specific bias correction of US background and anthropogenic ozone modeled in CMAQ
Observational operator for fair model evaluation with ground NO2 measurements
Valid time shifting ensemble Kalman filter (VTS-EnKF) for dust storm forecasting
An updated parameterization of the unstable atmospheric surface layer in the Weather Research and Forecasting (WRF) modeling system
The impact of cloud microphysics and ice nucleation on Southern Ocean clouds assessed with single-column modeling and instrument simulators
An updated aerosol simulation in the Community Earth System Model (v2.1.3): dust and marine aerosol emissions and secondary organic aerosol formation
Exploring ship track spreading rates with a physics-informed Langevin particle parameterization
Do data-driven models beat numerical models in forecasting weather extremes? A comparison of IFS HRES, Pangu-Weather, and GraphCast
Development of the MPAS-CMAQ coupled system (V1.0) for multiscale global air quality modeling
Assessment of object-based indices to identify convective organization
The Global Forest Fire Emissions Prediction System version 1.0
NEIVAv1.0: Next-generation Emissions InVentory expansion of Akagi et al. (2011) version 1.0
FLEXPART version 11: improved accuracy, efficiency, and flexibility
Challenges of high-fidelity air quality modeling in urban environments – PALM sensitivity study during stable conditions
Air quality modeling intercomparison and multiscale ensemble chain for Latin America
Recommended coupling to global meteorological fields for long-term tracer simulations with WRF-GHG
Selecting CMIP6 global climate models (GCMs) for Coordinated Regional Climate Downscaling Experiment (CORDEX) dynamical downscaling over Southeast Asia using a standardised benchmarking framework
Improved definition of prior uncertainties in CO2 and CO fossil fuel fluxes and its impact on multi-species inversion with GEOS-Chem (v12.5)
RASCAL v1.0: an open-source tool for climatological time series reconstruction and extension
Introducing graupel density prediction in Weather Research and Forecasting (WRF) double-moment 6-class (WDM6) microphysics and evaluation of the modified scheme during the ICE-POP field campaign
Enabling high-performance cloud computing for the Community Multiscale Air Quality Model (CMAQ) version 5.3.3: performance evaluation and benefits for the user community
Atmospheric-river-induced precipitation in California as simulated by the regionally refined Simple Convective Resolving E3SM Atmosphere Model (SCREAM) Version 0
Recent improvements and maximum covariance analysis of aerosol and cloud properties in the EC-Earth3-AerChem model
GPU-HADVPPM4HIP V1.0: using the heterogeneous-compute interface for portability (HIP) to speed up the piecewise parabolic method in the CAMx (v6.10) air quality model on China's domestic GPU-like accelerator
Preliminary evaluation of the effect of electro-coalescence with conducting sphere approximation on the formation of warm cumulus clouds using SCALE-SDM version 0.2.5–2.3.0
Similarity-Based Analysis of Atmospheric Organic Compounds for Machine Learning Applications
Exploring the footprint representation of microwave radiance observations in an Arctic limited-area data assimilation system
Orbital-Radar v1.0.0: A tool to transform suborbital radar observations to synthetic EarthCARE cloud radar data
Analysis of model error in forecast errors of extended atmospheric Lorenz 05 systems and the ECMWF system
Description and validation of Vehicular Emissions from Road Traffic (VERT) 1.0, an R-based framework for estimating road transport emissions from traffic flows
AeroMix v1.0.1: a Python package for modeling aerosol optical properties and mixing states
Impact of ITCZ width on global climate: ITCZ-MIP
Deep-learning-driven simulations of boundary layer clouds over the Southern Great Plains
Mixed-precision computing in the GRIST dynamical core for weather and climate modelling
A conservative immersed boundary method for the multi-physics urban large-eddy simulation model uDALES v2.0
Accurate space-based NOx emission estimates with the flux divergence approach require fine-scale model information on local oxidation chemistry and profile shapes
RCEMIP-II: mock-Walker simulations as phase II of the radiative–convective equilibrium model intercomparison project
The MESSy DWARF (based on MESSy v2.55.2)
Objective identification of meteorological fronts and climatologies from ERA-Interim and ERA5
TAMS: a tracking, classifying, and variable-assigning algorithm for mesoscale convective systems in simulated and satellite-derived datasets
Development of the adjoint of the unified tropospheric–stratospheric chemistry extension (UCX) in GEOS-Chem adjoint v36
New explicit formulae for the settling speed of prolate spheroids in the atmosphere: theoretical background and implementation in AerSett v2.0.2
ZJU-AERO V0.5: an Accurate and Efficient Radar Operator designed for CMA-GFS/MESO with the capability to simulate non-spherical hydrometeors
The Year of Polar Prediction site Model Intercomparison Project (YOPPsiteMIP) phase 1: project overview and Arctic winter forecast evaluation
Evaluating CHASER V4.0 global formaldehyde (HCHO) simulations using satellite, aircraft, and ground-based remote-sensing observations
Global variable-resolution simulations of extreme precipitation over Henan, China, in 2021 with MPAS-Atmosphere v7.3
Zichen Wu, Xueshun Chen, Zifa Wang, Huansheng Chen, Zhe Wang, Qing Mu, Lin Wu, Wending Wang, Xiao Tang, Jie Li, Ying Li, Qizhong Wu, Yang Wang, Zhiyin Zou, and Zijian Jiang
Geosci. Model Dev., 17, 8885–8907, https://doi.org/10.5194/gmd-17-8885-2024, https://doi.org/10.5194/gmd-17-8885-2024, 2024
Short summary
Short summary
We developed a model to simulate polycyclic aromatic hydrocarbons (PAHs) from global to regional scales. The model can reproduce PAH distribution well. The concentration of BaP (indicator species for PAHs) could exceed the target values of 1 ng m-3 over some areas (e.g., in central Europe, India, and eastern China). The change in BaP is lower than that in PM2.5 from 2013 to 2018. China still faces significant potential health risks posed by BaP although the Action Plan has been implemented.
Marie Taufour, Jean-Pierre Pinty, Christelle Barthe, Benoît Vié, and Chien Wang
Geosci. Model Dev., 17, 8773–8798, https://doi.org/10.5194/gmd-17-8773-2024, https://doi.org/10.5194/gmd-17-8773-2024, 2024
Short summary
Short summary
We have developed a complete two-moment version of the LIMA (Liquid Ice Multiple Aerosols) microphysics scheme. We have focused on collection processes, where the hydrometeor number transfer is often estimated in proportion to the mass transfer. The impact of these parameterizations on a convective system and the prospects for more realistic estimates of secondary parameters (reflectivity, hydrometeor size) are shown in a first test on an idealized case.
Yuya Takane, Yukihiro Kikegawa, Ko Nakajima, and Hiroyuki Kusaka
Geosci. Model Dev., 17, 8639–8664, https://doi.org/10.5194/gmd-17-8639-2024, https://doi.org/10.5194/gmd-17-8639-2024, 2024
Short summary
Short summary
A new parameterisation for dynamic anthropogenic heat and electricity consumption is described. The model reproduced the temporal variation in and spatial distributions of electricity consumption and temperature well in summer and winter. The partial air conditioning was the most critical factor, significantly affecting the value of anthropogenic heat emission.
Hongyi Li, Ting Yang, Lars Nerger, Dawei Zhang, Di Zhang, Guigang Tang, Haibo Wang, Yele Sun, Pingqing Fu, Hang Su, and Zifa Wang
Geosci. Model Dev., 17, 8495–8519, https://doi.org/10.5194/gmd-17-8495-2024, https://doi.org/10.5194/gmd-17-8495-2024, 2024
Short summary
Short summary
To accurately characterize the spatiotemporal distribution of particulate matter <2.5 µm chemical components, we developed the Nested Air Quality Prediction Model System with the Parallel Data Assimilation Framework (NAQPMS-PDAF) v2.0 for chemical components with non-Gaussian and nonlinear properties. NAQPMS-PDAF v2.0 has better computing efficiency, excels when used with a small ensemble size, and can significantly improve the simulation performance of chemical components.
T. Nash Skipper, Christian Hogrefe, Barron H. Henderson, Rohit Mathur, Kristen M. Foley, and Armistead G. Russell
Geosci. Model Dev., 17, 8373–8397, https://doi.org/10.5194/gmd-17-8373-2024, https://doi.org/10.5194/gmd-17-8373-2024, 2024
Short summary
Short summary
Chemical transport model simulations are combined with ozone observations to estimate the bias in ozone attributable to US anthropogenic sources and individual sources of US background ozone: natural sources, non-US anthropogenic sources, and stratospheric ozone. Results indicate a positive bias correlated with US anthropogenic emissions during summer in the eastern US and a negative bias correlated with stratospheric ozone during spring.
Li Fang, Jianbing Jin, Arjo Segers, Ke Li, Ji Xia, Wei Han, Baojie Li, Hai Xiang Lin, Lei Zhu, Song Liu, and Hong Liao
Geosci. Model Dev., 17, 8267–8282, https://doi.org/10.5194/gmd-17-8267-2024, https://doi.org/10.5194/gmd-17-8267-2024, 2024
Short summary
Short summary
Model evaluations against ground observations are usually unfair. The former simulates mean status over coarse grids and the latter the surrounding atmosphere. To solve this, we proposed the new land-use-based representative (LUBR) operator that considers intra-grid variance. The LUBR operator is validated to provide insights that align with satellite measurements. The results highlight the importance of considering fine-scale urban–rural differences when comparing models and observation.
Mijie Pang, Jianbing Jin, Arjo Segers, Huiya Jiang, Wei Han, Batjargal Buyantogtokh, Ji Xia, Li Fang, Jiandong Li, Hai Xiang Lin, and Hong Liao
Geosci. Model Dev., 17, 8223–8242, https://doi.org/10.5194/gmd-17-8223-2024, https://doi.org/10.5194/gmd-17-8223-2024, 2024
Short summary
Short summary
The ensemble Kalman filter (EnKF) improves dust storm forecasts but faces challenges with position errors. The valid time shifting EnKF (VTS-EnKF) addresses this by adjusting for position errors, enhancing accuracy in forecasting dust storms, as proven in tests on 2021 events, even with smaller ensembles and time intervals.
Prabhakar Namdev, Maithili Sharan, Piyush Srivastava, and Saroj Kanta Mishra
Geosci. Model Dev., 17, 8093–8114, https://doi.org/10.5194/gmd-17-8093-2024, https://doi.org/10.5194/gmd-17-8093-2024, 2024
Short summary
Short summary
Inadequate representation of surface–atmosphere interaction processes is a major source of uncertainty in numerical weather prediction models. Here, an effort has been made to improve the Weather Research and Forecasting (WRF) model version 4.2.2 by introducing a unique theoretical framework under convective conditions. In addition, to enhance the potential applicability of the WRF modeling system, various commonly used similarity functions under convective conditions have also been installed.
Andrew Gettelman, Richard Forbes, Roger Marchand, Chih-Chieh Chen, and Mark Fielding
Geosci. Model Dev., 17, 8069–8092, https://doi.org/10.5194/gmd-17-8069-2024, https://doi.org/10.5194/gmd-17-8069-2024, 2024
Short summary
Short summary
Supercooled liquid clouds (liquid clouds colder than 0°C) are common at higher latitudes (especially over the Southern Ocean) and are critical for constraining climate projections. We compare a single-column version of a weather model to observations with two different cloud schemes and find that both the dynamical environment and atmospheric aerosols are important for reproducing observations.
Yujuan Wang, Peng Zhang, Jie Li, Yaman Liu, Yanxu Zhang, Jiawei Li, and Zhiwei Han
Geosci. Model Dev., 17, 7995–8021, https://doi.org/10.5194/gmd-17-7995-2024, https://doi.org/10.5194/gmd-17-7995-2024, 2024
Short summary
Short summary
This study updates the CESM's aerosol schemes, focusing on dust, marine aerosol emissions, and secondary organic aerosol (SOA) . Dust emission modifications make deflation areas more continuous, improving results in North America and the sub-Arctic. Humidity correction to sea-salt emissions has a minor effect. Introducing marine organic aerosol emissions, coupled with ocean biogeochemical processes, and adding aqueous reactions for SOA formation advance the CESM's aerosol modelling results.
Lucas A. McMichael, Michael J. Schmidt, Robert Wood, Peter N. Blossey, and Lekha Patel
Geosci. Model Dev., 17, 7867–7888, https://doi.org/10.5194/gmd-17-7867-2024, https://doi.org/10.5194/gmd-17-7867-2024, 2024
Short summary
Short summary
Marine cloud brightening (MCB) is a climate intervention technique to potentially cool the climate. Climate models used to gauge regional climate impacts associated with MCB often assume large areas of the ocean are uniformly perturbed. However, a more realistic representation of MCB application would require information about how an injected particle plume spreads. This work aims to develop such a plume-spreading model.
Leonardo Olivetti and Gabriele Messori
Geosci. Model Dev., 17, 7915–7962, https://doi.org/10.5194/gmd-17-7915-2024, https://doi.org/10.5194/gmd-17-7915-2024, 2024
Short summary
Short summary
Data-driven models are becoming a viable alternative to physics-based models for weather forecasting up to 15 d into the future. However, it is unclear whether they are as reliable as physics-based models when forecasting weather extremes. We evaluate their performance in forecasting near-surface cold, hot, and windy extremes globally. We find that data-driven models can compete with physics-based models and that the choice of the best model mainly depends on the region and type of extreme.
David C. Wong, Jeff Willison, Jonathan E. Pleim, Golam Sarwar, James Beidler, Russ Bullock, Jerold A. Herwehe, Rob Gilliam, Daiwen Kang, Christian Hogrefe, George Pouliot, and Hosein Foroutan
Geosci. Model Dev., 17, 7855–7866, https://doi.org/10.5194/gmd-17-7855-2024, https://doi.org/10.5194/gmd-17-7855-2024, 2024
Short summary
Short summary
This work describe how we linked the meteorological Model for Prediction Across Scales – Atmosphere (MPAS-A) with the Community Multiscale Air Quality (CMAQ) air quality model to form a coupled modelling system. This could be used to study air quality or climate and air quality interaction at a global scale. This new model scales well in high-performance computing environments and performs well with respect to ground surface networks in terms of ozone and PM2.5.
Giulio Mandorli and Claudia J. Stubenrauch
Geosci. Model Dev., 17, 7795–7813, https://doi.org/10.5194/gmd-17-7795-2024, https://doi.org/10.5194/gmd-17-7795-2024, 2024
Short summary
Short summary
In recent years, several studies focused their attention on the disposition of convection. Lots of methods, called indices, have been developed to quantify the amount of convection clustering. These indices are evaluated in this study by defining criteria that must be satisfied and then evaluating the indices against these standards. None of the indices meet all criteria, with some only partially meeting them.
Kerry Anderson, Jack Chen, Peter Englefield, Debora Griffin, Paul A. Makar, and Dan Thompson
Geosci. Model Dev., 17, 7713–7749, https://doi.org/10.5194/gmd-17-7713-2024, https://doi.org/10.5194/gmd-17-7713-2024, 2024
Short summary
Short summary
The Global Forest Fire Emissions Prediction System (GFFEPS) is a model that predicts smoke and carbon emissions from wildland fires. The model calculates emissions from the ground up based on satellite-detected fires, modelled weather and fire characteristics. Unlike other global models, GFFEPS uses daily weather conditions to capture changing burning conditions on a day-to-day basis. GFFEPS produced lower carbon emissions due to the changing weather not captured by the other models.
Samiha Binte Shahid, Forrest G. Lacey, Christine Wiedinmyer, Robert J. Yokelson, and Kelley C. Barsanti
Geosci. Model Dev., 17, 7679–7711, https://doi.org/10.5194/gmd-17-7679-2024, https://doi.org/10.5194/gmd-17-7679-2024, 2024
Short summary
Short summary
The Next-generation Emissions InVentory expansion of Akagi (NEIVA) v.1.0 is a comprehensive biomass burning emissions database that allows integration of new data and flexible querying. Data are stored in connected datasets, including recommended averages of ~1500 constituents for 14 globally relevant fire types. Individual compounds were mapped to common model species to allow better attribution of emissions in modeling studies that predict the effects of fires on air quality and climate.
Lucie Bakels, Daria Tatsii, Anne Tipka, Rona Thompson, Marina Dütsch, Michael Blaschek, Petra Seibert, Katharina Baier, Silvia Bucci, Massimo Cassiani, Sabine Eckhardt, Christine Groot Zwaaftink, Stephan Henne, Pirmin Kaufmann, Vincent Lechner, Christian Maurer, Marie D. Mulder, Ignacio Pisso, Andreas Plach, Rakesh Subramanian, Martin Vojta, and Andreas Stohl
Geosci. Model Dev., 17, 7595–7627, https://doi.org/10.5194/gmd-17-7595-2024, https://doi.org/10.5194/gmd-17-7595-2024, 2024
Short summary
Short summary
Computer models are essential for improving our understanding of how gases and particles move in the atmosphere. We present an update of the atmospheric transport model FLEXPART. FLEXPART 11 is more accurate due to a reduced number of interpolations and a new scheme for wet deposition. It can simulate non-spherical aerosols and includes linear chemical reactions. It is parallelised using OpenMP and includes new user options. A new user manual details how to use FLEXPART 11.
Jaroslav Resler, Petra Bauerová, Michal Belda, Martin Bureš, Kryštof Eben, Vladimír Fuka, Jan Geletič, Radek Jareš, Jan Karel, Josef Keder, Pavel Krč, William Patiño, Jelena Radović, Hynek Řezníček, Matthias Sühring, Adriana Šindelářová, and Ondřej Vlček
Geosci. Model Dev., 17, 7513–7537, https://doi.org/10.5194/gmd-17-7513-2024, https://doi.org/10.5194/gmd-17-7513-2024, 2024
Short summary
Short summary
Detailed modeling of urban air quality in stable conditions is a challenge. We show the unprecedented sensitivity of a large eddy simulation (LES) model to meteorological boundary conditions and model parameters in an urban environment under stable conditions. We demonstrate the crucial role of boundary conditions for the comparability of results with observations. The study reveals a strong sensitivity of the results to model parameters and model numerical instabilities during such conditions.
Jorge E. Pachón, Mariel A. Opazo, Pablo Lichtig, Nicolas Huneeus, Idir Bouarar, Guy Brasseur, Cathy W. Y. Li, Johannes Flemming, Laurent Menut, Camilo Menares, Laura Gallardo, Michael Gauss, Mikhail Sofiev, Rostislav Kouznetsov, Julia Palamarchuk, Andreas Uppstu, Laura Dawidowski, Nestor Y. Rojas, María de Fátima Andrade, Mario E. Gavidia-Calderón, Alejandro H. Delgado Peralta, and Daniel Schuch
Geosci. Model Dev., 17, 7467–7512, https://doi.org/10.5194/gmd-17-7467-2024, https://doi.org/10.5194/gmd-17-7467-2024, 2024
Short summary
Short summary
Latin America (LAC) has some of the most populated urban areas in the world, with high levels of air pollution. Air quality management in LAC has been traditionally focused on surveillance and building emission inventories. This study performed the first intercomparison and model evaluation in LAC, with interesting and insightful findings for the region. A multiscale modeling ensemble chain was assembled as a first step towards an air quality forecasting system.
David Ho, Michał Gałkowski, Friedemann Reum, Santiago Botía, Julia Marshall, Kai Uwe Totsche, and Christoph Gerbig
Geosci. Model Dev., 17, 7401–7422, https://doi.org/10.5194/gmd-17-7401-2024, https://doi.org/10.5194/gmd-17-7401-2024, 2024
Short summary
Short summary
Atmospheric model users often overlook the impact of the land–atmosphere interaction. This study accessed various setups of WRF-GHG simulations that ensure consistency between the model and driving reanalysis fields. We found that a combination of nudging and frequent re-initialization allows certain improvement by constraining the soil moisture fields and, through its impact on atmospheric mixing, improves atmospheric transport.
Phuong Loan Nguyen, Lisa V. Alexander, Marcus J. Thatcher, Son C. H. Truong, Rachael N. Isphording, and John L. McGregor
Geosci. Model Dev., 17, 7285–7315, https://doi.org/10.5194/gmd-17-7285-2024, https://doi.org/10.5194/gmd-17-7285-2024, 2024
Short summary
Short summary
We use a comprehensive approach to select a subset of CMIP6 models for dynamical downscaling over Southeast Asia, taking into account model performance, model independence, data availability and the range of future climate projections. The standardised benchmarking framework is applied to assess model performance through both statistical and process-based metrics. Ultimately, we identify two independent model groups that are suitable for dynamical downscaling in the Southeast Asian region.
Ingrid Super, Tia Scarpelli, Arjan Droste, and Paul I. Palmer
Geosci. Model Dev., 17, 7263–7284, https://doi.org/10.5194/gmd-17-7263-2024, https://doi.org/10.5194/gmd-17-7263-2024, 2024
Short summary
Short summary
Monitoring greenhouse gas emission reductions requires a combination of models and observations, as well as an initial emission estimate. Each component provides information with a certain level of certainty and is weighted to yield the most reliable estimate of actual emissions. We describe efforts for estimating the uncertainty in the initial emission estimate, which significantly impacts the outcome. Hence, a good uncertainty estimate is key for obtaining reliable information on emissions.
Álvaro González-Cervera and Luis Durán
Geosci. Model Dev., 17, 7245–7261, https://doi.org/10.5194/gmd-17-7245-2024, https://doi.org/10.5194/gmd-17-7245-2024, 2024
Short summary
Short summary
RASCAL is an open-source Python tool designed for reconstructing daily climate observations, especially in regions with complex local phenomena. It merges large-scale weather patterns with local weather using the analog method. Evaluations in central Spain show that RASCAL outperforms ERA20C reanalysis in reconstructing precipitation and temperature. RASCAL offers opportunities for broad scientific applications, from short-term forecasts to local-scale climate change scenarios.
Sun-Young Park, Kyo-Sun Sunny Lim, Kwonil Kim, Gyuwon Lee, and Jason A. Milbrandt
Geosci. Model Dev., 17, 7199–7218, https://doi.org/10.5194/gmd-17-7199-2024, https://doi.org/10.5194/gmd-17-7199-2024, 2024
Short summary
Short summary
We enhance the WDM6 scheme by incorporating predicted graupel density. The modification affects graupel characteristics, including fall velocity–diameter and mass–diameter relationships. Simulations highlight changes in graupel distribution and precipitation patterns, potentially influencing surface snow amounts. The study underscores the significance of integrating predicted graupel density for a more realistic portrayal of microphysical properties in weather models.
Christos I. Efstathiou, Elizabeth Adams, Carlie J. Coats, Robert Zelt, Mark Reed, John McGee, Kristen M. Foley, Fahim I. Sidi, David C. Wong, Steven Fine, and Saravanan Arunachalam
Geosci. Model Dev., 17, 7001–7027, https://doi.org/10.5194/gmd-17-7001-2024, https://doi.org/10.5194/gmd-17-7001-2024, 2024
Short summary
Short summary
We present a summary of enabling high-performance computing of the Community Multiscale Air Quality Model (CMAQ) – a state-of-the-science community multiscale air quality model – on two cloud computing platforms through documenting the technologies, model performance, scaling and relative merits. This may be a new paradigm for computationally intense future model applications. We initiated this work due to a need to leverage cloud computing advances and to ease the learning curve for new users.
Peter A. Bogenschutz, Jishi Zhang, Qi Tang, and Philip Cameron-Smith
Geosci. Model Dev., 17, 7029–7050, https://doi.org/10.5194/gmd-17-7029-2024, https://doi.org/10.5194/gmd-17-7029-2024, 2024
Short summary
Short summary
Using high-resolution and state-of-the-art modeling techniques we simulate five atmospheric river events for California to test the capability to represent precipitation for these events. We find that our model is able to capture the distribution of precipitation very well but suffers from overestimating the precipitation amounts over high elevation. Increasing the resolution further has no impact on reducing this bias, while increasing the domain size does have modest impacts.
Manu Anna Thomas, Klaus Wyser, Shiyu Wang, Marios Chatziparaschos, Paraskevi Georgakaki, Montserrat Costa-Surós, Maria Gonçalves Ageitos, Maria Kanakidou, Carlos Pérez García-Pando, Athanasios Nenes, Twan van Noije, Philippe Le Sager, and Abhay Devasthale
Geosci. Model Dev., 17, 6903–6927, https://doi.org/10.5194/gmd-17-6903-2024, https://doi.org/10.5194/gmd-17-6903-2024, 2024
Short summary
Short summary
Aerosol–cloud interactions occur at a range of spatio-temporal scales. While evaluating recent developments in EC-Earth3-AerChem, this study aims to understand the extent to which the Twomey effect manifests itself at larger scales. We find a reduction in the warm bias over the Southern Ocean due to model improvements. While we see footprints of the Twomey effect at larger scales, the negative relationship between cloud droplet number and liquid water drives the shortwave radiative effect.
Kai Cao, Qizhong Wu, Lingling Wang, Hengliang Guo, Nan Wang, Huaqiong Cheng, Xiao Tang, Dongxing Li, Lina Liu, Dongqing Li, Hao Wu, and Lanning Wang
Geosci. Model Dev., 17, 6887–6901, https://doi.org/10.5194/gmd-17-6887-2024, https://doi.org/10.5194/gmd-17-6887-2024, 2024
Short summary
Short summary
AMD’s heterogeneous-compute interface for portability was implemented to port the piecewise parabolic method solver from NVIDIA GPUs to China's GPU-like accelerators. The results show that the larger the model scale, the more acceleration effect on the GPU-like accelerator, up to 28.9 times. The multi-level parallelism achieves a speedup of 32.7 times on the heterogeneous cluster. By comparing the results, the GPU-like accelerators have more accuracy for the geoscience numerical models.
Ruyi Zhang, Limin Zhou, Shin-ichiro Shima, and Huawei Yang
Geosci. Model Dev., 17, 6761–6774, https://doi.org/10.5194/gmd-17-6761-2024, https://doi.org/10.5194/gmd-17-6761-2024, 2024
Short summary
Short summary
Solar activity weakly ionises Earth's atmosphere, charging cloud droplets. Electro-coalescence is when oppositely charged droplets stick together. We introduce an analytical expression of electro-coalescence probability and use it in a warm-cumulus-cloud simulation. Results show that charge cases increase rain and droplet size, with the new method outperforming older ones. The new method requires longer computation time, but its impact on rain justifies inclusion in meteorology models.
Hilda Sandström and Patrick Rinke
EGUsphere, https://doi.org/10.48550/arXiv.2406.18171, https://doi.org/10.48550/arXiv.2406.18171, 2024
Short summary
Short summary
Machine learning has the potential to aid the identification organic molecules involved in aerosol formation. Yet, progress is stalled by a lack of curated atmospheric molecular datasets. Here, we compared atmospheric compounds with large molecular datasets used in machine learning and found minimal overlap with similarity algorithms. Our result underlines the need for collaborative efforts to curate atmospheric molecular data to facilitate machine learning model in atmospheric sciences.
Máté Mile, Stephanie Guedj, and Roger Randriamampianina
Geosci. Model Dev., 17, 6571–6587, https://doi.org/10.5194/gmd-17-6571-2024, https://doi.org/10.5194/gmd-17-6571-2024, 2024
Short summary
Short summary
Satellite observations provide crucial information about atmospheric constituents in a global distribution that helps to better predict the weather over sparsely observed regions like the Arctic. However, the use of satellite data is usually conservative and imperfect. In this study, a better spatial representation of satellite observations is discussed and explored by a so-called footprint function or operator, highlighting its added value through a case study and diagnostics.
Lukas Pfitzenmaier, Pavlos Kollias, Nils Risse, Imke Schirmacher, Bernat Puigdomenech Treserras, and Katia Lamer
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-129, https://doi.org/10.5194/gmd-2024-129, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
Orbital-radar is a Python tool transferring sub-orbital radar data (ground-based, airborne, and forward-simulated NWP) into synthetical space-borne cloud profiling radar data mimicking the platform characteristics, e.g. EarthCARE or CloudSat CPR. The novelty of orbital-radar is the simulation platform characteristic noise floors and errors. By this long time data sets can be transformed into synthetic observations for Cal/Valor sensitivity studies for new or future satellite missions.
Hynek Bednář and Holger Kantz
Geosci. Model Dev., 17, 6489–6511, https://doi.org/10.5194/gmd-17-6489-2024, https://doi.org/10.5194/gmd-17-6489-2024, 2024
Short summary
Short summary
The forecast error growth of atmospheric phenomena is caused by initial and model errors. When studying the initial error growth, it may turn out that small-scale phenomena, which contribute little to the forecast product, significantly affect the ability to predict this product. With a negative result, we investigate in the extended Lorenz (2005) system whether omitting these phenomena will improve predictability. A theory explaining and describing this behavior is developed.
Giorgio Veratti, Alessandro Bigi, Sergio Teggi, and Grazia Ghermandi
Geosci. Model Dev., 17, 6465–6487, https://doi.org/10.5194/gmd-17-6465-2024, https://doi.org/10.5194/gmd-17-6465-2024, 2024
Short summary
Short summary
In this study, we present VERT (Vehicular Emissions from Road Traffic), an R package designed to estimate transport emissions using traffic estimates and vehicle fleet composition data. Compared to other tools available in the literature, VERT stands out for its user-friendly configuration and flexibility of user input. Case studies demonstrate its accuracy in both urban and regional contexts, making it a valuable tool for air quality management and transport scenario planning.
Sam P. Raj, Puna Ram Sinha, Rohit Srivastava, Srinivas Bikkina, and Damu Bala Subrahamanyam
Geosci. Model Dev., 17, 6379–6399, https://doi.org/10.5194/gmd-17-6379-2024, https://doi.org/10.5194/gmd-17-6379-2024, 2024
Short summary
Short summary
A Python successor to the aerosol module of the OPAC model, named AeroMix, has been developed, with enhanced capabilities to better represent real atmospheric aerosol mixing scenarios. AeroMix’s performance in modeling aerosol mixing states has been evaluated against field measurements, substantiating its potential as a versatile aerosol optical model framework for next-generation algorithms to infer aerosol mixing states and chemical composition.
Angeline G. Pendergrass, Michael P. Byrne, Oliver Watt-Meyer, Penelope Maher, and Mark J. Webb
Geosci. Model Dev., 17, 6365–6378, https://doi.org/10.5194/gmd-17-6365-2024, https://doi.org/10.5194/gmd-17-6365-2024, 2024
Short summary
Short summary
The width of the tropical rain belt affects many aspects of our climate, yet we do not understand what controls it. To better understand it, we present a method to change it in numerical model experiments. We show that the method works well in four different models. The behavior of the width is unexpectedly simple in some ways, such as how strong the winds are as it changes, but in other ways, it is more complicated, especially how temperature increases with carbon dioxide.
Tianning Su and Yunyan Zhang
Geosci. Model Dev., 17, 6319–6336, https://doi.org/10.5194/gmd-17-6319-2024, https://doi.org/10.5194/gmd-17-6319-2024, 2024
Short summary
Short summary
Using 2 decades of field observations over the Southern Great Plains, this study developed a deep-learning model to simulate the complex dynamics of boundary layer clouds. The deep-learning model can serve as the cloud parameterization within reanalysis frameworks, offering insights into improving the simulation of low clouds. By quantifying biases due to various meteorological factors and parameterizations, this deep-learning-driven approach helps bridge the observation–modeling divide.
Siyuan Chen, Yi Zhang, Yiming Wang, Zhuang Liu, Xiaohan Li, and Wei Xue
Geosci. Model Dev., 17, 6301–6318, https://doi.org/10.5194/gmd-17-6301-2024, https://doi.org/10.5194/gmd-17-6301-2024, 2024
Short summary
Short summary
This study explores strategies and techniques for implementing mixed-precision code optimization within an atmosphere model dynamical core. The coded equation terms in the governing equations that are sensitive (or insensitive) to the precision level have been identified. The performance of mixed-precision computing in weather and climate simulations was analyzed.
Sam O. Owens, Dipanjan Majumdar, Chris E. Wilson, Paul Bartholomew, and Maarten van Reeuwijk
Geosci. Model Dev., 17, 6277–6300, https://doi.org/10.5194/gmd-17-6277-2024, https://doi.org/10.5194/gmd-17-6277-2024, 2024
Short summary
Short summary
Designing cities that are resilient, sustainable, and beneficial to health requires an understanding of urban climate and air quality. This article presents an upgrade to the multi-physics numerical model uDALES, which can simulate microscale airflow, heat transfer, and pollutant dispersion in urban environments. This upgrade enables it to resolve realistic urban geometries more accurately and to take advantage of the resources available on current and future high-performance computing systems.
Felipe Cifuentes, Henk Eskes, Folkert Boersma, Enrico Dammers, and Charlotte Bryan
EGUsphere, https://doi.org/10.5194/egusphere-2024-2225, https://doi.org/10.5194/egusphere-2024-2225, 2024
Short summary
Short summary
We tested the capability of the flux divergence approach (FDA) to reproduce known NOX emissions using synthetic NO2 satellite column retrievals derived from high-resolution model simulations. The FDA accurately reproduced NOX emissions when column observations were limited to the boundary layer and when the variability of NO2 lifetime, NOX:NO2 ratio, and NO2 profile shapes were correctly modeled. This introduces a strong model dependency, reducing the simplicity of the original FDA formulation.
Allison A. Wing, Levi G. Silvers, and Kevin A. Reed
Geosci. Model Dev., 17, 6195–6225, https://doi.org/10.5194/gmd-17-6195-2024, https://doi.org/10.5194/gmd-17-6195-2024, 2024
Short summary
Short summary
This paper presents the experimental design for a model intercomparison project to study tropical clouds and climate. It is a follow-up from a prior project that used a simplified framework for tropical climate. The new project adds one new component – a specified pattern of sea surface temperatures as the lower boundary condition. We provide example results from one cloud-resolving model and one global climate model and test the sensitivity to the experimental parameters.
Astrid Kerkweg, Timo Kirfel, Doung H. Do, Sabine Griessbach, Patrick Jöckel, and Domenico Taraborrelli
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-117, https://doi.org/10.5194/gmd-2024-117, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
This article introduces the MESSy DWARF. Usually, the Modular Earth Submodel System (MESSy) is linked to full dynamical models to build chemistry climate models. However, due to the modular concept of MESSy, and the newly developed DWARF component, it is now possible to create simplified models containing just one or some process descriptions. This renders very useful for technical optimisation (e.g., GPU porting) and can be used to create less complex models, e.g., a chemical box model.
Philip G. Sansom and Jennifer L. Catto
Geosci. Model Dev., 17, 6137–6151, https://doi.org/10.5194/gmd-17-6137-2024, https://doi.org/10.5194/gmd-17-6137-2024, 2024
Short summary
Short summary
Weather fronts bring a lot of rain and strong winds to many regions of the mid-latitudes. We have developed an updated method of identifying these fronts in gridded data that can be used on new datasets with small grid spacing. The method can be easily applied to different datasets due to the use of open-source software for its development and shows improvements over similar previous methods. We present an updated estimate of the average frequency of fronts over the past 40 years.
Kelly M. Núñez Ocasio and Zachary L. Moon
Geosci. Model Dev., 17, 6035–6049, https://doi.org/10.5194/gmd-17-6035-2024, https://doi.org/10.5194/gmd-17-6035-2024, 2024
Short summary
Short summary
TAMS is an open-source Python-based package for tracking and classifying mesoscale convective systems that can be used to study observed and simulated systems. Each step of the algorithm is described in this paper with examples showing how to make use of visualization and post-processing tools within the package. A unique and valuable feature of this tracker is its support for unstructured grids in the identification stage and grid-independent tracking.
Irene C. Dedoussi, Daven K. Henze, Sebastian D. Eastham, Raymond L. Speth, and Steven R. H. Barrett
Geosci. Model Dev., 17, 5689–5703, https://doi.org/10.5194/gmd-17-5689-2024, https://doi.org/10.5194/gmd-17-5689-2024, 2024
Short summary
Short summary
Atmospheric model gradients provide a meaningful tool for better understanding the underlying atmospheric processes. Adjoint modeling enables computationally efficient gradient calculations. We present the adjoint of the GEOS-Chem unified chemistry extension (UCX). With this development, the GEOS-Chem adjoint model can capture stratospheric ozone and other processes jointly with tropospheric processes. We apply it to characterize the Antarctic ozone depletion potential of active halogen species.
Sylvain Mailler, Sotirios Mallios, Arineh Cholakian, Vassilis Amiridis, Laurent Menut, and Romain Pennel
Geosci. Model Dev., 17, 5641–5655, https://doi.org/10.5194/gmd-17-5641-2024, https://doi.org/10.5194/gmd-17-5641-2024, 2024
Short summary
Short summary
We propose two explicit expressions to calculate the settling speed of solid atmospheric particles with prolate spheroidal shapes. The first formulation is based on theoretical arguments only, while the second one is based on computational fluid dynamics calculations. We show that the first method is suitable for virtually all atmospheric aerosols, provided their shape can be adequately described as a prolate spheroid, and we provide an implementation of the first method in AerSett v2.0.2.
Hejun Xie, Lei Bi, and Wei Han
Geosci. Model Dev., 17, 5657–5688, https://doi.org/10.5194/gmd-17-5657-2024, https://doi.org/10.5194/gmd-17-5657-2024, 2024
Short summary
Short summary
A radar operator plays a crucial role in utilizing radar observations to enhance numerical weather forecasts. However, developing an advanced radar operator is challenging due to various complexities associated with the wave scattering by non-spherical hydrometeors, radar beam propagation, and multiple platforms. In this study, we introduce a novel radar operator named the Accurate and Efficient Radar Operator developed by ZheJiang University (ZJU-AERO) which boasts several unique features.
Jonathan J. Day, Gunilla Svensson, Barbara Casati, Taneil Uttal, Siri-Jodha Khalsa, Eric Bazile, Elena Akish, Niramson Azouz, Lara Ferrighi, Helmut Frank, Michael Gallagher, Øystein Godøy, Leslie M. Hartten, Laura X. Huang, Jareth Holt, Massimo Di Stefano, Irene Suomi, Zen Mariani, Sara Morris, Ewan O'Connor, Roberta Pirazzini, Teresa Remes, Rostislav Fadeev, Amy Solomon, Johanna Tjernström, and Mikhail Tolstykh
Geosci. Model Dev., 17, 5511–5543, https://doi.org/10.5194/gmd-17-5511-2024, https://doi.org/10.5194/gmd-17-5511-2024, 2024
Short summary
Short summary
The YOPP site Model Intercomparison Project (YOPPsiteMIP), which was designed to facilitate enhanced weather forecast evaluation in polar regions, is discussed here, focussing on describing the archive of forecast data and presenting a multi-model evaluation at Arctic supersites during February and March 2018. The study highlights an underestimation in boundary layer temperature variance that is common across models and a related inability to forecast cold extremes at several of the sites.
Hossain Mohammed Syedul Hoque, Kengo Sudo, Hitoshi Irie, Yanfeng He, and Md Firoz Khan
Geosci. Model Dev., 17, 5545–5571, https://doi.org/10.5194/gmd-17-5545-2024, https://doi.org/10.5194/gmd-17-5545-2024, 2024
Short summary
Short summary
Using multi-platform observations, we validated global formaldehyde (HCHO) simulations from a chemistry transport model. HCHO is a crucial intermediate in the chemical catalytic cycle that governs the ozone formation in the troposphere. The model was capable of replicating the observed spatiotemporal variability in HCHO. In a few cases, the model's capability was limited. This is attributed to the uncertainties in the observations and the model parameters.
Zijun Liu, Li Dong, Zongxu Qiu, Xingrong Li, Huiling Yuan, Dongmei Meng, Xiaobin Qiu, Dingyuan Liang, and Yafei Wang
Geosci. Model Dev., 17, 5477–5496, https://doi.org/10.5194/gmd-17-5477-2024, https://doi.org/10.5194/gmd-17-5477-2024, 2024
Short summary
Short summary
In this study, we completed a series of simulations with MPAS-Atmosphere (version 7.3) to study the extreme precipitation event of Henan, China, during 20–22 July 2021. We found the different performance of two built-in parameterization scheme suites (mesoscale and convection-permitting suites) with global quasi-uniform and variable-resolution meshes. This study holds significant implications for advancing the understanding of the scale-aware capability of MPAS-Atmosphere.
Cited articles
Abdul-Razzak, H. and Ghan, S. J.: A parameterization of aerosol activation 2. Multiple aerosol types, J. Geophys. Res., 105, 6837–6844, https://doi.org/10.1029/1999JD901161, 2000.
Abdul-Razzak, H. and Ghan, S. J.: A parameterization of aerosol activation 3. Sectional representation, J. Geophys. Res., 107, 4026, https://doi.org/10.1029/2001JD000483, 2002.
Albini, F. A.: PROGRAM BURNUP: A simulation model of the burning of large woody natural fuels, final Report on Research Grant INT-92754-GR by U.S.F.S. to Montana State Univ., Mechanical Engineering Dept., 1994.
Albrecht, B. A.: Aerosols, cloud microphysics, and fractional cloudiness, Science, 245, 1227–1230, https://doi.org/10.1126/science.245.4923.1227, 1989.
Albrecht, B. A., Ramanathan, V., and Boville, B. A.: The effects of cumulus moisture transports on the simulation of climate with a general circulation model, J. Atmos. Sci., 43, 2443–2462, 1986.
Alonso, M. F., Longo, K., Freitas, S., Fonseca, R., Marécal,V., Pirre, M., and Klenner, L.: An urban emissions inventory for South America and its application in numerical modeling of atmospheric chemical composition at local and regional scales, Atmos. Environ., 44, 5072–5083, https://doi.org/10.1016/j.atmosenv.2010.09.013, 2010.
Anderson, H. E.: Aids to determining fuel models for estimating fire behavior, USDA Forest Service, Intermountain Forest and Range Experiment Station, Research Report INT-122, 1982.
Andrade, M. F., Ynoue, R. Y., Harley, R., and Miguel, A. H.: Air quality model simulating photochemical formation of pollutants: the São Paulo Metropolitan Area, Brazil, Int. J. Environ. Pollut., 22, 460–475, 2004.
Arakawa, A. and Schubert, W. H.: Interaction of a cumulus cloud ensemble with the large-scale environment. Part I, J. Atmos. Sci., 31, 674–701, 1974.
Arakawa, A., Jung, J.-H., and Wu, C.-M.: Toward unification of the multiscale modeling of the atmosphere, Atmos. Chem. Phys., 11, 3731–3742, https://doi.org/10.5194/acp-11-3731-2011, 2011.
Asselin, R.: Frequency filter for time integrations, Mon. Weather Rev., 100, 487–490, 1972.
Baba, Y. and Takahashi, K.: Weighted essentially non-oscillatory scheme for cloud edge problem, Q. J. Roy. Meteor. Soc., 139, 1374–1388, https://doi.org/10.1002/qj.2030, 2013.
Barker, H. W., Cole, J. N. S., Morcrette, J.-J., Pincus, R., Räisänen, P., von Salzen, K., and Vaillancourt, P.: The Monte Carlo Independent Column Approximation: An assessment using several global atmospheric models, Q. J. Roy. Meteor. Soc., 134, 1463–1478, https://doi.org/10.1002/qj.303, 2008.
Baldauf, M.: Stability analysis for linear discretisations of the advection equation with Runge-Kutta time integration, J. Comput. Phys., 227, 6638–6659, 2008.
Baldauf, M.: Linear stability analysis of Runge-Kutta based partial time-splitting schemes for the Euler equations, Mon. Weather Rev., 138, 4475–4496, 2010.
Bauer, S. E., Wright, D. L., Koch, D., Lewis, E. R., McGraw, R., Chang, L.-S., Schwartz, S. E., and Ruedy, R.: MATRIX (Multiconfiguration Aerosol TRacker of mIXing state): an aerosol microphysical module for global atmospheric models, Atmos. Chem. Phys., 8, 6003–6035, https://doi.org/10.5194/acp-8-6003-2008, 2008.
Bechtold, P., Chaboureau, J. P., Beljaars, A., Betts, A. K., Köhler, M., Miller, M., and Redelsperger, J. L.: The simulation of the diurnal cycle of convection precipitations over land in a global model, Q. J. Roy. Meteor. Soc., 130, 3119–3137, 2004.
Bechtold, P., Köhler, M., Jung, T., Doblas-Reyes, F., Leutbecher, M., Rodwell, M. J., Vitart, F., and Balsamo, G.: Advances in simulating atmospheric variability with the ECMWF model: From synoptic to decadal time-scales, Q. J. Roy. Meteor. Soc., 134, 1337–1351, 2008.
Bechtold, P., Semane, N., Lopez, P., Chaboureau, J.-P., Beljaars, A., and Bormann, N.: Representing equilibrium and nonequilibrium convection in large-scale models, J. Atmos. Sci., 71, 734–753, https://doi.org/10.1175/JAS-D-13-0163.1, 2014.
Bela, M. M., Longo, K. M., Freitas, S. R., Moreira, D. S., Beck, V., Wofsy, S. C., Gerbig, C., Wiedemann, K., Andreae, M. O., and Artaxo, P.: Ozone production and transport over the Amazon Basin during the dry-to-wet and wet-to-dry transition seasons, Atmos. Chem. Phys., 15, 757–782, https://doi.org/10.5194/acp-15-757-2015, 2015.
Beltran-Przekurat, A., Pielke, R. A., Eastman, J. L., and Coughenour, M. B.: Modeling the effects of land-use/land-cover changes on the near-surface atmosphere in southern South America, Int. J. Climatol., 32, 1206–1225, https://doi.org/10.1002/joc.2346, 2011.
Best, M. J., Pryor, M., Clark, D. B., Rooney, G. G., Essery, R. L. H., Ménard, C. B., Edwards, J. M., Hendry, M. A., Porson, A., Gedney, N., Mercado, L. M., Sitch, S., Blyth, E., Boucher, O., Cox, P. M., Grimmond, C. S. B., and Harding, R. J.: The Joint UK Land Environment Simulator (JULES), model description – Part 1: Energy and water fluxes, Geosci. Model Dev., 4, 677–699, https://doi.org/10.5194/gmd-4-677-2011, 2011.
Brian, H. and Prather, M. J.: Fast-J2: Accurate simulation of stratospheric photolysis in global chemistry models, J. Atmos. Chem., 41, 281–296, 2002.
Carvalho, V. S. B.: O impacto das megacidades sobre a qualidade do ar:os casos das regiões metropolitanas de São Paulo e: do Rio de Janeiro. 234 f. Tese de Doutorado – Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, São Paulo, 2010.
Clark, D. B., Mercado, L. M., Sitch, S., Jones, C. D., Gedney, N., Best, M. J., Pryor, M., Rooney, G. G., Essery, R. L. H., Blyth, E., Boucher, O., Harding, R. J., Huntingford, C., and Cox, P. M.: The Joint UK Land Environment Simulator (JULES), model description – Part 2: Carbon fluxes and vegetation dynamics, Geosci. Model Dev., 4, 701–722, https://doi.org/10.5194/gmd-4-701-2011, 2011.
Clark, T. L., Coen, J. L., and Latham, D.: Description of a coupled atmosphere-fire model, Int. J. Wildland Fire, 13, 49–64, 2004.
Coen, J. L.: Simulation of the Big Elk Fire using coupled atmosphere-fire modeling, Int. J. Wildland Fire, 14, 49–59, 2005.
Costa, S. M. S., Lima, W. F. A., Freitas, S. R., Ceballos, J. C., and Rodrigues, J. V.: Monitoramento dos Traços de Cinzas do Vulcão Chileno Puyehue-Cordón Caulle, in: Congresso Brasileiro De Meteorologia, 17. (CBMET), 2012, Gramado Annals, 1–5, 2012.
Cotton, W. R., Pielke Sr., R. A., Walko, R. L., Liston, G. E., Tremback, C. J., Jiang, H., McAnelly, R. L., Harrington, J. Y., Nicholls, M. E., Carrio, G. G., and McFadden, J. P.: RAMS 2001: Current status and future directions, Meteorol. Atmos. Phys., 82, 5–29, 2003.
Crassier, V., Suhre, K., Tulet, P., and Rosset, R.: Development of a reduced chemical scheme for use in mesoscale meteorological models, Atmos. Environ., 34, 2633–2644, 2000.
Djouad, R., Sportisse, B., and Audiffren, N.: Numerical simulation of aqueous-phase atmospheric models: use of a non-autonomous Rosenbrock method, Atmos. Environ., 36, 873–879, 2002.
Damian, V., Sandu, A., Damian, M., Carmichael, G. R., and Potra, F. A.: KPP – A symbolic preprocessor for chemistry kinetics – User's guide, Technical report, The University of Iowa, IowaCity, IA52246, 1995.
Davies, H. C.: Limitations of some common lateral boundary schemes used in regional NWP models, Mon. Weather Rev., 111, 1002–1012, 1983.
Deardorff, J. W.: Stratocumulus-capped mixed layers derived from a three-dimensional model, Bound.-Lay. Meteorol., 18, 495–527, 1980.
Degrazia, G. A., Anfossi, D., de Campos Velho, H. F., and Ferrero, E.: A Lagrangian Decorrelation Time Scale for Nonhomogeneous Turbulence, Bound.-Lay. Meteorol., 86, 525–534, 1998.
Dos Santos, A. F., Freitas, S. R., de Mattos, J. G. Z., Campos Velho H. F., Gan, M. A., Luz, E. F. P., and Grell, G.: Using the Firefly optimization method to weight the ensemble of rainfall forecasts of the Brazilian developments on the Regional Atmospheric Modeling System (BRAMS), Adv. Geosci., 35, 123–136, https://doi.org/10.5194/adgeo-35-123-2013, 2013.
Eastman, J. L., Coughenour, M. B., and Pielke, R. A.: The effects of CO2 and landscape change using a coupled plant and meteorological model, Glob. Change Biol., 7, 797–815, 2001a.
Eastman, J. L., Coughenour, M. B., and Pielke, R. A.: Does grazing affect regional climate?, J. Hydrometeorol., 2, 243–253, 2001b.
Ebert, E. E. and Curry, J. A.: A parameterization of ice cloud optical properties for climate models, J. Geophys. Res., 97, 3831–3836, 1992.
Eidhammer, T., DeMott, P. J., and Kreidenweis, S. M.: A comparison of heterogeneous ice nucleation parameterizations using a parcel model framework, J. Geophys. Res., 114, D06202, https://doi.org/10.1029/2008JD011095, 2009.
Fazenda, A. L., Panetta, J., Katsurayama, D. M., Rodrigues, L. F., Motta, L. G., and Navaux, P. O. A.: Challenges and solutions to improve the scalability of an operational regional meteorological forecasting model, Int. J. High Perform. S., 3, p. 87, 2011.
Fazenda, A. L., Rodrigues, E. R., Tomita, S. S., Panetta, J., and Mendes, C. L.: Improving the scalability of an operational scientific application on a large multi-core cluster, WSCAD-SSC, 2012.
Feingold, G. and Heymsfield, A. J.: Parameterizations of condensational growth of droplets for use in general circulation models, J. Atmos. Sci., 49, 2325–2342, 1992.
Frank, W. M. and Cohen, C.: Simulation of tropical convective systems, Part I: A cumulus parameterization, J. Atmos. Sci., 44, 3787–3799, 1987.
Freitas, E. D., Martins, L. D., Dias, P. L. D., and Andrade, M. D.: A simple photochemical module implemented in RAMS for tropospheric ozone concentration forecast in the metropolitan area of Sao Paulo, Brazil: Coupling and validation, Atmos. Environ., 39, 6352–6361, 2005.
Freitas, E. D., Rozoff, C. M., Cotton, W. R., and Silva Dias, P. L.: Interactions of an urban heat island and sea breeze circulations during winter over the Metropolitan Area of São Paulo – Brazil, Bound.-Lay. Meteorol., 122, 43–65, 2007.
Freitas, S. R., Longo, K. M., Silva Dias, M. A. F., and Artaxo, P.: Numerical modeling of air mass trajectories from biomass burning areas of the Amazon basin, Anais da Academia Brasileira de Ciências, Brasil, 68, 193–296, 1996.
Freitas, S. R., Dias, M. A. F. S., Dias, P. L. S., Longo, K. M., Artaxo, P., Andreae, M. O., and Fischer, H.: A convective kinematic trajectory technique for low-resolution atmospheric models, J. Geophys. Res., 105, 24375–24386, 2000.
Freitas, S. R., Longo, K. M., Silva Dias, M., Silva Dias, P., Chatfield, R., Prins, E., Artaxo, P., Grell, G., and Recuero, F.: Monitoring the transport of biomass burning emissions in South America, Environ. Fluid Mech., 5, 135–167, https://doi.org/10.1007/s10652-005-0243-7, 2005.
Freitas, S. R., Longo, K. M., and Andreae, M. O.: Impact of including the plume rise of vegetation fires in numerical simulations of associated atmospheric pollutants, Geophys. Res. Lett., 33, L17808, https://doi.org/10.1029/2006GL026608, 2006.
Freitas, S. R., Longo, K. M., Silva Dias, M. A. F., Chatfield, R., Silva Dias, P., Artaxo, P., Andreae, M. O., Grell, G., Rodrigues, L. F., Fazenda, A., and Panetta, J.: The Coupled Aerosol and Tracer Transport model to the Brazilian developments on the Regional Atmospheric Modeling System (CATT-BRAMS) – Part 1: Model description and evaluation, Atmos. Chem. Phys., 9, 2843–2861, https://doi.org/10.5194/acp-9-2843-2009, 2009.
Freitas, S. R., Longo, K. M., Trentmann, J., and Latham, D.: Technical Note: Sensitivity of 1-D smoke plume rise models to the inclusion of environmental wind drag, Atmos. Chem. Phys., 10, 585–594, https://doi.org/10.5194/acp-10-585-2010, 2010.
Freitas, S. R., Longo, K. M., Alonso, M. F., Pirre, M., Marecal, V., Grell, G., Stockler, R., Mello, R. F., and Sánchez Gácita, M.: PREP-CHEM-SRC – 1.0: a preprocessor of trace gas and aerosol emission fields for regional and global atmospheric chemistry models, Geosci. Model Dev., 4, 419–433, https://doi.org/10.5194/gmd-4-419-2011, 2011.
Freitas, S. R., Rodrigues, L. F., Longo, K. M., and Panetta, J.: Impact of a monotonic advection scheme with low numerical diffusion on transport modeling of emissions from biomass burning, J. Adv. Model. Earth Syst., 4, M01001, https://doi.org/10.1029/2011MS000084, 2012.
Gerbig, C., Lin, J. C., Wofsy, S. C., Daube, B. C., Andrews, A. E., Stephens, B. B., Bakwin, P. S., and Grainger, C. A.: Toward constraining regional-scale fluxes of CO2 with atmospheric observations over a continent: 1. Observed spatial variability from airborne platforms, J. Geophys. Res.-Atmos., 108, 4756, https://doi.org/10.1029/2002JD003018, 2003.
Gevaerd, R. and Freitas, S. R.: Estimativa operacional da umidade do solo para inicialização de modelos de previsão numérica da atmosfera. Parte I: Descrição da metodologia e validação, Rev. Bras. Meteorol., 21, 1–15, 2006.
Grell, G. A.: Prognostic evaluation of assumptions used by cumulus parameterizations within a generalized framework, Mon. Weather Rev., 121, 764–787, 1993.
Grell, G. A. and Devenyi, D.: A generalized approach to parameterizing convection combining ensemble and data assimilation techniques, Geophys. Res. Lett., 29, 38-1, https://doi.org/10.1029/2002GL015311, 2002.
Grell, G. A. and Freitas, S. R.: A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling, Atmos. Chem. Phys., 14, 5233–5250, https://doi.org/10.5194/acp-14-5233-2014, 2014.
Grell, G. A., Peckham, S., McKeen, S., Schmitz, R., Frost, G., Skamarock, W. C., and Eder, B.: Fully coupled “online” chemistry within the WRF model, Atmos. Environ., 39, 6957–6975, 2005.
Hack, J. J., Boville, B. A., Briegleb, B. P., Kiehl, J. T., Rasch, P. J., and Williamson, D. L.: Description of the NCAR Community Climate Model (CCM2), NCAR Technical Note, NCAR/TN-382+STR, 1993.
Hamill, T. M.: Hypothesis Tests for Evaluating Numerical Precipitation Forecasts, Weather Forecast., 14, 155–167, 1999.
Hanna, S.: Applications in Air Pollution Modeling, in: Atmospheric Turbulence and Air Pollution Modelling, edited by: Nieuwstadt, F. and van Dop, H., vol. 1 of Atmospheric Sciences Library, chap. 7 275–310, Springer Netherlands, https://doi.org/10.1007/978-94-010-9112-1_7, 1982.
Helfand, H. M. and Labraga, J. C.: Design of a Nonsingular Level 2.5 Second-Order Closure Model for the Prediction of Atmospheric Turbulence, J. Atmos. Sci., 45, 113–132, 1988.
Hill, G. E.: Factors Controlling the Size and Spacing of Cumulus Clouds as Revealed by Numerical Experiments, J. Atmos. Sci., 31, 646–673, 1974.
Holben, B. N., Eck, T. F., Slutsker, I., Tanreé, D., Buis, J. P., Setzer, A., Vermote, E., Reagan, J. A., Kaufman, Y. J., Nakajima, T., Lavenu, F., Jankowiak, I., and Smirnov, A.: AERONET – a federated instrument network and data archive for aerosol characterization, Remote Sens. Environ., 66, 1–16, https://doi.org/10.1016/s0034-4257(98)00031-5, 1998.
Hu, Y. X. and Stamnes, K.: An accurate parameterization of the radiative properties of water clouds suitable for use in climate models, J. Climate, 6, 728–742, 1993.
Huffman, G. J., Adler, R. F., Bolvin, D. T., Gu, G. J., Nelkin, E. J., Bowman, K. P., Hong, Y., Stocker, E. F., and Wolff, D. B.: The TRMM multi-satellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales, J. Hydrometeorol., 8, 38–55, 2007.
Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S. A., and Collins, W. D.: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models, J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944, 2008.
Jakob, C. and Siebesma, A. P.: A new subcloud model for mass-flux convection schemes: influence on triggering, updrafts properties, and model climate, Mon. Weather Rev., 131, 2765–2778, 2003.
Janjić, Z.: Nonsingular implementation of the Mellor-Yamada Level 2.5 Scheme in the NCEP Meso model, Office note 437, National Center for Environmental Prediction, Boulder, CO, available at: http://www.lib.ncep.noaa.gov/ncepofficenotes/2000s/ (last access: 10 January 2017), 2001.
Johansson, E., Spangenberg, J., Gouvêa, M. L., and Freitas, E. D.: Scale-integrated atmospheric simulations to assess thermal comfort in different urban tissues in the warm humid summer of São Paulo, Brazil, Urban Climate, 6, 24–43, 2013.
Kain, J. S. and Fritsch, J. M.: The role of the convective “trigger function” in numerical forecasts of mesoscale convective systems, Meteorol. Atmos. Phys., 49, 93–106, 1992.
Khan, S. and Simpson, R.: Effect of a heat island on the meteorology of a complex urban airshed, Bound.-Lay. Meteorol., 100, 487–506, 2001.
Kiehl, J. T., Hack, J. J., Bonan, G. B., Boville, B. A., Williamson, D. L., and Rasch, P. L.: The National Center for Atmospheric Research Community Climate Model: CCM3, J. Climate, 11, 1131–1149, 1998.
Klein, S. A. and Hartmann, D. L.: The seasonal cycle of low stratiform clouds, J. Climate, 6, 1588–1606, 1993.
Klemp, J. B. and Wilhelmson, R. B.: The Simulation of Three-Dimensional Convective Storm Dynamics, J. Atmos. Sci., 35, 1070–1096, 1978.
Krishnamurti, T. N., Low-Nam, S., and Pasch, R.: Cumulus parameterizations and rainfall rates II, Mon. Weather Rev., 111, 815–828, 1983.
Krol, M., Houweling, S., Bregman, B., van den Broek, M., Segers, A., van Velthoven, P., Peters, W., Dentener, F., and Bergamaschi, P.: The two-way nested global chemistry-transport zoom model TM5: algorithm and applications, Atmos. Chem. Phys., 5, 417–432, https://doi.org/10.5194/acp-5-417-2005, 2005.
Lin, J. C., Gerbig, C., Wofsy, S. C., Andrews, A. E., Daube, B. C., Davis, K. J., and Grainger, C. A.: A near-field tool for simulating the upstream influence of atmospheric observations: The Stochastic Time-Inverted Lagrangian Transport (STILT) model, J. Geophys. Res.-Atmos., 108, 4493, https://doi.org/10.1029/2002JD003161, 2003.
Liu, Y., Daum, P. H., Guo, H., and Peng, Y.: Dispersion bias, dispersion effect, and the aerosol-cloud conundrum. Environ. Res. Lett., 3, 045021, https://doi.org/10.1088/1748-9326/3/4/045021, 2008.
Lilly, D. K.: On the numerical simulation of buoyant convection, Tellus, 14, 148–172, https://doi.org/10.1111/j.2153-3490.1962.tb00128.x, 1962.
Longo, K. M., Freitas, S. R., Andreae, M. O., Setzer, A., Prins, E., and Artaxo, P.: The Coupled Aerosol and Tracer Transport model to the Brazilian developments on the Regional Atmospheric Modeling System (CATT-BRAMS) – Part 2: Model sensitivity to the biomass burning inventories, Atmos. Chem. Phys., 10, 5785–5795, https://doi.org/10.5194/acp-10-5785-2010, 2010.
Longo, K. M., Freitas, S. R., Pirre, M., Marécal, V., Rodrigues, L. F., Panetta, J., Alonso, M. F., Rosário, N. E., Moreira, D. S., Gácita, M. S., Arteta, J., Fonseca, R., Stockler, R., Katsurayama, D. M., Fazenda, A., and Bela, M.: The Chemistry CATT-BRAMS model (CCATT-BRAMS 4.5): a regional atmospheric model system for integrated air quality and weather forecasting and research, Geosci. Model Dev., 6, 1389–1405, https://doi.org/10.5194/gmd-6-1389-2013, 2013.
Lu, L., Pielke, R. A., Liston, G. E., Parton, W. J., Ojima, D., and Hartman, M.: Implementation of a two-way interactive atmospheric and ecological model and its application to the central United States, J. Climate, 14, 900–919, 2001.
Lyons, W. A., Pielke, R. A., Tremback, C. J., Walko, R. L., Moon, D. A., and Keen, C. S.: Modeling the impacts of mesoscale vertical motions upon coastal zone air pollution dispersion, Atmos. Environ., 29, 283–301, 1995.
Madronich, S.: Photodissociation in the atmosphere: 1. Actinic flux and the effect of ground reflections and clouds, J. Geophys. Res., 92, 9740–9752, https://doi.org/10.1029/JD092iD08p09740, 1989.
Mandel, J., Beezley, J. D., Coen, J. L., and Kim, M.: Data assimilation for wildland fires: Ensemble Kalman filters in coupled atmosphere-surface models, IEEE Contr. Syst. Mag., 29, 47–65, https://doi.org/10.1109/MCS.2009.932224, 2009.
Mandel, J., Beezley, J. D., and Kochanski, A. K.: Coupled atmosphere-wildland fire modeling with WRF 3.3 and SFIRE 2011, Geosci. Model Dev., 4, 591–610, https://doi.org/10.5194/gmd-4-591-2011, 2011.
Masson, V.: A physically-based scheme for the urban energy budget in atmospheric models, Bound.-Lay. Meteorol., 94, 357–397, 2000.
Mastin, L., Guffanti, M., Servranckx, R., Webley, P., Barsotti, S., Dean, K., Durant, A., Ewert, J., Neri, A., and Rose, W.: A multidisciplinary effort to assign realistic source parameters to models of volcanic ash-cloud transport and dispersion during eruptions, J. Volcanol. Geoth. Res., 186, 10–21, 2009.
McKain, K., Down, A., Raciti, S. M., Budney, J., Hutyra, L. R., Floerchinger, C., Herndon, S. C., Nehrkorn, T., Zahniser, M. S., Jackson, R. B., Phillips, N., and Wofsy, S. C.: Methane emissions from natural gas infrastructure and use in the urban region of Boston, Massachusetts, P. Natl. Acad. Sci. USA, 112, 1941–1946, https://doi.org/10.1073/pnas.1416261112, 2015.
Medvigy, D., Moorcroft, P. R., Avissar, R., and Walko, R. L.: Mass conservation and atmospheric dynamics in the Regional Atmospheric Modeling System (RAMS), Environ. Fluid Mech., 5, 109–134, https://doi.org/10.1007/s10652-005-5275-5, 2005.
Mellor, G. L. and Yamada, T.: Development of a turbulence closure model for geophysical fluid problems, Rev. Geophys. Space Phys., 20, 851–875, https://doi.org/10.1029/RG020i004p00851, 1982.
Menezes, I. C.: Construção de um modelo de interacção atmosfera/fogo aplicado à gestão florestal e avaliação de risco de fogos florestais no Alentejo, PhD thesis, University of Évora, Portugal, 2015.
Meyers, M. P., Walko, R. L., Harrington, J. Y., and Cotton, W. R.: New RAMS cloud microphysics parameterization: Part II. The two-moment scheme, Atmos. Res., 45, 3–39, 1997.
Miller, S. M., Matross, D. M., Andrews, A. E., Millet, D. B., Longo, M., Gottlieb, E. W., Hirsch, A. I., Gerbig, C., Lin, J. C., Daube, B. C., Hudman, R. C., Dias, P. L. S., Chow, V. Y., and Wofsy, S. C.: Sources of carbon monoxide and formaldehyde in North America determined from high-resolution atmospheric data, Atmos. Chem. Phys., 8, 7673–7696, https://doi.org/10.5194/acp-8-7673-2008, 2008.
Miller, S. M., Wofsy, S. C., Michalak, A. M., Kort, E. A., Andrews, A. E., Biraud, S. C., Dlugokencky, E. J., Eluszkiewicz, J., Fischer, M. L., Janssens-Maenhout, G., Miller, B. R., Miller, J. B., Montzka, S. A., Nehrkorn, T., and Sweeney, C.: Anthropogenic emissions of methane in the United States, P. Natl. Acad. Sci. USA, 110, 20018–20022, https://doi.org/10.1073/pnas.1314392110, 2013.
Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., and Clough, S. A.: Radiative transfer for inhomogeneous atmosphere: RRTM a validated correlated-k model for the longwave, J. Geophys. Res., 102, 16663–16682, 1997.
Moreira, D. S., Freitas, S. R., Bonatti, J. P., Mercado, L. M., Rosário, N. M. É., Longo, K. M., Miller, J. B., Gloor, M., and Gatti, L. V.: Coupling between the JULES land-surface scheme and the CCATT-BRAMS atmospheric chemistry model (JULES-CCATT-BRAMS1.0): applications to numerical weather forecasting and the CO2 budget in South America, Geosci. Model Dev., 6, 1243–1259, https://doi.org/10.5194/gmd-6-1243-2013, 2013.
Nair, K. N., Freitas, E. D., Sánchez-Ccoyllo, O. R., Silva Dias M. A. F., Silva Dias, P. L., Andrade, M. F., and Massambani, O.: Dynamics of urban boundary layer over Sao Paulo associated with mesoscale processes, Meteorol. Atmos. Phys., 86, 87–98, 2004.
Nakanishi, M. and Niino, H.: An Improved Mellor–Yamada Level-3 Model with Condensation Physics: Its Design and Verification, Bound.-Lay. Meteorol., 112, 1–31, https://doi.org/10.1023/B:BOUN.0000020164.04146.98, 2004.
Nakanishi, M. and Niino, H.: An Improved Mellor–Yamada Level-3 Model: Its Numerical Stability and Application to a Regional Prediction of Advection Fog, Bound.-Lay. Meteorol., 119, 397–407, https://doi.org/10.1007/s10546-005-9030-8, 2006.
Nehrkorn, T., Eluszkiewicz, J., Wofsy, S. C., Lin, J. C., Gerbig, C., Longo, M., and Freitas, S.: Coupled weather research and forecasting–stochastic time-inverted lagrangian transport (WRF–STILT) model, Meteorol. Atmos. Phys., 107, 51–64, https://doi.org/10.1007/s00703-010-0068-x, 2010.
Pavani, C. A. B.: Modelagem numérica do transporte de emissões vulcânicas: caso do vulcão Puyehue, 184 pp., (sid.inpe.br/mtc-m18/2014/01.20.11.25-TDI), Dissertation (Master in Meteorology) – Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, 2014, available at: http://urlib.net/8JMKD3MGP8W/3FJUGQ8, last access: 27 May 2014.
Pavanni, C., Freitas, S. R., Lima, W. F. A., Costa, S. M. S., Rosario, N. M., Moreira, D. S., and Yoshida, M. C.: Incluindo funcionalidades no modelo BRAMS para simular o transporte de cinzas vulcânicas: descrição e análise de sensibilidade aplicada ao evento eruptivo do Puyehue em 2011, Revista Brasileira de Meteorologia, 31(4), 377–393, https://doi.org/10.1590/0102-778631231420150035, 2016.
Petters, M. D. and Kreidenweis, S. M.: A single parameter representation of hygroscopic growth and cloud condensation nucleus activity, Atmos. Chem. Phys., 7, 1961–1971, https://doi.org/10.5194/acp-7-1961-2007, 2007.
Pielke, R. A.: Mesoscale meteorological modeling, 3rd Edn., Academic Press, San Diego, CA, 2013.
Pielke, R. A. and Uliasz, M.: Use of meteorological models as input to regional and mesoscale air quality models – Limitations and strengths. Atmos. Environ., 32, 1455–1466, 1998.
Pielke, R. A., Cotton, W. R., Walko, R. L., Tremback, C. J., Lyons, W. A., Grasso, L. D., Nicholls, M. E., Moran, M. D., Wesley, D. A., Lee, T. J., and Copeland, J. H.: A comprehensive meteorological modeling system – RAMS, Meteorol. Atmos. Phys., 49, 69–91, 1992.
Pincus, R. and Baker, M. B.: Effect of precipitation on the albedo susceptibility of clouds in the marine boundary layer, Nature, 372, 250–252, 1994.
Pincus, R., Barker, H. R., and Morcrette, J.-J.: A fast, flexible, approximate technique for computing radiative transfer in inhomogeneous cloud fields, J. Geophys. Res., 108, 4376, https://doi.org/10.1029/2002JD003322, 2003.
Procopio, A. S., Remer, L. A., Artaxo, P., Kaufman, Y. J., and Holben, B. N.: Modeled spectral optical properties for smoke aerosols in Amazonia, Geophys. Res. Lett., 30, 2265, https://doi.org/10.1029/2003gl018063, 2003.
RAMS: The Regional Atmospheric Modeling System: Technical Description (Draft), Technical report, ATMET, Fort Collins, CO, USA, available at: http://www.atmet.com/html/docs/ documentation.shtml (last access: 10 January 2017), 2003.
Rasch, P. J. and Kristjansson, J. E.: A comparison of the CCM3 model climate using diagnosed and predicted condensate parameterizations, J. Climate, 11, 1587–1614, 1998.
Rennó, N. O. and Ingersoll, A. P.: Natural convection as a heat engine: A theory for CAPE, J. Atmos. Sci., 53, 572–585, 1996.
Reynolds, R. W., Rayner, N. A., Smith, T. M., Stokes, D. C., and Wang, W.: An Improved In Situ and Satellite SST Analysis for Climate, J. Climate, 15, 1609–1625, 2002.
Rosário, N. E., Longo, K. M., Freitas, S. R., Yamasoe, M. A., and Fonseca, R. M.: Modeling the South American regional smoke plume: aerosol optical depth variability and surface shortwave flux perturbation, Atmos. Chem. Phys., 13, 2923–2938, https://doi.org/10.5194/acp-13-2923-2013, 2013.
Saleeby, S. M. and Cotton, W. R.: A large-droplet mode and prognostic number concentration of cloud droplets in the Colorado State University Regional Atmospheric Modeling System (RAMS). Part I: Module descriptions and supercell test simulations, J. Appl. Meteorol., 43, 182–195, 2004.
Saleeby, S. M. and Cotton, W. R.: A Binned Approach to Cloud-Droplet Riming Implemented in a Bulk Microphysics Model, J. Appl. Meteorol., 47, 694–703, 2008.
Sánchez Gácita, M., Longo, K. M., Freire, J. L. M., Freitas, S. R., and Martin, S. T.: Impact of mixing state and hygroscopicity on CCN activity of biomass burning aerosol in Amazonia, Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2016-248, in review, 2016.
Santos, A. F.: Inverse problems using the optimization method firefly applied in the precipitation parameterization of the model brams over South America. PhD thesis– National Institute for Space Research (INPE), São José dos Campos, 2014 (in Portuguese).
Santos e Silva, C. M., Gielow, R., and Freitas, S. R.: Diurnal and semidiurnal rainfall cycles during the rain season in SW Amazonia, observed via rain gauges and estimated using S-band radar, Atmos. Sci. Lett., 10, 87–93, https://doi.org/10.1002/asl.214, 2009.
Santos e Silva, C. M., Freitas, S. R., and Gielow, R.: Numerical simulation of the diurnal cycle of rainfall in SW Amazon basin during the 1999 rainy season: the role of convective trigger function, Theor. Appl. Climatol., 109, 473–483, 2012.
Savijärvi, H.: Shortwave optical properties of rain, Tellus, 49a, 177–181, 1997.
Savijärvi, H. and Raisanen, P.: Long-wave optical properties of water clouds and rain, Tellus, 50A, 1–11, 1998.
Savijärvi, H., Arola, A., and Räisänen, P.: Short-wave optical properties of precipitating water clouds, Q. J. Roy. Meteor. Soc., 123, 883–899, https://doi.org/10.1002/qj.49712354005, 1997.
Sestini, M. F., Reimer, E. S., Valeriano, D. M., Alvalá, R. C. S., Mello, E. M. K., Chan, C. S., and Nobre, C. A.: Mapa de cobertura da terra da Amazônia legal para uso em modelos meteorológicos, in: Anais do Simpósio Brasileiro de Sensoriamento Remoto, 11, Belo Horizonte, 2901–2906, 2003 (in Portuguese).
Skamarock, W. C.: Positive-definite and monotonic limiters for unrestricted-time-step transport schemes, Mon. Weather Rev., 134, 2241–2250, 2006.
Skamarock, W. C. and Klemp, J. B.: A time-split non-hydrostatic atmospheric model for weather research and forecasting applications, J. Comput. Phys., 227, 3465–3485, https://doi.org/10.1016/j.jcp.2007.01.037, 2008.
Skamarock, W. C., Klemp, J. B., Duda, M. G., Fowler, L. D., Park, S. H., and Ringler, T. D.: A multi-scale non-hydrostatic atmospheric model using centroidal Voronoi tesselations and C-grid staggering, Mon. Weather Rev., 240, 3090–3105, 2012.
Slingo, J. M.: The development and verifcation of a cloud prediction scheme for the ECMWF model, Q. J. Roy. Meteor. Soc., 113, 899–927, 1987.
Smagorinsky, J.: General circulation experiments with the primitive equations, Mon. Weather Rev., 91, 99–164, https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO,2, 1963.
Souto, R. P., Silva Dias, P. L., and Vigilant, F.: Parallel Performance Analysis of a Regional Numerical Weather Prediction Model in a Petascale Machine, in: High Performance Computing, Communications in Computer and Information Science, 565, 146–150, 2015.
Souza, E. P.: Theoretical and numerical study of the relationship between convection and heterogeneous surfaces in the Amazon region, 121 pp., PhD Dissertation – University of São Paulo, São Paulo, 1999 (in Portuguese).
Stockwell, W. R., Kirchner, F., and Kuhn, M.: A new mechanism for regional chemistry modeling, J. Geophys. Res., 102, 25847–25879, 1997.
Stuefer, M., Freitas, S. R., Grell, G., Webley, P., Peckham, S., McKeen, S. A., and Egan, S. D.: Inclusion of ash and SO2 emissions from volcanic eruptions in WRF-Chem: development and some applications, Geosci. Model Dev., 6, 457–468, https://doi.org/10.5194/gmd-6-457-2013, 2013.
Stull, R. B.: An introduction to boundary layer meteorology, Kluwer Academic Publishers, Dordrecht, Netherlands, 1988.
Sun, Z. and Shine, K. P.: Studies of the radiative properties of ice and mixed-phase clouds, Q. J. Roy. Meteor. Soc., 120, 111–137, https://doi.org/10.1002/qj.49712051508, 1994.
Thompson, G. and Eidhammer, T.: A study of aerosol impacts on clouds and precipitation development in a large winter cyclone, J. Atmos. Sci., 71, 3636–3658, https://doi.org/10.1175/JAS-D-13-0305, 2014.
Thompson, G., Field, P. R., Rasmussen, R. M., and Hall, W. D.: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization, Mon. Weather Rev., 136, 5095–5115, https://doi.org/10.1175/2008MWR2387.1, 2008.
Tie, X., Madronich, S., Walters, S., Zhang, R., Rasch, P., and Collins, W.: Effects of clouds on photolysis and oxydants in the troposphere, J. Geophys. Res., 108, 1–25, 2003.
Toon, O. B., McKay, C. P., Ackerman, T. P., and Santhanam, K.: Rapid Calculation of Radiative Heating Rates and Photodissociation Rates in Inhomogeneous Multiple Scattering Atmospheres, J. Geophys. Res., 94, 16287–16301, https://doi.org/10.1029/JD094iD13p16287, 1989.
Tremback, C., Powell, J., Cotton, W., and Pielke, R.: The forward-in-time upstream advection scheme: Extension to higher orders, Mon. Weather Rev., 115, 540–555, 1987.
Tremback, C. J.: Numerical simulation of a mesoscale convective complex: model development and numerical results. Ph.D. dissertation, Atmos. Sci. Paper No. 465, Department of Atmospheric Science, Colorado State University, Fort Collins, CO 80523, 247 pp., 1990.
Tripoli, G. J. and Cotton, W. R.: The Colorado State University three-dimensional cloud/mesoscale model. Part I: General theoretical framework and sensitivity experiments, J. Rech. Atmos., 16, 185–220, 1982.
Twomey, S.: Pollution and the planetary albedo, Atmos. Environ., 8, 1251–1256, https://doi.org/10.1016/0004-6981(74)90004-3, 1974.
Vogel, B., Vogel, H., Bäumer, D., Bangert, M., Lundgren, K., Rinke, R., and Stanelle, T.: The comprehensive model system COSMO-ART – Radiative impact of aerosol on the state of the atmosphere on the regional scale, Atmos. Chem. Phys., 9, 8661–8680, https://doi.org/10.5194/acp-9-8661-2009, 2009.
Vogelezang, D. and Holtslag, A.: Evaluation and model impacts of alternative boundary-layer height formulations, Bound.-Lay. Meteorol., 81, 245–269, https://doi.org/10.1007/BF02430331, 1996.
Walcek, C. J.: Minor flux adjustment near mixing ratio extremes for simplified yet highly accurate monotonic calculation of tracer advection, J. Geophys. Res., 105, 9335–9348, https://doi.org/10.1029/1999JD901142, 2000.
Walko, R. L., Cotton, W. R., Harrington, J. L., and Meyers, M. P.: New RAMS cloud microphysics parameterization. Part I: The single-moment scheme, Atmos. Res., 38, 29–62, 1995a.
Walko, R. L., Tremback, C. J., Pielke, R. A., and Cotton, W. R.: An interactive nesting algorithm for stretched grids and variable nesting ratios, J. Appl. Meteor., 34, 994–999, 1995b.
Walko, R., Band, L., Baron, J., Kittel, F., Lammers, R., Lee, T., Ojima, D., Pielke, R., Taylor, C., Tague, C., Tremback, C., and Vidale, P.: Coupled atmosphere-biophysics- hydrology models for environmental modeling, J. Appl. Meteorol., 39, 931–944, 2000.
Wicker, L. J. and Skamarock, W. C.: A time-splitting scheme for the elastic equations incorporating second-order Runge-Kutta time differencing, Mon. Weather Rev., 126, 1992–1999, 1998.
Wicker, L. J.: A two-step Adams-Bashforth-Moulton split-explicit integrator for compressible atmospheric models, Mon. Weather Rev., 137, 3588–3595, 2009.
Wicker, L. J. and Skamarock, W. C.: Time-splitting methods for elastic models using forward time schemes, Mon. Weather Rev., 130, 2088–2097, 2002.
Wild, O., Zhu, X., and Prather, M. J.: Fast-J: accurate simulation of in and below cloud photolysis in tropospheric chemical models, J. Atmos. Chem., 37, 245–282, 2000.
Wilde, N. P., Stull, R. B., and Eloranta, E. W.: The LCL zone and cumulus onset, J. Clim. Appl. Meteor., 24, 640–657, 1985.
Williams, P. D.: A proposed modification to the Robert-Asselin time filter, Mon. Weather Rev., 137, 2538–2546, 2009.
Wyser, K. and Yang, P.: Average ice crystal size and bulk single-scattering properties of cirrus clouds, Atmos. Res., 49, 315–335, 1989.
Xiang, B., Miller, S. M., Kort, E. A., Santoni, G. W., Daube, B. C., Commane, R., Angevine, W. M., Ryerson, T. B., Trainer, M. K., Andrews, A. E., Nehrkorn, T., Tian, H., and Wofsy, S. C.: Nitrous oxide (N2O) emissions from California based on 2010 CalNex airborne measurements, J. Geophys. Res.-Atmos., 118, 2809–2820, https://doi.org/10.1002/jgrd.50189, 2013.
Xu, K.-M. and Krueger, S. K.: Evaluation of cloudiness parameterizations using a cumulus ensemble model, Mon. Weather Rev., 119, 342–367, 1991.
Xu, K.-M. and Randall, D.A.: A semiempirical cloudiness parameterization for use in climate models, J. Atmos. Sci., 53, 3084–3102, 1996.
Yang, X.-S.: Nature-Inspired Metaheuristic Algorithms, Luviner Press, 2008.
Yarwood, G., Rao, S., Yocke, M., and Whitten, G. Z.: Updates to the Carbon Bond chemical mechanism: CB05, Final Report to the US EPA, RT-0400675, Novato, CA, available at: http://www.camx.com/publ/pdfs/cb05_final_report_120805.pdf (last access: 10 January 2017), 2005.
Short summary
We present a new version of the Brazilian developments on the Regional Atmospheric Modeling System (BRAMS) where different previous versions for weather, chemistry, and the carbon cycle were unified in a single harmonized software system. This version also has a new set of state-of-the-art physical parametrizations and higher computational parallel and memory usage efficiency. BRAMS has been applied for research and operational weather and air quality forecasting, largely in South America.
We present a new version of the Brazilian developments on the Regional Atmospheric Modeling...
Special issue