Articles | Volume 10, issue 4
https://doi.org/10.5194/gmd-10-1467-2017
https://doi.org/10.5194/gmd-10-1467-2017
Model description paper
 | 
11 Apr 2017
Model description paper |  | 11 Apr 2017

ASIS v1.0: an adaptive solver for the simulation of atmospheric chemistry

Daniel Cariolle, Philippe Moinat, Hubert Teyssèdre, Luc Giraud, Béatrice Josse, and Franck Lefèvre

Related authors

Parametric Sensitivity and Constraint of Contrail Cirrus Radiative Forcing in the Atmospheric Component of CNRM-CM6-1
Maxime Perini, Laurent Terray, Daniel Cariolle, Saloua Peatier, and Marie-Pierre Moine
EGUsphere, https://doi.org/10.5194/egusphere-2023-2478,https://doi.org/10.5194/egusphere-2023-2478, 2023
Preprint archived
Short summary
Implementation of an immersed boundary method in the Meso-NH v5.2 model: applications to an idealized urban environment
Franck Auguste, Géraldine Réa, Roberto Paoli, Christine Lac, Valery Masson, and Daniel Cariolle
Geosci. Model Dev., 12, 2607–2633, https://doi.org/10.5194/gmd-12-2607-2019,https://doi.org/10.5194/gmd-12-2607-2019, 2019
Short summary
Modeling lightning-NOx chemistry on a sub-grid scale in a global chemical transport model
Alicia Gressent, Bastien Sauvage, Daniel Cariolle, Mathew Evans, Maud Leriche, Céline Mari, and Valérie Thouret
Atmos. Chem. Phys., 16, 5867–5889, https://doi.org/10.5194/acp-16-5867-2016,https://doi.org/10.5194/acp-16-5867-2016, 2016
Short summary
High-resolution large-eddy simulations of stably stratified flows: application to subkilometer-scale turbulence in the upper troposphere–lower stratosphere
R. Paoli, O. Thouron, J. Escobar, J. Picot, and D. Cariolle
Atmos. Chem. Phys., 14, 5037–5055, https://doi.org/10.5194/acp-14-5037-2014,https://doi.org/10.5194/acp-14-5037-2014, 2014

Related subject area

Atmospheric sciences
Development of the CMA-GFS-AERO 4D-Var assimilation system v1.0 – Part 1: System description and preliminary experimental results
Yongzhu Liu, Xiaoye Zhang, Wei Han, Chao Wang, Wenxing Jia, Deying Wang, Zhaorong Zhuang, and Xueshun Shen
Geosci. Model Dev., 18, 4855–4876, https://doi.org/10.5194/gmd-18-4855-2025,https://doi.org/10.5194/gmd-18-4855-2025, 2025
Short summary
Optimized dynamic mode decomposition for reconstruction and forecasting of atmospheric chemistry data
Meghana Velagar, Christoph Keller, and J. Nathan Kutz
Geosci. Model Dev., 18, 4667–4684, https://doi.org/10.5194/gmd-18-4667-2025,https://doi.org/10.5194/gmd-18-4667-2025, 2025
Short summary
Interpolating turbulent heat fluxes missing from a prairie observation on the Tibetan Plateau using artificial intelligence models
Quanzhe Hou, Zhiqiu Gao, Zexia Duan, and Minghui Yu
Geosci. Model Dev., 18, 4625–4641, https://doi.org/10.5194/gmd-18-4625-2025,https://doi.org/10.5194/gmd-18-4625-2025, 2025
Short summary
Carbon dioxide plume dispersion simulated at the hectometer scale using DALES: model formulation and observational evaluation
Arseniy Karagodin-Doyennel, Fredrik Jansson, Bart J. H. van Stratum, Hugo Denier van der Gon, Jordi Vilà-Guerau de Arellano, and Sander Houweling
Geosci. Model Dev., 18, 4571–4599, https://doi.org/10.5194/gmd-18-4571-2025,https://doi.org/10.5194/gmd-18-4571-2025, 2025
Short summary
Low-level jets in the North and Baltic seas: mesoscale model sensitivity and climatology using WRF V4.2.1
Bjarke T. E. Olsen, Andrea N. Hahmann, Nicolas G. Alonso-de-Linaje, Mark Žagar, and Martin Dörenkämper
Geosci. Model Dev., 18, 4499–4533, https://doi.org/10.5194/gmd-18-4499-2025,https://doi.org/10.5194/gmd-18-4499-2025, 2025
Short summary

Cited articles

Ashino, R., Nagase, M., and Vaillancourt, R.: Behind and beyond the MATLAB ODE suite, Comput. Math., 40, 491–512, 2000.
Audiffren, N., Renard, M., Buisson, E., and Chaumerliac, N.: Deviations from the Henry's law equilibrium during cloud events: a numerical approach of the mass transfer between phases and specific numerical effects, Atmos. Res., 49, 139–161, 1998.
Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B., Fiore, A. M., Li, Q., Liu, H., Mickley, L. J., and Schultz, M.: Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation, J. Geophys. Res., 106, 23073–23096, 2001.
Carver, G. D. and Stott, P. A.: IMPACT: an implicit time integration scheme for chemical species and families, Ann. Geophys., 18, 337–346, https://doi.org/10.1007/s00585-000-0337-y, 2000.
Crassier, V., Suh, K., Tulet, P., and Rosset, R.: Development of a reduced chemical scheme for use in mesoscale meteorological models, Atmos. Environ., 34, 2633–2644, 2000.
Download
Short summary
This article reports on the development and tests of the adaptive semi-implicit scheme (ASIS) solver for the simulation of atmospheric chemistry. To solve the ordinary differential equations associated with the time evolution of the species concentrations, ASIS adopts a one-step linearized implicit scheme. It conserves mass and has a time-stepping module to control the accuracy of the numerical solution. ASIS was found competitive in terms of computation cost against higher-order schemes.
Share