Articles | Volume 9, issue 2
https://doi.org/10.5194/gmd-9-451-2016
https://doi.org/10.5194/gmd-9-451-2016
Development and technical paper
 | 
04 Feb 2016
Development and technical paper |  | 04 Feb 2016

Modelling the dispersion of particle numbers in five European cities

J. Kukkonen, M. Karl, M. P. Keuken, H. A. C. Denier van der Gon, B. R. Denby, V. Singh, J. Douros, A. Manders, Z. Samaras, N. Moussiopoulos, S. Jonkers, M. Aarnio, A. Karppinen, L. Kangas, S. Lützenkirchen, T. Petäjä, I. Vouitsis, and R. S. Sokhi

Related authors

Measurement Report: The effects of SECA regulations on the atmospheric SO2 concentrations in the Baltic Sea, based on long-term observations at the Finnish Utö Island
Androniki Maragkidou, Tiia Grönholm, Laura Rautiainen, Juha Nikmo, Jukka-Pekka Jalkanen, Timo Mäkelä, Timo Anttila, Lauri Laakso, and Jaakko Kukkonen
EGUsphere, https://doi.org/10.5194/egusphere-2024-1703,https://doi.org/10.5194/egusphere-2024-1703, 2024
Short summary
The contribution of residential wood combustion to the PM2.5 concentrations in the Helsinki metropolitan area
Leena Kangas, Jaakko Kukkonen, Mari Kauhaniemi, Kari Riikonen, Mikhail Sofiev, Anu Kousa, Jarkko V. Niemi, and Ari Karppinen
Atmos. Chem. Phys., 24, 1489–1507, https://doi.org/10.5194/acp-24-1489-2024,https://doi.org/10.5194/acp-24-1489-2024, 2024
Short summary
Effects of temperature and salinity on bubble-bursting aerosol formation simulated with a bubble-generating chamber
Svetlana Sofieva, Eija Asmi, Nina S. Atanasova, Aino E. Heikkinen, Emeline Vidal, Jonathan Duplissy, Martin Romantschuk, Rostislav Kouznetsov, Jaakko Kukkonen, Dennis H. Bamford, Antti-Pekka Hyvärinen, and Mikhail Sofiev
Atmos. Meas. Tech., 15, 6201–6219, https://doi.org/10.5194/amt-15-6201-2022,https://doi.org/10.5194/amt-15-6201-2022, 2022
Short summary
An emergency response model for the formation and dispersion of plumes originating from major fires (BUOYANT v4.20)
Jaakko Kukkonen, Juha Nikmo, Kari Riikonen, Ilmo Westerholm, Pekko Ilvessalo, Tuomo Bergman, and Klaus Haikarainen
Geosci. Model Dev., 15, 4027–4054, https://doi.org/10.5194/gmd-15-4027-2022,https://doi.org/10.5194/gmd-15-4027-2022, 2022
Short summary
Description and evaluation of the community aerosol dynamics model MAFOR v2.0
Matthias Karl, Liisa Pirjola, Tiia Grönholm, Mona Kurppa, Srinivasan Anand, Xiaole Zhang, Andreas Held, Rolf Sander, Miikka Dal Maso, David Topping, Shuai Jiang, Leena Kangas, and Jaakko Kukkonen
Geosci. Model Dev., 15, 3969–4026, https://doi.org/10.5194/gmd-15-3969-2022,https://doi.org/10.5194/gmd-15-3969-2022, 2022
Short summary

Related subject area

Atmospheric sciences
Valid time shifting ensemble Kalman filter (VTS-EnKF) for dust storm forecasting
Mijie Pang, Jianbing Jin, Arjo Segers, Huiya Jiang, Wei Han, Batjargal Buyantogtokh, Ji Xia, Li Fang, Jiandong Li, Hai Xiang Lin, and Hong Liao
Geosci. Model Dev., 17, 8223–8242, https://doi.org/10.5194/gmd-17-8223-2024,https://doi.org/10.5194/gmd-17-8223-2024, 2024
Short summary
An updated parameterization of the unstable atmospheric surface layer in the Weather Research and Forecasting (WRF) modeling system
Prabhakar Namdev, Maithili Sharan, Piyush Srivastava, and Saroj Kanta Mishra
Geosci. Model Dev., 17, 8093–8114, https://doi.org/10.5194/gmd-17-8093-2024,https://doi.org/10.5194/gmd-17-8093-2024, 2024
Short summary
The impact of cloud microphysics and ice nucleation on Southern Ocean clouds assessed with single-column modeling and instrument simulators
Andrew Gettelman, Richard Forbes, Roger Marchand, Chih-Chieh Chen, and Mark Fielding
Geosci. Model Dev., 17, 8069–8092, https://doi.org/10.5194/gmd-17-8069-2024,https://doi.org/10.5194/gmd-17-8069-2024, 2024
Short summary
An updated aerosol simulation in the Community Earth System Model (v2.1.3): dust and marine aerosol emissions and secondary organic aerosol formation
Yujuan Wang, Peng Zhang, Jie Li, Yaman Liu, Yanxu Zhang, Jiawei Li, and Zhiwei Han
Geosci. Model Dev., 17, 7995–8021, https://doi.org/10.5194/gmd-17-7995-2024,https://doi.org/10.5194/gmd-17-7995-2024, 2024
Short summary
Exploring ship track spreading rates with a physics-informed Langevin particle parameterization
Lucas A. McMichael, Michael J. Schmidt, Robert Wood, Peter N. Blossey, and Lekha Patel
Geosci. Model Dev., 17, 7867–7888, https://doi.org/10.5194/gmd-17-7867-2024,https://doi.org/10.5194/gmd-17-7867-2024, 2024
Short summary

Cited articles

Atkinson, R. W., Fuller, G. W., Anderson, H. R., Harrison, R. M., and Armstrong, B.: Urban ambient particle metrics and health: a time series analysis, Epidemiology, 21, 501–511, 2010.
Beddows, D. C. S., Harrison, R. M., Green, D. C., and Fuller, G. W.: Receptor modelling of both particle composition and size distribution from a background site in London, UK, Atmos. Chem. Phys., 15, 10107–10125, https://doi.org/10.5194/acp-15-10107-2015, 2015.
Beelen, R., Voogt, M., Duyzer, J., Zandveld, P., and Hoek, G.: Comparison of the performances of land-use regression modelling and dispersion modelling in estimating small-scale variations in long-term air pollution concentrations in a Dutch urban area, Atmos. Environ., 44, 4614–4621, 2010.
Bualert, S.: Development and Application of an Advanced Gaussian Urban Air Quality Model, University of Hertfordshire, UK, 2002.
Download
Short summary
For analyzing the health effects of particulate matter, it is necessary to consider not only the mass of particles, but also their sizes and composition. A simple measure for the former is the number concentration of particles. We present particle number concentrations in five major European cities, namely Helsinki, Oslo, London, Rotterdam, and Athens, in 2008, based mainly on modelling. The concentrations of PN were mostly influenced by the emissions from local vehicular traffic.