Articles | Volume 10, issue 3
https://doi.org/10.5194/gmd-10-1091-2017
https://doi.org/10.5194/gmd-10-1091-2017
Model description paper
 | 
10 Mar 2017
Model description paper |  | 10 Mar 2017

Development of a probabilistic ocean modelling system based on NEMO 3.5: application at eddying resolution

Laurent Bessières, Stéphanie Leroux, Jean-Michel Brankart, Jean-Marc Molines, Marie-Pierre Moine, Pierre-Antoine Bouttier, Thierry Penduff, Laurent Terray, Bernard Barnier, and Guillaume Sérazin

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Laurent Bessières on behalf of the Authors (16 Dec 2016)  Author's response   Manuscript 
ED: Referee Nomination & Report Request started (21 Dec 2016) by David Ham
RR by Anonymous Referee #3 (31 Dec 2016)
ED: Publish as is (04 Jan 2017) by David Ham
AR by Laurent Bessières on behalf of the Authors (13 Jan 2017)  Author's response   Manuscript 
Download
Short summary
A new, probabilistic version of an ocean modelling system has been implemented in order to simulate the chaotic and the atmospherically forced contributions to the ocean variability. For that purpose, a large ensemble of global hindcasts has been performed. Results illustrate the importance of the oceanic chaos on climate-related oceanic indices, and the relevance of such probabilistic ocean modelling approaches to anticipating the behaviour of the next generation of coupled climate models.