Articles | Volume 9, issue 2
Geosci. Model Dev., 9, 799–822, 2016
https://doi.org/10.5194/gmd-9-799-2016
Geosci. Model Dev., 9, 799–822, 2016
https://doi.org/10.5194/gmd-9-799-2016
Development and technical paper
26 Feb 2016
Development and technical paper | 26 Feb 2016

The description and validation of the computationally Efficient CH4–CO–OH (ECCOHv1.01) chemistry module for 3-D model applications

Yasin F. Elshorbany et al.

Related authors

Light-induced protein nitration and degradation with HONO emission
Hannah Meusel, Yasin Elshorbany, Uwe Kuhn, Thorsten Bartels-Rausch, Kathrin Reinmuth-Selzle, Christopher J. Kampf, Guo Li, Xiaoxiang Wang, Jos Lelieveld, Ulrich Pöschl, Thorsten Hoffmann, Hang Su, Markus Ammann, and Yafang Cheng
Atmos. Chem. Phys., 17, 11819–11833, https://doi.org/10.5194/acp-17-11819-2017,https://doi.org/10.5194/acp-17-11819-2017, 2017
Short summary
Global and regional impacts of HONO on the chemical composition of clouds and aerosols
Y. F. Elshorbany, P. J. Crutzen, B. Steil, A. Pozzer, H. Tost, and J. Lelieveld
Atmos. Chem. Phys., 14, 1167–1184, https://doi.org/10.5194/acp-14-1167-2014,https://doi.org/10.5194/acp-14-1167-2014, 2014

Related subject area

Atmospheric sciences
An aerosol vertical data assimilation system (NAQPMS-PDAF v1.0): development and application
Haibo Wang, Ting Yang, Zifa Wang, Jianjun Li, Wenxuan Chai, Guigang Tang, Lei Kong, and Xueshun Chen
Geosci. Model Dev., 15, 3555–3585, https://doi.org/10.5194/gmd-15-3555-2022,https://doi.org/10.5194/gmd-15-3555-2022, 2022
Short summary
Earth system modeling of mercury using CESM2 – Part 1: Atmospheric model CAM6-Chem/Hg v1.0
Peng Zhang and Yanxu Zhang
Geosci. Model Dev., 15, 3587–3601, https://doi.org/10.5194/gmd-15-3587-2022,https://doi.org/10.5194/gmd-15-3587-2022, 2022
Short summary
Conservation laws in a neural network architecture: enforcing the atom balance of a Julia-based photochemical model (v0.2.0)
Patrick Obin Sturm and Anthony S. Wexler
Geosci. Model Dev., 15, 3417–3431, https://doi.org/10.5194/gmd-15-3417-2022,https://doi.org/10.5194/gmd-15-3417-2022, 2022
Short summary
On the application and grid-size sensitivity of the urban dispersion model CAIRDIO v2.0 under real city weather conditions
Michael Weger, Holger Baars, Henriette Gebauer, Maik Merkel, Alfred Wiedensohler, and Bernd Heinold
Geosci. Model Dev., 15, 3315–3345, https://doi.org/10.5194/gmd-15-3315-2022,https://doi.org/10.5194/gmd-15-3315-2022, 2022
Short summary
Development and evaluation of an advanced National Air Quality Forecasting Capability using the NOAA Global Forecast System version 16
Patrick C. Campbell, Youhua Tang, Pius Lee, Barry Baker, Daniel Tong, Rick Saylor, Ariel Stein, Jianping Huang, Ho-Chun Huang, Edward Strobach, Jeff McQueen, Li Pan, Ivanka Stajner, Jamese Sims, Jose Tirado-Delgado, Youngsun Jung, Fanglin Yang, Tanya L. Spero, and Robert C. Gilliam
Geosci. Model Dev., 15, 3281–3313, https://doi.org/10.5194/gmd-15-3281-2022,https://doi.org/10.5194/gmd-15-3281-2022, 2022
Short summary

Cited articles

Amnuaylojaroen, T., Barth, M. C., Emmons, L. K., Carmichael, G. R., Kreasuwun, J., Prasitwattanaseree, S., and Chantara, S.: Effect of different emission inventories on modeled ozone and carbon monoxide in Southeast Asia, Atmos. Chem. Phys., 14, 12983–13012, https://doi.org/10.5194/acp-14-12983-2014, 2014.
Bovensmann, H., Burrows, J. P., Buchwitz, M., Frerick, J., Noël, S., Rozanov, V. V., Chance, K. V., and Goede, A.: SCIAMACHY – Mission Objectives and measurement Modes, J. Atmos. Sci., 56, 127–150, 1999.
Chameides, W., Liu, S. C., and Cicerone, R. J.: Possible variations in atmospheric methane, J. Geophys. Res., 81, 4997–5001, 1976.
Chen, Y.-H. and Prinn, R. G.: Estimation of atmospheric methane emissions between 1996 and 2001 using a three-dimensional global chemical transport model, J. Geophys. Res., 111, D10307, https://doi.org/10.1029/2005JD006058, 2006.
Download
Short summary
The ECCOH (pronounced "echo") chemistry module interactively simulates the photochemistry of the CH4–CO–OH system within a chemistry climate model, carbon cycle model, or Earth system model. The computational efficiency of the module allows many multi-decadal sensitivity simulations of the CH4–CO–OH system. This capability is important for capturing nonlinear feedbacks of the CH4–CO–OH system and understanding the perturbations to methane, CO, and OH and the concomitant climate impacts.