Articles | Volume 10, issue 4
Model description paper
11 Apr 2017
Model description paper |  | 11 Apr 2017

ASIS v1.0: an adaptive solver for the simulation of atmospheric chemistry

Daniel Cariolle, Philippe Moinat, Hubert Teyssèdre, Luc Giraud, Béatrice Josse, and Franck Lefèvre


Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by DANIEL CARIOLLE on behalf of the Authors (09 Mar 2017)  Author's response    Manuscript
ED: Publish as is (16 Mar 2017) by Gerd A. Folberth
Short summary
This article reports on the development and tests of the adaptive semi-implicit scheme (ASIS) solver for the simulation of atmospheric chemistry. To solve the ordinary differential equations associated with the time evolution of the species concentrations, ASIS adopts a one-step linearized implicit scheme. It conserves mass and has a time-stepping module to control the accuracy of the numerical solution. ASIS was found competitive in terms of computation cost against higher-order schemes.