Articles | Volume 10, issue 4
https://doi.org/10.5194/gmd-10-1467-2017
https://doi.org/10.5194/gmd-10-1467-2017
Model description paper
 | 
11 Apr 2017
Model description paper |  | 11 Apr 2017

ASIS v1.0: an adaptive solver for the simulation of atmospheric chemistry

Daniel Cariolle, Philippe Moinat, Hubert Teyssèdre, Luc Giraud, Béatrice Josse, and Franck Lefèvre

Related authors

Parametric Sensitivity and Constraint of Contrail Cirrus Radiative Forcing in the Atmospheric Component of CNRM-CM6-1
Maxime Perini, Laurent Terray, Daniel Cariolle, Saloua Peatier, and Marie-Pierre Moine
EGUsphere, https://doi.org/10.5194/egusphere-2023-2478,https://doi.org/10.5194/egusphere-2023-2478, 2023
Preprint archived
Short summary
Implementation of an immersed boundary method in the Meso-NH v5.2 model: applications to an idealized urban environment
Franck Auguste, Géraldine Réa, Roberto Paoli, Christine Lac, Valery Masson, and Daniel Cariolle
Geosci. Model Dev., 12, 2607–2633, https://doi.org/10.5194/gmd-12-2607-2019,https://doi.org/10.5194/gmd-12-2607-2019, 2019
Short summary
Modeling lightning-NOx chemistry on a sub-grid scale in a global chemical transport model
Alicia Gressent, Bastien Sauvage, Daniel Cariolle, Mathew Evans, Maud Leriche, Céline Mari, and Valérie Thouret
Atmos. Chem. Phys., 16, 5867–5889, https://doi.org/10.5194/acp-16-5867-2016,https://doi.org/10.5194/acp-16-5867-2016, 2016
Short summary
High-resolution large-eddy simulations of stably stratified flows: application to subkilometer-scale turbulence in the upper troposphere–lower stratosphere
R. Paoli, O. Thouron, J. Escobar, J. Picot, and D. Cariolle
Atmos. Chem. Phys., 14, 5037–5055, https://doi.org/10.5194/acp-14-5037-2014,https://doi.org/10.5194/acp-14-5037-2014, 2014

Related subject area

Atmospheric sciences
Indian Institute of Tropical Meteorology (IITM) High-Resolution Global Forecast Model version 1: an attempt to resolve monsoon prediction deadlock
R. Phani Murali Krishna, Siddharth Kumar, A. Gopinathan Prajeesh, Peter Bechtold, Nils Wedi, Kumar Roy, Malay Ganai, B. Revanth Reddy, Snehlata Tirkey, Tanmoy Goswami, Radhika Kanase, Sahadat Sarkar, Medha Deshpande, and Parthasarathi Mukhopadhyay
Geosci. Model Dev., 18, 1879–1894, https://doi.org/10.5194/gmd-18-1879-2025,https://doi.org/10.5194/gmd-18-1879-2025, 2025
Short summary
Cell-tracking-based framework for assessing nowcasting model skill in reproducing growth and decay of convective rainfall
Jenna Ritvanen, Seppo Pulkkinen, Dmitri Moisseev, and Daniele Nerini
Geosci. Model Dev., 18, 1851–1878, https://doi.org/10.5194/gmd-18-1851-2025,https://doi.org/10.5194/gmd-18-1851-2025, 2025
Short summary
NeuralMie (v1.0): an aerosol optics emulator
Andrew Geiss and Po-Lun Ma
Geosci. Model Dev., 18, 1809–1827, https://doi.org/10.5194/gmd-18-1809-2025,https://doi.org/10.5194/gmd-18-1809-2025, 2025
Short summary
Simulation performance of planetary boundary layer schemes in WRF v4.3.1 for near-surface wind over the western Sichuan Basin: a single-site assessment
Qin Wang, Bo Zeng, Gong Chen, and Yaoting Li
Geosci. Model Dev., 18, 1769–1784, https://doi.org/10.5194/gmd-18-1769-2025,https://doi.org/10.5194/gmd-18-1769-2025, 2025
Short summary
FootNet v1.0: development of a machine learning emulator of atmospheric transport
Tai-Long He, Nikhil Dadheech, Tammy M. Thompson, and Alexander J. Turner
Geosci. Model Dev., 18, 1661–1671, https://doi.org/10.5194/gmd-18-1661-2025,https://doi.org/10.5194/gmd-18-1661-2025, 2025
Short summary

Cited articles

Ashino, R., Nagase, M., and Vaillancourt, R.: Behind and beyond the MATLAB ODE suite, Comput. Math., 40, 491–512, 2000.
Audiffren, N., Renard, M., Buisson, E., and Chaumerliac, N.: Deviations from the Henry's law equilibrium during cloud events: a numerical approach of the mass transfer between phases and specific numerical effects, Atmos. Res., 49, 139–161, 1998.
Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B., Fiore, A. M., Li, Q., Liu, H., Mickley, L. J., and Schultz, M.: Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation, J. Geophys. Res., 106, 23073–23096, 2001.
Carver, G. D. and Stott, P. A.: IMPACT: an implicit time integration scheme for chemical species and families, Ann. Geophys., 18, 337–346, https://doi.org/10.1007/s00585-000-0337-y, 2000.
Crassier, V., Suh, K., Tulet, P., and Rosset, R.: Development of a reduced chemical scheme for use in mesoscale meteorological models, Atmos. Environ., 34, 2633–2644, 2000.
Download
Short summary
This article reports on the development and tests of the adaptive semi-implicit scheme (ASIS) solver for the simulation of atmospheric chemistry. To solve the ordinary differential equations associated with the time evolution of the species concentrations, ASIS adopts a one-step linearized implicit scheme. It conserves mass and has a time-stepping module to control the accuracy of the numerical solution. ASIS was found competitive in terms of computation cost against higher-order schemes.
Share