Articles | Volume 10, issue 3
https://doi.org/10.5194/gmd-10-1091-2017
https://doi.org/10.5194/gmd-10-1091-2017
Model description paper
 | 
10 Mar 2017
Model description paper |  | 10 Mar 2017

Development of a probabilistic ocean modelling system based on NEMO 3.5: application at eddying resolution

Laurent Bessières, Stéphanie Leroux, Jean-Michel Brankart, Jean-Marc Molines, Marie-Pierre Moine, Pierre-Antoine Bouttier, Thierry Penduff, Laurent Terray, Bernard Barnier, and Guillaume Sérazin

Abstract. This paper presents the technical implementation of a new, probabilistic version of the NEMO ocean–sea-ice modelling system. Ensemble simulations with N members running simultaneously within a single executable, and interacting mutually if needed, are made possible through an enhanced message-passing interface (MPI) strategy including a double parallelization in the spatial and ensemble dimensions. An example application is then given to illustrate the implementation, performances, and potential use of this novel probabilistic modelling tool. A large ensemble of 50 global ocean–sea-ice hindcasts has been performed over the period 1960–2015 at eddy-permitting resolution (1∕4°) for the OCCIPUT (oceanic chaos – impacts, structure, predictability) project. This application aims to simultaneously simulate the intrinsic/chaotic and the atmospherically forced contributions to the ocean variability, from mesoscale turbulence to interannual-to-multidecadal timescales. Such an ensemble indeed provides a unique way to disentangle and study both contributions, as the forced variability may be estimated through the ensemble mean, and the intrinsic chaotic variability may be estimated through the ensemble spread.

Download
Short summary
A new, probabilistic version of an ocean modelling system has been implemented in order to simulate the chaotic and the atmospherically forced contributions to the ocean variability. For that purpose, a large ensemble of global hindcasts has been performed. Results illustrate the importance of the oceanic chaos on climate-related oceanic indices, and the relevance of such probabilistic ocean modelling approaches to anticipating the behaviour of the next generation of coupled climate models.