Articles | Volume 10, issue 1
https://doi.org/10.5194/gmd-10-189-2017
https://doi.org/10.5194/gmd-10-189-2017
Model description paper
 | 
13 Jan 2017
Model description paper |  | 13 Jan 2017

The Brazilian developments on the Regional Atmospheric Modeling System (BRAMS 5.2): an integrated environmental model tuned for tropical areas

Saulo R. Freitas, Jairo Panetta, Karla M. Longo, Luiz F. Rodrigues, Demerval S. Moreira, Nilton E. Rosário, Pedro L. Silva Dias, Maria A. F. Silva Dias, Enio P. Souza, Edmilson D. Freitas, Marcos Longo, Ariane Frassoni, Alvaro L. Fazenda, Cláudio M. Santos e Silva, Cláudio A. B. Pavani, Denis Eiras, Daniela A. França, Daniel Massaru, Fernanda B. Silva, Fernando C. Santos, Gabriel Pereira, Gláuber Camponogara, Gonzalo A. Ferrada, Haroldo F. Campos Velho, Isilda Menezes, Julliana L. Freire, Marcelo F. Alonso, Madeleine S. Gácita, Maurício Zarzur, Rafael M. Fonseca, Rafael S. Lima, Ricardo A. Siqueira, Rodrigo Braz, Simone Tomita, Valter Oliveira, and Leila D. Martins

Related authors

Machine learning-driven characterization and prescription of aerosol optical properties for atmospheric models
Nilton Évora do Rosário, Karla M. Longo, Pedro H. Toso, Saulo R. Freitas, Marcia A. Yamasoe, Luiz Flávio Rodrigues, Otavio Medeiros, Haroldo Campos Velho, Isilda da Cunha Menezes, and Ana Isabel Miranda
EGUsphere, https://doi.org/10.5194/egusphere-2025-454,https://doi.org/10.5194/egusphere-2025-454, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Impacts of estimated plume rise on PM2.5 exceedance prediction during extreme wildfire events: a comparison of three schemes (Briggs, Freitas, and Sofiev)
Yunyao Li, Daniel Tong, Siqi Ma, Saulo R. Freitas, Ravan Ahmadov, Mikhail Sofiev, Xiaoyang Zhang, Shobha Kondragunta, Ralph Kahn, Youhua Tang, Barry Baker, Patrick Campbell, Rick Saylor, Georg Grell, and Fangjun Li
Atmos. Chem. Phys., 23, 3083–3101, https://doi.org/10.5194/acp-23-3083-2023,https://doi.org/10.5194/acp-23-3083-2023, 2023
Short summary
Introducing the VIIRS-based Fire Emission Inventory version 0 (VFEIv0)
Gonzalo A. Ferrada, Meng Zhou, Jun Wang, Alexei Lyapustin, Yujie Wang, Saulo R. Freitas, and Gregory R. Carmichael
Geosci. Model Dev., 15, 8085–8109, https://doi.org/10.5194/gmd-15-8085-2022,https://doi.org/10.5194/gmd-15-8085-2022, 2022
Short summary
Simulating wildfire emissions and plume rise using geostationary satellite fire radiative power measurements: a case study of the 2019 Williams Flats fire
Aditya Kumar, R. Bradley Pierce, Ravan Ahmadov, Gabriel Pereira, Saulo Freitas, Georg Grell, Chris Schmidt, Allen Lenzen, Joshua P. Schwarz, Anne E. Perring, Joseph M. Katich, John Hair, Jose L. Jimenez, Pedro Campuzano-Jost, and Hongyu Guo
Atmos. Chem. Phys., 22, 10195–10219, https://doi.org/10.5194/acp-22-10195-2022,https://doi.org/10.5194/acp-22-10195-2022, 2022
Short summary
The Grell–Freitas (GF) convection parameterization: recent developments, extensions, and applications
Saulo R. Freitas, Georg A. Grell, and Haiqin Li
Geosci. Model Dev., 14, 5393–5411, https://doi.org/10.5194/gmd-14-5393-2021,https://doi.org/10.5194/gmd-14-5393-2021, 2021
Short summary

Related subject area

Atmospheric sciences
Evaluation of dust emission and land surface schemes in predicting a mega Asian dust storm over South Korea using WRF-Chem
Ji Won Yoon, Seungyeon Lee, Ebony Lee, and Seon Ki Park
Geosci. Model Dev., 18, 2303–2328, https://doi.org/10.5194/gmd-18-2303-2025,https://doi.org/10.5194/gmd-18-2303-2025, 2025
Short summary
Sensitivity studies of a four-dimensional local ensemble transform Kalman filter coupled with WRF-Chem version 3.9.1 for improving particulate matter simulation accuracy
Jianyu Lin, Tie Dai, Lifang Sheng, Weihang Zhang, Shangfei Hai, and Yawen Kong
Geosci. Model Dev., 18, 2231–2248, https://doi.org/10.5194/gmd-18-2231-2025,https://doi.org/10.5194/gmd-18-2231-2025, 2025
Short summary
A Bayesian method for predicting background radiation at environmental monitoring stations in local-scale networks
Jens Peter Karolus Wenceslaus Frankemölle, Johan Camps, Pieter De Meutter, and Johan Meyers
Geosci. Model Dev., 18, 1989–2003, https://doi.org/10.5194/gmd-18-1989-2025,https://doi.org/10.5194/gmd-18-1989-2025, 2025
Short summary
Inclusion of the ECMWF ecRad radiation scheme (v1.5.0) in the MAR (v3.14), regional evaluation for Belgium, and assessment of surface shortwave spectral fluxes at Uccle
Jean-François Grailet, Robin J. Hogan, Nicolas Ghilain, David Bolsée, Xavier Fettweis, and Marilaure Grégoire
Geosci. Model Dev., 18, 1965–1988, https://doi.org/10.5194/gmd-18-1965-2025,https://doi.org/10.5194/gmd-18-1965-2025, 2025
Short summary
Development of a fast radiative transfer model for ground-based microwave radiometers (ARMS-gb v1.0): validation and comparison to RTTOV-gb
Yi-Ning Shi, Jun Yang, Wei Han, Lujie Han, Jiajia Mao, Wanlin Kan, and Fuzhong Weng
Geosci. Model Dev., 18, 1947–1964, https://doi.org/10.5194/gmd-18-1947-2025,https://doi.org/10.5194/gmd-18-1947-2025, 2025
Short summary

Cited articles

Abdul-Razzak, H. and Ghan, S. J.: A parameterization of aerosol activation 2. Multiple aerosol types, J. Geophys. Res., 105, 6837–6844, https://doi.org/10.1029/1999JD901161, 2000.
Abdul-Razzak, H. and Ghan, S. J.: A parameterization of aerosol activation 3. Sectional representation, J. Geophys. Res., 107, 4026, https://doi.org/10.1029/2001JD000483, 2002.
Albini, F. A.: PROGRAM BURNUP: A simulation model of the burning of large woody natural fuels, final Report on Research Grant INT-92754-GR by U.S.F.S. to Montana State Univ., Mechanical Engineering Dept., 1994.
Albrecht, B. A.: Aerosols, cloud microphysics, and fractional cloudiness, Science, 245, 1227–1230, https://doi.org/10.1126/science.245.4923.1227, 1989.
Albrecht, B. A., Ramanathan, V., and Boville, B. A.: The effects of cumulus moisture transports on the simulation of climate with a general circulation model, J. Atmos. Sci., 43, 2443–2462, 1986.
Download
Short summary
We present a new version of the Brazilian developments on the Regional Atmospheric Modeling System (BRAMS) where different previous versions for weather, chemistry, and the carbon cycle were unified in a single harmonized software system. This version also has a new set of state-of-the-art physical parametrizations and higher computational parallel and memory usage efficiency. BRAMS has been applied for research and operational weather and air quality forecasting, largely in South America.
Share