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Abstract. We present an overview of the modelling of par-

ticle number concentrations (PNCs) in five major Euro-

pean cities, namely Helsinki, Oslo, London, Rotterdam, and

Athens, in 2008. Novel emission inventories of particle num-

bers have been compiled both on urban and European scales.

We used atmospheric dispersion modelling for PNCs in the

five target cities and on a European scale, and evaluated the

predicted results against available measured concentrations.

In all the target cities, the concentrations of particle numbers

(PNs) were mostly influenced by the emissions originating

from local vehicular traffic. The influence of shipping and

harbours was also significant for Helsinki, Oslo, Rotterdam,

and Athens, but not for London. The influence of the aviation

emissions in Athens was also notable. The regional back-

ground concentrations were clearly lower than the contribu-

tions originating from urban sources in Helsinki, Oslo, and

Athens. The regional background was also lower than urban

contributions in traffic environments in London, but higher or

approximately equal to urban contributions in Rotterdam. It

was numerically evaluated that the influence of coagulation

and dry deposition on the predicted PNCs was substantial for

the urban background in Oslo. The predicted and measured

annual average PNCs in four cities agreed within approxi-

mately ≤ 26 % (measured as fractional biases), except for

one traffic station in London. This study indicates that it is

feasible to model PNCs in major cities within a reasonable

accuracy, although major challenges remain in the evalua-

tion of both the emissions and atmospheric transformation of

PNCs.

1 Introduction

Airborne particulate matter (PM) affects human health and

climate (e.g. Smith et al., 2009). While a large base of sci-

entific information exists on particle mass, especially for

PM10 and PM2.5, there are substantially less studies on par-

ticle numbers (PNs) and in particular on modelling disper-

sion of PNs in urban areas (e.g., Kumar et at., 2013). This

may be attributed to (i) scarcity of reliable information on

emissions, (ii) the greater complexity of physical and chem-

ical atmospheric processes, and (iii) lack of monitoring data

of PN. The majority of urban particles – in terms of num-

ber concentration – are ultrafine particles (UFP), i.e. parti-

cles with a diameter (Dp)< 100 nm, originating mainly from

traffic-related emission (e.g. Morawska et al., 1998). The

rapid transformation processes of PN after emissions in am-

bient air, such as condensation and evaporation, coagulation,
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dry deposition, and dilution pose challenges for dispersion

modelling, especially on an urban scale (e.g. Pohjola et al.,

2003; Ketzel et al., 2004; Kittelson et al., 2004; Kumar et

al., 2011, von Bismarck-Osten et al., 2013). In addition, PN

measurement techniques are also more complex and resource

consuming, compared with the measurements of particulate

mass fractions.

Although attention to the health effects of particulate mat-

ter has been focused on particle mass fractions, a number of

studies are indicating that UFPs may have specific health ef-

fects. UFPs are poorly filtered in the human respiratory tract

after inhalation, and such particles can penetrate the epithe-

lial cells of the lungs and accumulate in lymph nodes (Nel et

al., 2006). Epidemiological and toxicological studies show

a strong correlation between exposure to ultrafine particles

and various health endpoints, such as cardiovascular hospi-

tal admission (short-term exposure), mortality (long-term ex-

posure), and neurological effects (Oberdörster et al., 2004;

Delfino et al., 2005; Atkinson et al., 2010; Franck et al.,

2011; Daher et al., 2013; Loane et al., 2013).

There is a severe lack of representative sets of urban mea-

surements of particle number concentrations (PNCs) that

could be used in epidemiological studies, when compared

to particle mass. Similarly, the scientific literature is scarce

on predicting the dispersion of PNs in urban environments.

It is therefore necessary to develop and evaluate dispersion

modelling systems capable of reliably predicting PNCs.

Combustion is a direct source of UFPs, and secondary par-

ticle formation may occur via atmospheric reactions and con-

densation of semi-volatile components produced in photo-

chemical reactions (Kulmala et al., 2013, 2014; Kumar et al.,

2014). Combustion of carbon-based fuels for power gener-

ation, heating, and transport are important sources for PN

emissions (Shi et al., 2001; Obaidullah et al., 2012; Kittelson

et al., 2006; Maricq, 2007; Buzea et al., 2007; Kumar et al.,

2013; Keuken et al., 2015a, b). In most European cities, road

traffic emissions of PNs are expected to be the most impor-

tant source for exposure of the population, due to the near-

ground emissions and the vicinity of road traffic to populated

areas.

The importance of aerosol processes has been analysed via

aerosol process timescales by Zhang and Wexler (2004) and

Ketzel and Berkowicz (2004). Pohjola et al. (2003) simulated

the transformation and dilution of particulate matter on a dis-

tance scale of less than 100 m from a road in an urban area.

As expected, dilution was found to be the most important

process affecting the PNCs; however, condensation of an in-

soluble organic vapour was also found to be important, if its

concentration exceeds a certain threshold value. Ketzel and

Berkowicz (2004) evaluated that the influence of dry depo-

sition would be irrelevant on an urban timescale. Kerminen

et al. (2007) evaluated that coagulation, condensation, and

evaporation could be important in conditions, where dilution

with cleaner background air is restricted.

Small-scale combustion may also be a prominent source

of PNCs in winter (Glasius et al., 2008). Elevated lev-

els of PNs have also been found in specific areas, such

as, near harbors, refineries, and in particular near airports

(González and Rodríguez, 2013; Westerdahl et al., 2008; Zhu

et al., 2011; Keuken et al., 2012; Hsu et al., 2014). Whereas

most of the state-of-the-art chemical-transport models in-

clude treatments for aerosol size distributions and micro-

physics (Kukkonen et al., 2012), such treatments are substan-

tially less commonly included in urban-scale models. There

are currently very few models that are especially designed to

predict particle number concentrations by taking into account

particle dynamics. Kumar et al. (2013) presented a review on

the importance of aerosol transformation processes at various

urban scales and environments.

A first European size-resolved anthropogenic PN emis-

sion inventory was compiled in the framework of the EU-

funded European Integrated project on Aerosol Cloud Cli-

mate and Air Quality interactions (EUCAARI) project (De-

nier van der Gon and Hulskotte, 2010). Consolidated emis-

sion factor data bases (e.g., COPERT, PARTICULATES, and

TRANSPHORM) have recently become available to estab-

lish PN emission inventories in Europe; these have been re-

viewed by Kumar et al. (2014). According to the inventory by

Paasonen et al. (2012), for the 28 EU countries in 2010, road

transport contributed over 60 % of the total PN emissions,

non-road transport (including partly also shipping) 19 %, and

domestic combustion 13 %.

The first stage between the point of emission (vehicle

tailpipe) and the kerbside is characterized by strong turbu-

lence generated by the moving vehicles. According to Zhang

and Wexler (2004), the initial stages of dilution within a few

first seconds would be accompanied with nucleation. On-

road measurements by Rönkkö et al. (2007) demonstrated

that the nucleation mode was already present after 0.7 s res-

idence time in the atmosphere. However, the modelling of

nucleation will require detailed information about the envi-

ronmental conditions very near the tailpipe (e.g., tempera-

ture gradient, and chemical composition and concentrations

of volatile nucleating vapours). Nucleation mode particles

grow rapidly by condensation of high-molecular weight low-

volatile hydrocarbons from the unburned lubrication oil and

sulfur compounds (Kittelson et al., 2006).

In the second stage between the street and a few hundred

metres away from the street, atmospheric turbulence, induced

by wind and atmospheric instability, is the main cause for

dilution of particle concentrations. In this stage, condensa-

tion/evaporation and dilution become the major mechanisms

in altering the particle size distribution, while coagulation

and deposition play minor roles (Zhang et al., 2004). In the

third stage, between street canyon/street neighbourhood and

the urban background, the number size distribution is altered

by multiple processes, such as dilution with cleaner air, en-

trainment of polluted air, condensation of vapours, oxida-
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tive ageing, and coagulation of particles (e.g., Wehner et al.,

2002).

Asmi et al. (2011) examined aerosol number size distri-

bution data from 24 European field monitoring sites in 2008

and 2009. The data were collected from the stations at the

EUSAAR (European Supersites for Atmospheric Aerosol

Research) and GUAN networks (German Ultrafine Aerosol

Network), and represented mainly regional background or

remote locations. They categorized the aerosol to several

types: central European aerosol, Nordic aerosol, mountain

sites, and southern and western European regions, and anal-

ysed the seasonal characteristics and patterns of the various

size modes.

Hussein et al. (2007) and Pohjola et al. (2007) conducted

a field measurement campaign near a major road in an ur-

ban area in Helsinki in February 2003. Measured PNC data

at various distances from the road was compared with disper-

sion and aerosol process model predictions. A similar mea-

surement campaign was conducted downwind of a motorway

in Rotterdam (Keuken et al., 2012). Size-resolved PNC mea-

surements were compared with dispersion modelling and an

aerosol process model (Karl et al., 2011). Both these studies

concluded that dilution was shown to be the most important

process.

Gidhagen et al. (2005) implemented a three-dimensional

dispersion model in Stockholm and presented the spatial dis-

tribution of number concentrations over the whole city. Typi-

cal number concentrations in the urban background of Stock-

holm were 10 000 cm−3, and approximately 7 times higher

close to a major highway and 7 times higher within a densely

trafficked street canyon. Coagulation was found to contribute

to losses of PNCs of only a few percent, compared to parti-

cles, which are assumed not to coagulate, while including dry

deposition resulted in PNC losses of up to 25 % in certain lo-

cations. Removal of PNs due to coagulation and deposition

was more significant during peak episodes.

This study is part of the EU-funded research project

TRANSPHORM (Transport-related Air Pollution and Health

impacts – Integrated Methodologies for Assessing Particu-

late Matter). This project was one of the very few interna-

tional projects, where dispersion models have been devel-

oped and applied to predict spatially and temporally resolved

concentrations of PN for exposure and health applications

(www.transphorm.eu). The cities Helsinki, Oslo, Rotterdam,

London, and Athens were involved to test the methodologies

developed within the TRANSPHORM project at an urban

scale. These cities were selected in order to include at least

one major urban agglomeration from the following regions:

(i) the Nordic countries (Helsinki and Oslo), (ii) central and

north-western Europe (Rotterdam and London), and (iii) the

Mediterranean region (Athens).

Health studies for PN are scarce. According to the ex-

pert elicitation study by Hoek et al. (2010), there will be a

0.3 % increase in all-cause mortality per 103 particles per

cm3. Source-exposure functions based on original epidemi-

Figure 1. The target cities of this study.

ological studies for PN have been presented by Stolzel et

al. (2007) and Atkinson et al. (2010). Von Klot et al. (2005)

underlined similar effects for hospital re-admissions of a sus-

ceptible population, in cases, for which the aerosol num-

ber increased 103 particles per cm3 or aerosol mass by

10 µg m−3. However, in view of the potential health effects

for exposure to PNCs, there is a need to combine epidemio-

logical data and PNCs with a high spatial resolution.

The aim of this article is to present an overview of the

modelling of PNCs on an urban scale in five major European

cities, presented in Fig. 1: Helsinki, Oslo, Rotterdam, Lon-

don, and Athens. The target cities represent megacities, such

as London (population of approximately 8.3 million) and

Athens (we address here Greater Athens, 3.5 million), and

other major cities, such as the Helsinki metropolitan area,

Oslo, and Rotterdam (populations of 1.0, 0.6 and 0.6 million,

respectively). For simplicity, we refer to Helsinki metropoli-

tan area simply as “Helsinki” in the following. The primary

year used in the computations is 2008. The modelling of

PNCs for these cities has been presented in the present article

for the first time. The previous literature also does not contain

any compilations of PNC modelling for several cities.

We address emission inventories and emission modelling

of PN, dispersion modelling of PNCs, numerical results on

the annual average spatial distributions in the target cities,

and evaluation of the predicted results against measured

PNCs. The main scientific goals were (i) to evaluate the capa-

bility of models to predict PNCs in several European cities,

(ii) to examine the predicted spatial characteristics of PN

in the selected cities, (iii) to evaluate the contributions of

various source categories on the concentrations, and (iv) to

highlight areas of improvements in modelling PN for health-

based studies.
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2 Modelling methods

In this section the computational methods are presented,

which were used for the evaluation of PNCs in the five

target cities. We address both the methods for the evalu-

ation of emissions, and the atmospheric dispersion mod-

elling systems. For practical reasons, it was not possible

to completely harmonize the computations, by using only

one modelling system for all the cities. All of the urban

emission and dispersion modelling systems were therefore

locally or nationally developed ones; these were different

for each city. However, the regional background concentra-

tions for all the urban-scale modelling systems were com-

puted with the same model, the Long-term Ozone Simulation

– European Operational Smog (LOTOS-EUROS) chemical-

transport model (Schaap et al., 2008). We have therefore

also briefly discussed a new European-scale emission inven-

tory used as input for the above-mentioned regional-scale

chemical-transport model.

2.1 Overview of the PNC computation in the

target cities

For readability, selected summary information has been pre-

sented in Table 1 on the urban-scale computations. The more

detailed information will be presented in the following sec-

tions.

The TRANSPHORM project emission database was used

on an urban scale in three of the target cities. Two urban

modelling systems applied a meteorological pre-processing

model, two others other meteorological models, and one

modelling system applied directly measured data. All the

models included the emissions from vehicular traffic. The

shipping emissions were explicitly included in the compu-

tations of Oslo, Rotterdam, and Athens, and the importance

of primary shipping emissions was separately evaluated for

Helsinki (Soares et al., 2014). For London, the local-scale

shipping emissions were not taken into account, as its im-

portance was found to be negligible. Most models included

also the emissions from major and/or small-scale stationary

sources, or a quantitative estimate of their importance within

the target cities (for Helsinki, Oslo, London, and Athens) and

other source categories (for Oslo, Rotterdam, London, and

Athens).

The urban-scale emission and dispersion modelling sys-

tems were specific for each target city. All of the urban

dispersion modelling systems used for Helsinki, Oslo, Lon-

don, and Rotterdam are multi-source Gaussian dispersion

and transformation systems. These can also allow for dis-

persion in street canyons; however, these street canyon dis-

persion models were not used in this study (except for using

the semi-empirical street canyon model for Rotterdam). The

modelling system for Athens is based on the combined use of

a meteorological model and a chemical-transport model. All

these modelling systems have previously been extensively

evaluated against experimental data.

Regional background concentrations of PN were derived

from the LOTOS-EUROS model computations for three tar-

get cities (Oslo, London, and Rotterdam), based on the pre-

dicted values at grid squares that surrounded these cities.

However, we used measured values for the urban or re-

gional background for Helsinki and Athens, respectively. The

predicted LOTOS-EUROS regional background values were

scaled, using the ratios of measured and predicted annual av-

erage concentrations, for Oslo and London.

The aerosol transformation processes of nucleation and

condensation of H2SO4, and coagulation of particles were

taken into account in the LOTOS-EUROS computations. The

model also includes treatments for the dry and wet deposi-

tion. Measured PNC data were available in four of the cities,

in three of these for a complete year, although only at one or

two measurement stations for each city.

2.2 Emission inventories

We describe in this section both a new European-scale emis-

sion inventory and the urban emission inventories in the five

target cities.

2.2.1 European-scale emission inventory

A new emission inventory was compiled for the EU-wide

anthropogenic transport activities, supplemented by the an-

thropogenic non-transport activities. In addition to this an-

thropogenic emission inventory, we included various natu-

ral emission sources in the LOTOS-EUROS computations.

These included sea spray aerosol emissions, and the dust

emissions from road suspension, agriculture, and bare soils.

These were modelled as described by Schaap et al. (2008).

The baseline emission data in the anthropogenic emis-

sion inventory contains the following substances: NOx , SO2,

non-methane volatile organic compounds (NMVOC), CH4,

NH3, CO, PM10, PM2.5, EC (elemental carbon), B[a]P

(benzo[a]pyrene), and PN (Denier van der Gon et al., 2014).

The anthropogenic PN inventory includes particles in the size

range of 10–300 nm.

The emission data can be calculated for the individual

countries; the official UN ISO3 Country Codes were used.

We have used three groups of countries. The EU15+ group is

defined to include EU15 as well as Norway and Switzerland.

The EU12+ group contains the new member states, Malta

and European non-EU countries; the latter refers to the other

European countries in the United Nations Economic Com-

mission for the Europe domain. The EU27+ group consists

of EU15+ and EU12+. Emissions from international ship-

ping have been estimated for the various European sea re-

gions.

The first European particle number emission inventory

was made in the EU FP6 project EUCAARI (Denier van der
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Table 1. Overview information on the computational methods and the evaluation of predictions in the five target cities for 2008.

Helsinki Oslo Rotterdam London Athens

Traffic flows and

urban-scale emissions

Traffic planning model,

vehicular emission fac-

tors (Gidhagen et al.,

2005), shipping emis-

sion model STEAM2

Local traffic data,

TRANSPHORM emis-

sion database (Vouitsis

et al., 2014) with tem-

perature correction,

STEAM2

Local traffic data,

COPERT IV (Gkat-

zoflias et al., 2012) and

TRANSPHORM emis-

sion database (Vouitsis

et al., 2014)

Local traffic data, emis-

sion factors (Jones and

Harrison, 2006)

Local traffic data,

TRANSPHORM emis-

sion database and other

data (Petzold et al.,

2010; Lee et al., 2010)

Meteorological data

and its pre-processing

Meteorological pre-

processor model

MPP-FMI, based on

measured sounding

data and other data

from two stations

Diagnostic wind field

model, based on mea-

sured data at two sites

Measured data from lo-

cal airport

Meteorological pre-

processor model

GAMMA-met, based

on measured data at

one station

Prognostic model

MEMO, based on

measured data at one

location

Urban source

categories included

Vehicular traffic, im-

portance of shipping

and major stationary

sources separately eval-

uated

Vehicular traffic, ship-

ping, small-scale com-

bustion, industry, other

sources

Vehicular traffic, ship-

ping, airports and re-

fineries included in the

regional background

Vehicular traffic, all the

sources influencing ur-

ban background

Vehicular traffic, ship-

ping, aviation, station-

ary sources

Regional or urban

background concentra-

tions and their evaluation

Urban background val-

ues measured at an ur-

ban background station

LOTOS-EUROS, re-

gional background

values at the grid

squares that surround

the city, scaled using

measured regional

background values

LOTOS-EUROS, re-

gional background

values at a grid square

that surrounds the city

LOTOS-EUROS, re-

gional background

values at grid squares

that surround the city

The measured regional

background PNC val-

ues by Kalivitis et al.

(2008). The values of

other relevant com-

pounds were extracted

from LOTOS-EUROS

at grid squares sur-

rounding the city

Urban modelling

system

CAR-FMI, PN treated

as tracer

EPISODE, Aerosol

process parameterisa-

tion included

URBIS:street-canyon

and line-source models;

PN treated as tracer

OSCAR, PN treated as

tracer

MARS-aero, PN

treated as tracer

Evaluation of predictions

against measured concen-

trations

At one measurement

station for one year

At two measurement

stations, for three

months

At two measurement

stations for one year

At two measurement

stations, for one year

Measurements were not

available for 2008

Gon et al., 2010a; Kulmala et al., 2011). This inventory was

used as a starting point for the present study. For the different

transport modes (road, rail, air, and maritime navigation), a

new bottom-up PN emission estimate was made, including

also technologies and activities in the future years, 2020 and

2030.

The above-mentioned PN emission inventory includes

only anthropogenic sources; the emissions from mainly natu-

ral sources, such as wild land fires, windblown dust, and sea

salt, are not included. The inventory also does not include

vegetation-related emissions (e.g., Guenther et al., 1995), or

the formation of PNCs from biogenic VOCs (volatile organic

compounds) (e.g., Paasonen et al., 2012).

The above-mentioned emission inventory describes inter-

nally mixed PN emissions originating from several source

categories in 12 size bins, covering the particle dry diam-

eter range from 10 to 250 nm. The LOTOS-EUROS model

in combination with the M7 module uses the PN emission

as input; that is converted into the Aitken and accumulation

modes used in the M7 module. The M7 module additionally

requires the associated masses of black and organic carbon,

sulfate and mineral dust, and a division to soluble and insolu-

ble material. Using the sulfate content of the internally mixed

particles as a proxy, the PN concentrations were attributed to

the soluble and insoluble modes.

2.2.2 Urban-scale emission inventories in the

target cities

Emission inventory for Helsinki

The emission inventory included exhaust emissions from ve-

hicular traffic for the network of roads and streets in the

Helsinki metropolitan area (HMA). The traffic volumes and

average travel speeds of each traffic link were computed

using the EMME/2 transportation planning system (INRO,

1994). Traffic volume data in 2008 was used as input for

the estimation of annual average road traffic emissions in

the HMA. The final emission inventory consisted of average

hourly emissions for each line source over the year, sepa-

rately for weekdays, Saturdays, and Sundays.

The emission factors for vehicular traffic determined by

Gidhagen et al. (2005) in Stockholm have been used. They

reported fleet aggregate emission factors of particle num-

ber, based on measurements of the contribution of a ve-

www.geosci-model-dev.net/9/451/2016/ Geosci. Model Dev., 9, 451–478, 2016
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hicular fleet in different urban micro-environments. These

values were estimated to optimally correspond to the cli-

matic and traffic conditions in Helsinki. These values are

2.70× 1015 and 1.8× 1014 particles km−1 per vehicle for

heavy- and light-duty vehicles, respectively. This approach

does not specify separate emission factor values for diesel

and gasoline vehicles; instead such composite emission fac-

tors represent the combined emissions originating from both

diesel and gasoline vehicles. These values were determined

for driving speeds less than 70 km h−1; however, we have ap-

plied these values for all urban roads included in the compu-

tations. Clearly, measurements are also available for the PN

emission factors, based on laboratory measurements (e.g.,

Giechaskiel et al., 2012). However, the values determined in

laboratory studies are specific for the measured individual

vehicles, driving cycles, and dilution rates.

In addition to the computations for 2008, we computed the

PNCs at the roadside traffic station at Ring road 1, Malmi

(called simply as “Ring road 1” in the following), in 2012,

for model evaluation purposes. For the hourly computations

in 2012, the 2008 traffic volume data were scaled using the

ratio of the total vehicular mileage (km a−1) in the HMA in

2008 and 2012. These mileage values were obtained from

the national traffic emissions data archive LIPASTO (http:

//lipasto.vtt.fi/en/index.htm).

The importance of the shipping emissions was evalu-

ated based on Soares et al. (2014). They showed using

the STEAM2 shipping emission modelling (Jalkanen et al.,

2012; Johansson et al., 2013) that the contribution of primary

shipping emissions of to the concentrations of PM2.5 are only

3 % on the average in the Helsinki metropolitan area. How-

ever, this contribution can be higher than 20 % in the vicinity

of the harbours (within a distance of approximately 1 km).

Emissions from stationary sources were not included.

However, major stationary sources in the area (these are

mostly power plants) have previously been shown to have a

negligible effect on the PM2.5 concentrations near the ground

level in Helsinki (Kauhaniemi et al., 2008); the same was as-

sumed to be valid also for PNCs. Emissions from small-scale

combustion were not taken into account, as their spatial dis-

tribution was not known with sufficient accuracy. The con-

tribution of small-scale combustion to the total PM2.5 emis-

sions in the Helsinki metropolitan area has been estimated

to be 23 % in 2009 (Malkki et al., 2010). The emissions of

PM2.5 originated from aviation in the Helsinki metropolitan

area were about 17 % of the total road traffic PM2.5 emissions

in the area in 2008.

Emission inventory for Oslo

Emission factors for traffic exhaust (measured at an ambi-

ent temperature of +33 ◦C) were extracted from the emis-

sion database of the TRANSPHORM project (Vouitsis et al.,

2014) Emission factors for PN in Oslo and in other studies

(Klose et al., 2009; Olivares et al., 2007) have been found to

have a significant dependence on ambient air temperature. A

dependence of −3 % K−1 has been applied to the Oslo traf-

fic emissions, leading to significantly higher emission factors

in the cold winter period (approximately double) than those

provided in the emissions database.

Shipping emissions were based on the STEAM2 emis-

sion model (Jalkanen et al., 2012; Johansson et al., 2013).

Emissions for PN were based on the CO2 emissions,

converted first back to fuel consumption, and then PN

emissions were calculated using an emission factor of

1× 1016 particles (kg fuel)−1, recommended by Petzold et

al. (2010). Shipping emissions were evaluated in a domain of

29 km× 18 km and thus only included shipping in the Oslo

fjord area.

Domestic heating emissions of PN, due mostly to

wood burning, were calculated based on a previously

compiled PM2.5 inventory. A conversion factor of

4× 1014 particles (g PM2.5)−1 emitted was used to con-

vert PM2.5 emissions to PN emissions, based on the data

presented in Hedberg et al. (2002). Other emissions con-

cerning combustion sources, i.e. agricultural, industrial, and

mobile sources use the existing PM2.5 emissions inventory

and convert to PN using a ratio similar to diesel truck emis-

sions; a conversion factor of 3× 1015 particles (g PM2.5)−1

was applied.

Emission inventory for Rotterdam

Road traffic data and road characteristics were obtained from

a national database (www.nsl-monitoring.nl). Road traffic

data contains information about the number of vehicles,

speed, congestion, and fleet composition in-between traffic

links for every major road and motorway in Rotterdam. The

road characteristics refer to, e.g., the width and height of

buildings along the road.

The following emission factors from COPERT IV

(Gkatzoflias et al., 2012) and the TRANSPHORM

database have been applied: (i) for motorway traffic,

1015 particles km−1 veh−1 for heavy- and light-duty vehicles,

and 0.3× 1015 particles km−1 veh−1 for passenger cars; and

(ii) for urban road traffic, 0.5× 1015 particles km−1 veh−1

for heavy- and light-duty vehicles and buses, and

0.3× 1015 particles km−1 veh−1 for passenger cars.

As mentioned above, two composite emission factors were

used for passenger cars, one for motorway traffic, and the

other one for traffic in urban roads. This was necessary, as

the available traffic flow data were also in composite form,

including a value for each street for each of the following

vehicle categories: passenger cars, lorries, and busses. The

assumption of composite emission factors implies that the

fractions of passenger cars equipped with diesel, petrol, and

vehicle technologies are not spatially variable within the city.

However, these composite emission factors take into account,

e.g., the differences between the emission factors of cars us-

ing gasoline and diesel fuels.
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Airports and refineries can be potentially important

sources for PN emissions (Keuken et al., 2015a, b). How-

ever, the Airport Rotterdam is a relatively small airport; for

example, the annual average number of passengers is smaller

than 10 % of that of the main airport in the Netherlands, the

Schiphol Airport in the vicinity of Amsterdam. Major re-

fineries are located at a distance of 10 km west of the mod-

elling domain. Both the emissions from the Airport Rotter-

dam and refineries have therefore been included in the re-

gional background.

Emission inventory for London

The road traffic data for London have been obtained from

London Atmospheric Emission Inventory (LAEI; GLA,

2010). Each road link was characterised by the amount

of vehicles per day per vehicle category and mean speed.

The traffic activity data were disaggregated by vehicle cate-

gories such as motorcycles, cars including taxis, buses, light-

goods vehicles (LGV) and heavy-goods vehicles (HGV). The

HGVs are further subdivided into articulated HGVs and rigid

HGVs categories. The fleet compositions have been further

subdivided as per fuel type, weight, engine size, and emis-

sion standards.

The emission model in the current version of the OSCAR

system commonly uses the emission functions and factors

based on COPERT IV (Gkatzoflias et al., 2012) and the De-

partment for Transport (DfT) emission data base. However,

due to the unavailability of emissions in that database for

PNs, emission factors from Jones and Harrison (2006) have

been used in this study.

According to the LAEI (GLA, 2010), the most important

source categories of PM10 in London in 2015 were road

transport, agriculture-nature, and industrial processes. The

PM10 emission from shipping was only 2 ton year−1, which

is a negligible fraction (0.08 %) of total emissions. We there-

fore neglected the influence of shipping in the case of Lon-

don. The contribution of mass-based particulate matter emis-

sions originating from small-scale house heating is also neg-

ligible, compared with that of the other main source cate-

gories in London. We therefore did not include house heating

as a separate source category in the urban-scale computations

in London.

Emission inventory for Athens

For Athens, PN emissions included vehicular traffic, ship-

ping, and aviation. Emission factors for traffic exhausts

were taken from the TRANSPHORM emission database

(Vouitsis et al., 2014). Emissions from shipping and the

major ports, and airport emissions were calculated on

the basis of the operational action plan for air pollu-

tion management in Athens. This plan was developed for

2004, using activity and fuel consumption data (Samaras

et al., 2012). The emission factor used for shipping was

1016 particles (kg fuel)−1 according to Petzold et al. (2010),

and for aviation 6× 1014 particles (kg fuel)−1, assuming a

fuel sulfur content of 1000 ppm (Lee et al., 2010).

2.3 Dispersion and transformation modelling

First, we address the dispersion modelling on a continen-

tal scale, which provided the regional background concen-

trations for urban dispersion modelling. Second, we discuss

the urban-scale dispersion modelling systems used in the five

target cities.

2.3.1 Chemical-transport modelling on a

European scale

The chemistry-transport model LOTOS-EUROS (Schaap

et al., 2008) was used in this study to evaluate the re-

gional background PNCs. Compared with other widely used

chemical-transport models in Europe, reviewed by Kukko-

nen et al. (2012), the model is of intermediate complex-

ity. The relevant processes have been parameterized in such

a way that the computational demands are modest. The

LOTOS-EUROS model has been included in several inter-

national model inter-comparison studies that have addressed

the dispersion and transformation of ozone and particulate

matter (e.g., Stern et al., 2008; Solazzo et al., 2012a, b). The

model performance has in these model inter-comparisons

been comparable with other European chemical-transport

models.

The M7 aerosol microphysics module (Vignati et al.,

2004) was coupled to the LOTOS-EUROS model. This mod-

ule accounts for nucleation and condensation of H2SO4, and

coagulation of particles. The default nucleation scheme was

replaced by the activation type parameterization of Kulmala

et al. (2006), which is better suited for the boundary layer. In

the model treatment, the processes of nucleation and conden-

sation are interdependent; they are linked by the availability

of H2SO4. In the M7 module, the amount of H2SO4 that is

available for nucleation is limited by the amount of H2SO4

that is condensed onto existing particles, within each numer-

ical time step.

Formation of H2SO4 was based on the default gas-phase

chemistry of LOTOS-EUROS, using emission inventories

provided by the MACC (Monitoring Atmospheric Composi-

tion and Climate) project (TNO-MACC emission inventory)

and the TRANSPHORM emission inventories. The PN emis-

sions were converted to values that are compatible with the

M7 module, using assumptions on the chemical composition

of particulate matter (cf. Sect. 2.2.1).

Although the size range of the anthropogenic emissions

was assumed to be from 10 to 300 nm, the dispersion com-

putations were performed for the size range of 10–1000 nm.

There are several reasons for the relatively wider size range

of the dispersion computations. First, due to condensation

and coagulation, particles may grow to larger sizes than
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300 nm. Second, small particles interact with larger particles

(even larger than 300 nm); the latter can originate from nat-

ural sources such as sea salt. The structure of the M7 model

also includes the Aitken and accumulation size modes, with

no strict separation at 300 nm.

Two sets of simulations for Europe were made, for the

target years of the TRANSPHORM project, viz. 2008 and

2005. (i) The first set was based on the meteorology of 2008,

and was used for model evaluation. This set had a 0.5× 0.25

longitude–latitude grid, for a European domain from 15◦W

to 35◦ E and from 35 to 70◦ N. The concentrations for par-

ticle numbers were assumed to be negligible at the bound-

aries of the domain. (ii) The second set of simulations was

performed for the meteorology and the emissions of 2005.

Additional simulations were performed for each target city,

on a finer 0.125× 0.0625 longitude–latitude grid, for each

city in a domain that covered an area of 3◦× 1.5◦, using the

European-scale simulation for boundary conditions.

There are several processes that contribute to uncertainties

in the model results. Nucleation mode particles contribute

substantially to the total particle numbers. However, several

parameterizations for nucleation processes are available, and

it is not in all cases clear, which are the optimal ones. The

uncertainties associated with the modelling of particle nucle-

ation have mainly an impact on the number concentration of

particles smaller than 100 nm (e.g., Fountoukis et al., 2012).

Some atmospheric species are not represented in the M7

module. For example, secondary aerosol formation from bio-

genic emissions (such as isoprene and terpene) is not taken

into account. Riipinen et al. (2011) investigated the role

of condensable vapours on the growth of freshly nucleated

particles until the cloud condensation nuclei size, and pro-

posed a semi-empirical modelling approach. Secondary or-

ganic vapours can condense on existing particles, and thus

contribute to their growth. This process increases the prob-

ability of such particles to reach the sizes that are cloud

condensation nuclei (CCN) active, before getting scavenged

by the background particle population. Secondary organic

aerosol from biogenic origin therefore may substantially con-

tribute to the PNCs.

The emissions of condensable gases from combustion pro-

cesses are also not taken into account in the modelling;

these could potentially contribute, e.g., in areas with substan-

tial residential wood burning. In regions with intensive NH3

emissions (e.g., from agriculture and animal husbandry), the

impact of secondary inorganic aerosol may be significant on

number and size distribution of particulate matter; this is not

accounted for in the M7 module (Vignati et al., 2004).

The omission of biogenic secondary aerosol causes inac-

curacies to the PM size distribution. The inaccuracies are the

largest in the case of the smallest particles. The modelled

sum of the Aitken and accumulation mode particle number

concentrations are therefore considered the most appropriate

quantity to represent regional background PNCs in this study

(compared with using the number concentration of the nucle-

ation mode particles).

2.3.2 Urban-scale dispersion modelling

For each modelling system, we address (i) the urban disper-

sion modelling system and its implementation, (ii) the evalu-

ation of meteorological variables (used as input for the urban

modelling), and (iii) the assessment of regional background

concentrations.

Dispersion modelling for Helsinki

The urban-scale dispersion of vehicular emissions was eval-

uated with the CAR-FMI (Contaminants in the Air from a

Road – Finnish Meteorological Institute; Kukkonen et al.,

2001; Härkönen et al., 1996) model. The model computes an

hourly time-series of the pollutant dispersion from the line

source. The dispersion equation for the line source model is

based on a semi-analytical solution of the Gaussian diffusion

equation for a finite line source. The dispersion parameters

are modelled as a function of the Monin–Obukhov length, the

friction velocity and the mixing height. Traffic-originating

turbulence is modelled with a semi-empirical treatment.

The receptor grid intervals range from 20 m in the vicinity

of major roads to 500 m on the outskirts of the area. The con-

centration values were computed at 18 692 receptor points.

Input data needed by the dispersion model was evaluated

using a meteorological pre-processing (MPP-FMI) model

that has been adapted for an urban environment (Karppinen

et al., 2000). The MPP-FMI model is based on the energy

budget method. The model utilises meteorological synoptic

and sounding observations, and its output consists of esti-

mates of the hourly time series of the relevant atmospheric

turbulence parameters and the boundary layer height. The

computation is based on a combination of the data from

the stations at Helsinki-Vantaa airport and Helsinki-Kumpula

(3 h synoptic weather observations), and Jokioinen (sound-

ings).

The urban background concentrations of PN both for 2008

in 2012 were estimated to be equal to the measured hourly

values at an urban background measurement site located

at Kumpula in Helsinki. This station is part of the net-

work of stations called Station for Measuring Ecosystem

– Atmosphere Relations (SMEAR-III) (Järvi et al., 2009).

This data contained PNCs in the particle size range from 3

to 950 nm. The measurements and data analysis were con-

ducted according to Wiedensohler et al. (2012). Therefore,

for the computations in Helsinki we did not use the regional

background concentration values predicted by the LOTOS-

EUROS model.
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Dispersion and particle transformation modelling

for Oslo

Calculations of concentrations were carried out using the

EPISODE dispersion model, which is part of the integrated

air quality management tool AirQUIS (Slørdal et al., 2008).

The EPISODE model consists of a gridded Eulerian model

coupled with a Gaussian line source model for modelling the

local contribution at receptor points near roads. The Eulerian

grid model uses a 1 km× 1 km grid covering Oslo. There are

13 vertical layers in the model, up to the height of 4000 m,

with the lowest layer being 10 m thick. Emissions from traf-

fic sources are placed in the lowest layer, whilst emissions

from domestic heating, industry, and shipping are placed in

the layers between 10 and 35 m.

Receptor points within 500 m of a road include line

source calculations, using the Gaussian line source model in

EPISODE; otherwise, only the Eulerian model contributes.

The model coupling leads to a double counting of the emis-

sions near roads, which has been estimated to contribute a

maximum increase of 5–20 % to the model concentrations at

receptor points near roads. The receptor points are placed at

monitoring sites, and at aggregated home addresses, at the

centre of population mass within a 100 m× 100 m grid.

The air pollution originating in vehicular traffic tunnels

has been modelled assuming that there has been no deposi-

tion of particles within the tunnels. The tunnel exits are there-

fore treated simply as exit points of polluted air.

Meteorology is generated in the model using the diag-

nostic wind field model MCWIND. The MCWIND model

uses meteorological measurements and interpolates these in

space, adjusting for topography and atmospheric stability.

Measurements from two sites are used (Valle Hovin and Blin-

dern); both sites are centrally located in Oslo. Data required

by the dispersion modelling are atmospheric stability, wind

speed, and wind direction.

Hourly regional background concentrations were derived

using predictions from the LOTOS-EUROS model at a num-

ber of grid squares surrounding Oslo. The hourly median

concentration from these grid squares was extracted for this

purpose. These values were further adjusted, based on a com-

parison of the predicted and observed annual mean PNC

measurements at Birkenes (located about 300 km south of

Oslo). This procedure resulted in a rescaling of all LOTOS-

EUROS predictions by a factor of 0.75.

In Oslo, a parametrization was applied to account for de-

position and coagulation processes. This was only applied in

the gridded model calculations, but not in the sub-grid Gaus-

sian modelling. This parametrization is based on calculations

using the MAFOR (model for aerosol transformation and

dynamics) aerosol process model for road traffic emissions

(Keuken et al., 2012). First, MAFOR calculations were car-

ried out using the complete aerosol process model descrip-

tion and then, for simplicity, the emissions and calculations

were binned into three particle size classes. Based on these

computations, deposition and coagulation rates in these three

size classes were derived.

The change of the PNC in each size bin caused by coagu-

lation was parameterized in the following simplified form:

dPNCi

dt

∣∣∣∣
coag

=−PNC2
iKc,i, (1)

where the subscripts i and “coag” refer to the particle size

class and coagulation, respectively, and Kc,i is the coagula-

tion rate derived using the MAFOR model. Dry deposition is

described as

dPNCi

dt

∣∣∣∣
depo

=−PNCi
vd,i

Hgrid

, (2)

where νd,i is the dry deposition rate for the ith size class and

Hgrid is the depth of the lowest model grid layer.

Dispersion modelling for Rotterdam

In Rotterdam, the contribution of traffic to air quality near

inner-urban roads was modelled with the urban dispersion

modelling system URBIS (model for local environmental as-

sessments) (Eerens et al., 1993; Vardoulakis et al., 2003).

This modelling system contains various submodules, such

as a model for line sources, called the Pluim Snelweg

model, and a model for evaluating the concentrations in street

canyons, called the CAR model.

Up to a distance of 500 m, contribution from motorways

was modelled with the line source dispersion module, Pluim

Snelweg (Wesseling et al., 2003; Beelen et al. 2010; Keuken

et al., 2012). This line source model is a Gaussian plume

model. The modelling also takes into account the vehicle-

induced turbulence, the roughness of the terrain, the noise

screens near the motorway and the atmospheric stability. The

treatments of concentration time series is based on the con-

cept of stratified meteorology. A time series of wind speeds

and directions, observed at the airport of Rotterdam, are

first clustered as a frequency distribution. The contributions

downwind of the motorway, based on averaged emission

rates, are then weighted using these frequencies; this proce-

dure results in an estimate for the annual average concentra-

tion.

The street canyon dispersion model CAR is based on the

results of wind tunnel experiments at different road types,

including street canyons. The ratio of the height of the build-

ings and the width of the street is used to classify the type

of street canyon. A source–receptor relationship has been

specified as a function of the distance to the street axis for

five different road types. All streets in Rotterdam have been

categorized in accordance to the model classification. The

model simulates only annually averaged concentrations. The

model therefore requires as input values the annually aver-

aged emission rates, and the reciprocal annual average wind

speed. The annual average concentration is assumed to be in-

versely proportional to the wind speed. The wind speed was
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retrieved from measurements by the National Meteorological

Institute at the airport of Rotterdam.

The contribution of shipping to the PNCs was estimated

based on a predicted spatial distribution of the emissions of

NOx from shipping in the Netherlands in 2007 (Snijder et al.,

2012). The NOx emission map was evaluated based on com-

putations using as input the automatic identification signals

(AIS) of ships. These computations applied for operational

shipping parameters, e.g., navigational status and payload,

which were based on the AIS signals. The total NOx emis-

sions were scaled to correspond to the year 2008, using the

total amounts of emissions from shipping in the Netherlands

in 2007 and 2008 (Denier van der Gon and Hulskotte, 2010).

The spatial distribution of the emissions of NOx was subse-

quently converted to the emissions of PNs, based on the ob-

servations by Petzold et al. (2010). The conversion was done

using the average ratio of the NOx and PN emissions in the

observations of Petzold et al. (2010).

The atmospheric dispersion of shipping emissions was

evaluated using the Dutch Standard Gaussian dispersion

model. This model applies the same treatment of atmospheric

dispersion as the Pluim Snelweg model. For simplicity, we

assumed a constant stack height of 30 m and the heat content

of exhausts of 1.0 MW, for all the ships within the region.

The urban background of PNCs was estimated based on

the LOTOS-EUROS model, at a grid square that surrounds

Rotterdam. The urban-scale modelling has a spatial resolu-

tion of 10 m× 10 m, up to a distance of 30 m from the streets,

or alternatively at the housing façade along street canyons,

and up to a distance of 500 m near motorways.

Dispersion modelling for London

The OSCAR air quality assessment system (Singh et al.,

2013; Sokhi et al. 2008) has been used to estimate traffic-

related PNCs across London. The models within the OS-

CAR system consist of an emission model, meteorological

pre-processing model, and a line source Gaussian dispersion

model. The roadside dispersion model within OSCAR sys-

tem is the CAR-FMI model. The hourly concentrations were

predicted at the receptor points placed at varying distances

of 10, 40, and 90 m near both sides of the roads, and 100 m

apart in the outskirts.

A range of hourly meteorological parameters are needed,

including wind speed, solar radiation, friction velocity, and

Monin–Obukhov length. These are provided by the dedi-

cated OSCAR meteorological pre-processor GAMMA met,

described by Bualert (2002). The meteorological model em-

ploys meteorological data, such as solar radiation, roughness

length, and heat flux, to estimate atmospheric stability pa-

rameters, including the Monin–Obukhov lengths and mixing

heights. Data from the meteorological station at Heathrow

was used as input for the model. The effects of land use char-

acteristics on parameters such as surface roughness, Bowen

ratio, albedo, and anthropogenic heat flux are taken into ac-

count. The meteorological pre-processor needs six input pa-

rameters: time, wind speed, wind direction, ambient temper-

ature, cloud cover, and global radiation.

The regional background levels were evaluated based on

the LOTOS-EUROS simulations. We used the predicted

LOTOS-EUROS concentration values surrounding the city.

The LOTOS-EUROS hourly values were scaled by multi-

plying them with the ratio of annual average measured and

predicted concentrations. The measured values used for the

scaling were taken from the regional background station of

Harwell.

Dispersion modelling for Athens

The modelling system consists of two models: (i) the me-

teorological model MEMO (Moussiopoulos et al., 1993),

and (ii) the chemical-transport model MARS-aero (Mous-

siopoulos et al., 1995, 2012). The MEMO model is a three-

dimensional Eulerian non-hydrostatic prognostic model. The

MARS-aero model can be used to simulate the transport

and transformation of gaseous pollutants and atmospheric

aerosols in the lower troposphere. The system allows for a

finer grid simulation to be nested inside a coarser grid.

Meteorological data were generated using the MEMO

model. Initialisation and boundary conditions data for the

application of the MEMO model were based on upper air

soundings for selected meteorological variables (wind speed

and direction, temperature); these were performed at the

Athens International Airport. Annual mean concentrations

were estimated on the basis of computations for eight rep-

resentative days, combined with a weighting scheme. These

days were selected and assigned certain weights based on

a classification of synoptic meteorological conditions in the

Greater Athens area for 2008 (Helmis et al., 2003; Mous-

siopoulos et al., 2004).

The classification was done with the application of princi-

pal component analysis on a set of six meteorological vari-

ables (namely wind speed and direction, surface pressure,

mixing layer height, cloud cover, and specific humidity), and

subsequently using a subtractive clustering algorithm. Using

this procedure, the different synoptic weather conditions that

prevailed during each day of the year were distributed into

distinct groups, which correspond to certain characteristic

meteorological features (Sfetsos et al., 2005; Shahgedanova

et al., 1998).

The day that appeared closer to the mean of each group

of synoptic meteorological conditions was considered to be

a typical day representing the specific group and was simu-

lated with MARS-aero. The weight assigned to each of the

representative days was proportional to the size of the cor-

responding group. The application of the methodology was

based on meteorological fields predicted by the WRF me-

teorological model (version 3.2.1, Skamarock et al., 2005),

which was applied for 2008 with a horizontal grid resolution

of 50 km and a temporal resolution or 3 h. The MEMO and
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MARS-aero models were applied in a computational domain

of 50 km× 50 km, on a spatial resolution of 500 m.

Both the regional background PNCs and the concen-

trations of other relevant species are needed as bound-

ary conditions for the MARS-aero calculations. A spa-

tially uniform annually average regional PNC background of

1800 particles cm−3 was used for the boundary conditions,

based on Kalivitis et al. (2008). The regional background

values of all other relevant species were extracted from the

LOTOS-EUROS computations, at the grid squares surround-

ing the city.

2.4 The measurements of PN concentrations in

target cities

The measurements at the station of Kumpula in Helsinki in

2008 and 2012 were performed using a Differential Mobility

Particle Sizer; the particle concentrations were determined at

the size range from 3 to 950 nm. Particle number concentra-

tions at the station of Ring road 1, Malmi, were measured

using a Grimm butanol condensation particle counter (CPC),

with detection limit from 5 nm to larger than 3 µm.

In Oslo, the Grimm 565 Environmental Wide Range

Aerosol Spectrometer system was used for the measure-

ments. This system combines a Grimm 190 aerosol spec-

trometer OPC (optical particle counter), and a scanning mo-

bility particle sizer with a condensation particle counter

(SMPS+C). The entire system in principle covers the range

from 5 nm to 30 µm. For this study only the particle sizes be-

low 350 nm, measured using the SMPS+C instrument, have

been used. For the modelling and comparison with measure-

ments we have used a lower cut-off of 8.5 nm.

The measured values of hourly PNC concentrations for

London were available from Defra’s Particle Numbers and

Concentrations Network, which uses CPC. This CPC mea-

sures the number of particles in the size range from 7 nm up

to several µm in size.

Total PNC in Rotterdam was measured using a CPC with a

lower 50 % cut-off at 3 nm and an upper limit of 3 µm. Size-

resolved PNC was measured with a SMPS. The SMPS con-

sists of a differential mobility analyser (DMA) covering a

size range from 10 to 480 nm and a CPC with a lower 50 %

cut-off at 4 nm and an upper size limit of 1.5 µm.

3 Results and discussion

3.1 Emissions

3.1.1 Emissions in Europe and their associated

uncertainties

Total anthropogenic PN emissions in UNECE (United Na-

tions Economic Commission for Europe) Europe were esti-

mated using a bottom-up methodology (Denier van der Gon

et al., 2014). These are presented in Fig. 2a–b, classified ac-

Figure 2. Total anthropogenic particle number emissions in the

United Nations Economic Commission for Europe, (a) classified by

the source sector for 2005, and (b) classified by the country group

for 2005, 2020, and 2030. “Sea” refers to international shipping.

cording to both source sector and country group. The trans-

port sectors (i.e., road and non-road transport) contributed

approximately 60 % to the total land-based PN emissions in

UNECE-Europe in 2005 (Fig. 2a). The other most impor-

tant sectors include industry (defined here excluding energy

industries), residential combustion, fugitive emissions, and

energy industries.

The PN emissions are projected to decrease in 2020 and

2030 to less than a half of their value in 2005 (Fig. 2b). In-

ternational shipping was a dominating source in 2005, but its

contribution is expected to substantially decline from 2005

to 2020 and 2030, mainly due to the introduction of low

sulfur fuels. The contribution of shipping is more dominant

in the current inventory, compared with the first European

PN emission inventory made in the EU-funded project EU-

CAARI (Denier van der Gon et al., 2010a; Kulmala et al.,

2011). Another remarkable change compared with the previ-

ous inventory is that in the new inventory, aviation is a sub-

stantially stronger source of UFPs than previously assumed.

Most of these shipping and aviation particulate emissions are

not solid, but semi-volatile particles, and may therefore have

escaped attention in previous emission factor measurements.

The PN emission inventory includes in principle all par-

ticulate sizes. The PN emissions in two size fractions have

been presented in Fig. 3a. The UFP is defined as particles

smaller in diameter than 100 nm. As expected, the difference
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Figure 3. (a) Total anthropogenic particle number emissions and

total particle number emissions in the particle size range of 10–

100 nm for UNECE Europe for 2005, 2020, and 2030 and (b) the

same emissions exclusively for road transport, segmented by coun-

try group. NMS refers to the new member states, i.e., EU12+.

between the total PN emissions and the UFP emissions is

relatively small, as the PN emissions are dominated by the

smaller size fractions.

The corresponding emissions solely for the road transport

sector have been presented in Fig. 3b. The PN emissions of

road transport are projected to significantly decrease in time

(Fig. 3b). The PN emissions due to fuel combustion in road

transport and shipping are expected to significantly decrease

as a consequence of motor and fuel modifications, such as

low-sulfur fuels and particulate matter filters (e.g., Ristovski

et al., 2006; Morawska et al., 2008; Fiebig et al., 2014). The

EU 15 emissions are estimated to decline strongly in future

years, due to implementation of new emission standards in

road transport, and the phase-out of the older vehicles that

have less stringent emission limits.

To facilitate the modelling of PN on a regional scale,

the PN emissions were spatially distributed using available

proxy data (Denier van der Gon et al., 2010b). Examples of

such proxy data are maps of population density, road net-

works, shipping tracks, land use, and port capacities. The

spatial distribution of the PN emissions has been presented

in Fig. 4.

The estimates for PN emissions are associated with a rel-

atively high uncertainty, compared with the emissions of the

commonly regulated pollutants. This uncertainty varies sub-

stantially in terms of the different source categories. Vehicle-

originated PNCs can change on a short timescale after the

Figure 4. Spatial distribution of anthropogenic PN emissions in

Europe in 2005, on a longitude–latitude grid, on a resolution of

1/8◦× 1/16◦. The unit of the legend is 1024 particles per compu-

tational cell per annum.

emissions exit the tailpipe, due to both rapid dilution and mi-

crophysical processes. The latter depend on ambient temper-

ature and other environmental conditions, as well as on sec-

ondary particle formation. Due to such transformations, the

PN concentration flux is not conserved. For some source cat-

egories, no PN emission factors were available. In such cases,

the PN emission was calculated based on PM measurements

and estimated particle size distributions.

For the road transport emission factors reported here, an

uncertainty analysis for the particle mass-based emission has

been carried out. This analysis shows an uncertainty between

10 and 20 %, depending on the quality of the country’s statis-

tics (Kioutsioukis et al., 2010). Particulate number emission

factors were not included in the uncertainty evaluation of the

above-mentioned study. However, it is possible also to indi-

rectly estimate the uncertainties of the PN emissions, based

on the correlations between PN emission factors derived in

this study with the COPERT PM emission factors (Vouitsis

et al., 2014).

Solid particles can be measured more accurately than

semi-volatile ones; the emission standards for road transport

are therefore currently based on the solid fraction of PN. The

PN emissions are influenced by numerous factors, such as,

e.g., vehicle category, PN measuring equipment, and envi-

ronmental conditions. The overall uncertainty of vehicular

PN emissions can therefore be evaluated to have high un-
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certainties: (i) 81–144 % when after-treatment device effects

are not included and (ii) 144–169 % when these effects are

included (UNECE, 2010).

Road transport is the most intensively studied source cat-

egory for PN emissions. It can therefore be expected that the

uncertainties for other source categories are at least of the

same magnitude. For example, the total PN emission factor

is dependent on the set-ups of the measurements. In particu-

lar, the measurement can (i) include only solid PN, or solid

and volatile PN, and (ii) the lower particle size cut-off used

in the measurements can vary, as this is dependent on the

instrumental method. Sometimes a lower cut-off of 3 nm is

used, but frequently also only PNs for sizes larger than 20

or 30 nm are reported. This definition of lower size cut-off

can have substantial effects on the estimates of the total PN

emissions. For a more detailed discussion of the various tech-

niques used to measure PN, we refer to McMurry (2000) and

Morawska et al. (2008).

Another important uncertainty is caused by the sulfur con-

tent in shipping fuels. It is known what the regulatory limit

values for the fuel sulfur content are, and in some cases also

what the average fuel sulfur content is; however, it is not

commonly known what the actual values are. Therefore, for

all transport modes the uncertainty is expected to be at least

equal to the previously listed uncertainty estimate for road

transport; this is in the range of 100–170 %.

On a regional to city-scale, Kalafut-Pettibone et al. (2011)

determined average size-resolved and total number- and

volume-based emission factors for combustion. They esti-

mated that the uncertainty of the PN emission factor is ap-

proximately plus or minus 50 %. This uncertainty value is

based on longer-term temporal averages.

3.1.2 Emissions in the target cities

All of the emission inventories in the target cities included

vehicular traffic. However, the details of the treatments for

other source categories varied substantially from city to city.

The urban inventories for Helsinki, Oslo, Rotterdam and

Athens included also the primary particulate matter emis-

sions from shipping. In the case of London, the importance

of shipping emissions was found to be negligible, compared

with that of other urban emissions. The stationary sources

were included at varying levels of detail for Helsinki, Oslo,

London, and Athens. In the case of Rotterdam, the airports,

refineries, and other major sources were included in the re-

gional background. For Helsinki, the influence of shipping

and major stationary sources was estimated indirectly, but the

actual PN emission values for these source categories were

not included in the urban emission inventory. The influence

of small-scale combustion was explicitly evaluated for Oslo,

and its importance was evaluated for Helsinki.

The sulfur content of vehicular motor fuel is an impor-

tant factor for selecting the emission factors of PNs. There

has been a decreasing trend in the fuel sulfur (S) contents

in Europe. During the later part of 2000’s, the S content of

motor fuels was decreasing rapidly in many European coun-

tries, commonly from < 50 ppm to < 10 ppm S. One should

therefore use the vehicular emission factors (EFs) that were

determined for the same S content as for the target year of

modelling (in this study 2008). For all the target cities, we

used the best available locally applicable EFs.

For Helsinki, calculations were based on EFs by Gidhagen

et al. (2005) for Stockholm. The measurements that were the

basis for these EFs were made in Stockholm for heavy-duty

vehicles (HDV) in 1999 and for light-duty vehicles (LDV) in

2003. Sweden introduced its Environmental Class 1 (EC1)

diesel fuel in 1991, with maximum sulfur content of 10 ppm

(weight). The EC1 grade reached nearly complete market

coverage in Sweden already in the 1990s, due to a strongly

supportive tax policy. The EFs used for Helsinki therefore

refer to fuel with lower than 10 ppm sulfur content. As also

Finland used the lower S content vehicular fuel in 2008, the

EFs used in the manuscript are appropriate in this respect.

Also in Oslo and Rotterdam both the modelled and actual

S contents of the vehicular fuel were lower than 10 ppm in

2008.

For London, the emission factors from Jones and Harri-

son (2006) were used, which refer to the higher (< 50 ppm)

fuel S, while the target year for modelling (2008) was af-

ter the transition to lower S fuel. For Athens, the situation

was the opposite: EFs correspond to the lower fuel S content,

whereas a higher S content fuel was actually used. The ap-

plied EFs are therefore expected to somewhat overestimate

the measured concentrations in London, and underestimate

those in Athens.

The most detailed emission inventory was compiled for

Oslo. The proportions of total emissions in Oslo in 2008 have

been presented in Fig. 5. The sector denoted “heating” in-

cludes all heating, of which domestic heating is the largest

part, 95 %. Traffic exhaust emissions were responsible for

about three-fourths of the total emissions; the contributions

from shipping, heating, and other mobile sources are also no-

table.

3.2 Modelled concentrations

3.2.1 Concentrations in Europe

The LOTOS-EUROS model, including the M7 module, was

used together with the above-mentioned new PN emission

inventory, to evaluate the PNCs in Europe.

Evaluation of predicted concentrations with measured

values on a European scale

The predicted PNCs were compared with the EUCAARI

measurements (Asmi et al., 2011), with a focus on

eight selected stations: Cabauw, Melpitz, Vavihill, Harwell,

SMEAR, Ispra, Kosetice, and Kpuszta. Cabauw is a rural
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Figure 5. The contributions of various source categories on the total

emissions of particulate number in Oslo in 2008. The total amount

of emissions was 1.1× 1024 particles year−1.

site in an agricultural area in the Netherlands, with influ-

ence from the nearby city of Rotterdam; this is the type of

region for which the model is well suitable. Melpitz is a rural

site in Germany, the concentrations of which are dominated

by long-range transport and biogenic emissions. The site of

Vavihill in Sweden is close to the sea; this site is representa-

tive for fairly clean background conditions, with occasional

influence from shipping and nearby cities. The station of Har-

well (UK) is a regional background site that can occasionally

be influenced by the urban plumes originating in London.

The SMEAR II site (in Hyytiälä, southern Finland) is a high-

latitude regional station, exposed alternatively to both clean

and fairly polluted air masses. The site of Ispra (Italy) is in

the vicinity of the Alps; it experiences the influences of the

polluted air from the Po Valley. The site of Kosetice (Czech

Republic) is located in the agricultural countryside. Kpuszta

represents the central European regional background, rela-

tively far from local sources.

Modelled PNCs in the Aitken and accumulation mode

were compared with the observed PNCs in size bins 30–

50 nm, > 50 nm, and > 100 nm (the latter two bins are

partly overlapping). Measured and modelled monthly aver-

age PNCs for the eight sites have been presented in Fig. 6a–d.

The nucleation mode was excluded. The values correspond to

the size fraction 30–250 nm for the observations, and the sum

of Aitken and accumulation mode for the LOTOS-EUROS

computations (defined as the interval 10–1000 nm).

At Vavihill, the modelled and observed monthly average

concentrations match well for the whole year. At Cabauw,

the observed concentrations from January to April were not

measured at the ground level, but instead at a height of 60 m;

these values are therefore not comparable with the predic-

tions. Since May, the overall measured and predicted levels

of the PNCs at Cabauw were fairly well in agreement. The

modelled monthly average concentrations at Melpitz were

clearly lower than the corresponding measured values. These

relatively high measured values have probably been caused

by the substantial contribution of particles formed from bio-

genic emissions, which were not accounted for in the present

model version. In winter, when the biogenic emissions are

smaller, the model and observations match relatively better

at Melpitz. The predicted monthly concentrations at Harwell

agree well with the measurements; the model is well suited

for this type of environment. For the site of SMEAR, the

model under-predicts; contributions from biogenic emissions

in summer are not taken into account in the model. For the

site of Ispra, the concentrations in winter were the highest ob-

served amongst the stations considered here, and the model

substantially under-predicted. This location is, together with

Cabauw, most strongly affected by anthropogenic emissions.

In particular in winter, high concentrations are expected due

to wood burning, in combination with stagnant conditions in

the Po valley. For the site of Kosetice, the model shows a

smaller underestimation in winter than in summer. For K-

Puszta, statistics before September are based on a small set

of measurements and are therefore only indicative.

The correlation coefficients were reasonable, ranging on

the average from 0.3 to 0.6 for the stations in Fig. 6c, and

from 0.3 to 0.5 for the stations in Fig. 6d. A higher correla-

tion was not always related to an accurate estimate of total

particle number.

Modelled values were on the average within a factor of

2 of the measured values for the Aitken mode, compared to

observed particle modes in the range 30–100 nm (results not

shown here). However, the number of particles with a diam-

eter > 100 nm was under-predicted, whereas the number of

particles < 100 nm was in most cases over-predicted. Foun-

toukis et al. (2012) previously reported a similar result; a

systematic under-prediction of the number of particles larger

than 100 nm, using the original EUCAARI emission inven-

tory and another chemical-transport model.

These model evaluation studies indicate that the applied

regional-scale modelling provides reasonably accurate re-

sults for PNCs in the size range larger than 30 nm, in the

presence of dominating anthropogenic emissions. In case of

substantial biogenic contribution, the predicted PNCs will

probably be underestimates. Clearly, the prediction of par-

ticle size distributions is a more challenging task, compared

with the prediction of the PNCs integrated over all particle

sizes.

The spatial concentration distributions in Europe in

2005 and 2008

The modelled European-scale PNCs for 2005 and for 2008

are presented in Fig. 7a–b. The differences of the concen-

trations between these two years have been presented in

Fig. 7c–d.

The anthropogenic emissions of PN were assumed to be

the same for these two years. However, for the emissions of
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Figure 6. A comparison of the seasonal variation of the monthly averaged model predictions and observations of the particle number

concentrations (particles cm−3, a–b), and the correlation coefficients of the hourly predicted and measured concentration values within each

month, at eight selected measurement sites in 2008 (c–d). In the upper panels (a–b), the solid lines are model predictions, and the dotted

lines are measurements. The modelled values are the predictions of the LOTOS-EUROS model. The nucleation mode has been excluded; the

values correspond to the size fractions 30–250 nm and 10–1000 nm for the observations and the model computations, respectively.

gases, we used the MACC project emissions for the different

years. The meteorological conditions and the natural emis-

sions (which were influenced by meteorology) were also as-

sumed to be different. During both years, the highest concen-

trations occurred at urban and industrialized areas, and along

the most densely trafficked shipping lanes. Annual mean con-

centrations reached values of up to 10 000 cm−3 for 2005.

For most regions, the PNCs were higher for 2005, compared

with those for 2008.

The largest concentration differences between the two tar-

get years were approximately 25 %. The fairly large differ-

ences of the concentrations near the western boundary of

the domain are caused by the natural emissions, which were

determined by the meteorological conditions. At other loca-

tions, differences are due to the combined effect of meteorol-

ogy and decreased SO2 emissions; the emissions were lower

for 2008.

3.2.2 The influence of aerosol processes on an

urban scale

We did not include a treatment of aerosol processes to all of

the urban-scale modelling systems used in this study. Instead,

their influence was examined in a numerical study performed

for Oslo in 2008. We have used a simplified aerosol process

parametrization based on the more complex MAFOR aerosol

process model and some experimental results. The numerical

accuracy of the simplified model, as compared with the more

complex model, was evaluated to be approximately 10 %.

The model needs as input values an initial size distribution,

which was based on experimental data in Oslo, Rotterdam,

and Helsinki. An initial size distribution ratio was defined

as the initial fraction of the total PN concentration in each

size bin (PNC1, PNC2, and PNC3). These model input values

have been presented in Table 2.

The impact of this parametrisation was tested in compar-

ison with the measured data in Oslo for a 3-monthly period

from January to April, 2008. In these computations, the up-

per limit values were used both for the coagulation coeffi-

cient and the dry deposition velocity, in order to evaluate the

maximum possible effects due to these processes.

Use of the parametrisation resulted in lower PNC levels

further from sources. At the urban background station in Oslo

(Sofienbergparken), the above-mentioned parametrisation re-

sulted in a maximum reduction of PN concentrations by ap-

proximately 45 %, compared to treating PN as a tracer. The

range of this percentage value, allowing for the uncertainty

of the simplified aerosol process modelling, can be consid-

ered to be approximately from 40 to 50 %. The impact of de-

position was larger than that caused by coagulation; however,

the influences of both processes were significant. The model-

derived deposition and coagulation rates in the selected three

size classes and the relevant timescales are presented in Ta-

ble 2.
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Figure 7. Predicted annual average particle number concentrations in Europe for 2005 (a) and for 2008 (b), and the difference of the

concentrations between these two years in absolute (c) and relative units (d). The modelled particulate matter size range is from 10 to

1000 nm. The unit in the legend is 103 particles cm−3 in (a), (b), and (c), and percentage differences are presented in (d).

Table 2. Data and coefficients required for the implementation of the PNC parameterization used in Oslo. Typical predicted timescales

associated with deposition and coagulation are also presented.

Size Size Initial size Dry deposition MAFOR Typical Typical

class range distribution velocity vd derived Kc,i deposition time- coagulation time-

(nm) ratio (cm s−1) (cm3 no.−1 s−1) scale (h) scale (h)

PNC1 8.5–25 0.79 0.904 6.31× 10−9 0.6 0.9

PNC2 25–100 0.20 0.202 5.58× 10−9 2.7 2.9

PNC3 100–400 0.01 0.032 8.82× 10−10 17 292

3.2.3 Predicted concentration distributions in the

target cities

The predicted annually averaged spatial concentration distri-

butions in the target cities are presented in Fig. 8a–f. The

same concentration legend is used for all the cities. The con-

centrations in various cities can therefore be inter-compared,

allowing for the differences in the computational methods.

The central area of London has been separately presented,

by using a more closely spaced concentration legend.

The differences of the numerical results in the various

cities are mainly due to the differences in the spatial dis-

tribution and strengths of emissions, the regional back-

ground contributions, meteorological conditions, and other

specific characteristics of the cities. Clearly, these differences

are also partly caused by the inaccuracies and deficiencies of

the methods. In particular, the concentration distribution for

Athens was evaluated on a spatial resolution of 500 m, which

is coarser that the corresponding resolution used for the other

cities; this tends to smooth out the maximum concentrations

on finer spatial scales. Further, the modelling in this study

did not explicitly allow for the influence of street canyons in

all the target cities, except for the semi-empirical modelling

of the effects of street canyons in Rotterdam. The predicted

PNCs at street canyon locations, and more generally in the
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Figure 8. The predicted spatial distributions of particle number concentrations in the target cities in 2008. The cities in the top row are

Helsinki and Oslo, in the middle row Rotterdam and London, and in the bottom row Athens and the centre of London (the location of which

is shown in d as a rectangle). The concentration unit in all the legends is particles per cm3. The legends are identical for (a)–(e), but different

for (f) (the centre of London). The water areas are presented in blue grey.
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vicinity of locations that are influenced by high buildings

tend therefore to be under-predictions in this respect.

The maximum values of annual average PNCs were ap-

proximately 20 000 in Helsinki, 30 000 in Oslo, 30 000 in

Athens, and 50 000 in Rotterdam and London. These values

were relatively higher in London, due mainly to very high

traffic flows along the most trafficked roads, and in Rotter-

dam, due to both high regional background and intensive ur-

ban traffic.

The locations of harbours and airports in the target cities

have been presented in Fig. A1 in Appendix A. Also tun-

nel entrances have been presented for Oslo. In all cities, the

most important emission category that influenced the spatial

distributions of PNCs was vehicular traffic; the major traffic

networks are clearly visible in all the target cities. For ex-

ample, the main ring road or ring roads (for Helsinki, Oslo,

London and Athens) or the main highways (for Rotterdam)

surrounding the city centres are clearly visible. The concen-

trations were also elevated in the central areas of the cities. In

Helsinki, Oslo, Rotterdam, and London, the highest concen-

trations occurred in the vicinity of the most densely trafficked

ring roads, and near the junctions of such ring roads and other

major roads. In Athens, the highest predicted concentrations

of PNs occurred in the vicinity of the Athens International

Airport.

The second most important urban source category was

shipping and harbours. Their influences on the PNCs over

land areas can be distinctly detected in the case of Oslo and

Athens, and to a smaller extent also in Rotterdam. In Oslo,

the higher concentrations in the vicinity of the harbours are

also partly caused by the traffic tunnel entrances. It was as-

sumed that there was no deposition of particles within the

tunnels; therefore, all traffic-originated PNs within the tun-

nels were treated as emitted at these entrances. In Athens,

there were substantially elevated PNCs near the main har-

bour regions (Piraeus and Rafina). For Helsinki, the shipping

emissions have not been included in the PNC map shown in

Fig. 8a; however, it was separately evaluated that their influ-

ences can be notable near the main harbour areas (Soares et

al., 2014).

In a source apportionment study for London (Beddows et

al., 2015), it was shown that the urban traffic and the ur-

ban background contributed 45 and 43 %, respectively, to the

total PNC at an urban background station. Further, accord-

ing to the London Atmospheric Emission Inventory (GLA,

2010), shipping is responsible for a negligible fraction of the

total PM mass-based emissions. We therefore conclude that

considering the annual average concentration levels for the

whole of London, shipping along the River Thames and the

related harbour activities probably cause a small or negligible

impact on the overall PNCs.

Although the harbours in the vicinity of Rotterdam are

amongst the largest in Europe, the influence of harbour ac-

tivities was only modestly detectable in Fig. 8c. The main

reason for this was the fact that the most densely trafficked

harbours in that region are located outside the city of Rotter-

dam. The harbours within the city of Rotterdam are located

to the south and north of the river Nieuwe Maas, which flows

through the centre of Rotterdam. These urban harbours serve

mainly inland shipping. The larger harbours serving sea go-

ing vessels are located at a distance of 5–10 km to the west of

the centre of Rotterdam, near the coast of the North Sea. The

harbours within the city of Rotterdam are also dispersed on a

relatively wide region on both sides of the river; this tends to

spatially smooth out concentration hotspots.

A potentially important source is also vehicular traffic

to the airports and aviation. In Athens, there were substan-

tially elevated PNCs near the Athens International Airport,

located to the east from the centre of the city (it is clearly

visible in Fig. 8e). Detailed computations showed that avi-

ation emissions were responsible for the largest share of

the concentrations within this airport and in its immediate

vicinity. The influence of the Heathrow airport in London

is also visible in the PNC map (near the outer ring road

on the western part of the city). However, these higher pre-

dicted concentrations were caused by the emissions from the

congested roads leading to Heathrow airport. The emissions

originating from aviation in London were included in the re-

gional background concentrations (the LOTOS-EUROS pre-

dictions), but not explicitly in the urban-scale computations.

The Helsinki-Vantaa airport is only slightly detectable (to

the north of the outer ring road, in the northern part of the

metropolitan area). The airport in Oslo is outside the mod-

elled domain. The influence of the Rotterdam The Hague

Airport is not visible; it is a fairly small airport.

There are also some other significant source categories,

such as major refineries in the vicinity of Rotterdam; how-

ever, these were not located within the modelled urban do-

main. Especially in Oslo, the small-scale combustion in

households can also be an important source in residential re-

gions in winter.

3.3 Evaluation of model predictions against measured

data in the target cities

The model predictions were compared with the available

PNC measurements in the target cities. Such measured data

were available in four of the cities, as presented in Table 3.

The predictions and measurements were compared at two

stations, representing urban background and urban traffic en-

vironments, in three cities, viz. Oslo, Rotterdam, and Lon-

don. In the case of Helsinki, such comparisons were per-

formed only at one station (Ring road 1, Malmi, urban traf-

fic) for 2012. The comparisons were performed for differ-

ent years in Rotterdam (2011) and in Helsinki (2012), as the

relevant measured data were not available for those cities in

2008.

The comparison in the case of annual averages is also pre-

sented graphically, in Fig. 9. The predicted concentrations

consist of the regional background and the local urban contri-
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Table 3. The comparison of measured and predicted PNCs in four target cities. IA is the index of agreement and FB is the fractional bias.

NA refers to data or evaluation measures that were not available.

City Name of station Classification of

station

Period Mean of the

observed values

(103 particles

cm−3)

Mean of the

predicted

values

(103 particles

cm3)

IA (based

on the

hourly

means)

FB

Helsinki SMEAR III, Kumpula Urban background Whole year 2012 7.1 NA NA NA

Ring road I Urban traffic Whole year 2012 19.5 20.0 0.75 +0.02

Oslo Sofienbergparken Urban background Three months,

Jan–Mar 2008

9.3 10.8 0.77 +0.15

Smestad Urban Traffic Three months,

Jan–Mar 2008

24.0 19.8 0.79 −0.19

Rotterdam Zwartewaalstraat Urban background Whole year

2011

14.5 10.1 NA −0.22

Rotterdam,

Bentinckplein

Urban traffic Whole year

2011

17.7 20.1 NA +0.20

London North Kensington Urban background Whole year

2008

14.0 10.8 NA −0.26

Marylebone Road Urban traffic Whole year

2008

36.7 15.7 NA −0.81

Figure 9. Comparison of the predicted and measured annual aver-

age particle number concentrations in four cities. The total predicted

concentration is the sum of regional background and urban contri-

butions. The names of the stations have been specified in Table 3.

butions. The regional background values presented in the fig-

ure are the predictions of the LOTOS-EUROS model in the

surroundings of the cities, either the original predictions (for

Helsinki and Rotterdam) or scaled using relevant regional

background measurements (for Oslo and London).

The regional background concentrations were clearly

lower than the contributions originating from urban sources

in Helsinki and Oslo, and lower (for traffic site) or almost

equal (urban background) in London. However, for Rotter-

dam the regional background was the largest contributor (for

urban background) or responsible for almost half of the to-

tal concentration (urban traffic site). This result was to be

expected, as Rotterdam is surrounded by a high population

density and several intensive emission sources (such as other

major cities, refineries and major harbours). The uncertain-

ties caused by the regional-scale modelling have therefore a

relatively smaller effect in Helsinki, Oslo, and London (but

vice versa for Rotterdam), compared with the uncertainties

associated with the urban-scale modelling.

The corresponding results for Athens are not presented

in Fig. 9, as the experimental data was not available for

2008. The representative annual average of the urban back-

ground of PNC in Athens, predicted at the station of Nea

Smyrni, was 6.8× 103 cm−3. A characteristic annual av-

erage PNC predicted at an urban traffic station, Athinas,

was 12.2× 103 cm−3. The measured regional background of

PNC was 1.8× 103 cm−3. However, the predicted values at

specific point locations in Athens are not directly comparable

with those in the other cities, due to the more coarse resolu-

tion of the computations. The air quality stations in traffic

environments in the Greater Athens area are also not located

in the immediate vicinity of the major highways.

The predicted and measured annual averages agreed

within approximately ≤ 26 % (measured as fractional bi-

ases), except for the traffic station in London. As expected,

the agreement of annual average concentration values was

better at urban background stations compared with urban

traffic stations in Oslo and London; however, these agree-

ments were not substantially different in Rotterdam. The ur-

ban traffic station in London is Marylebone Road, which is

located in a street canyon and has continuously severe traf-

fic congestion. The measured concentration at the Maryle-

bone Road station is substantially higher than the predicted

value. The lower predicted concentration values are probably

mainly caused by the fact that the computations in this study

did not allow for the effects due to street canyons for London.
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It was possible to evaluate the agreement of the measured

and predicted hourly time series of PNCs at three stations

located in two cities, Oslo and Helsinki (cf. Table 3). The pe-

riod of these comparisons was 1 year in the case of Helsinki,

and 3 months in the case of Oslo. The indexes of agree-

ment (IA) for these comparisons were 0.75 for the annual

time period in Helsinki, and 0.77 and 0.79 for the 3-monthly

periods in Oslo; these values indicate a fairly good agree-

ment of measurements and predictions. However, the com-

putational methods also influence the values of the IA’s. In

the case of Oslo, the regional background values and local

urban contributions were separately modelled, whereas for

Helsinki, the predicted values contain measured urban back-

ground PNC values and the predicted local contributions.

The measured annual average of the urban background of

the PNC (at the site of Kumpula) was 7.1× 103 cm−3 and

the modelled contribution originating from urban vehicular

sources was 12.9× 103 cm−3.

In general, we evaluate that for Helsinki, Oslo, and Lon-

don, the largest contributors to the differences of predic-

tions and measurements are (i) the uncertainties of the urban-

scale emission inventories, and (ii) the uncertainties associ-

ated with the urban dispersion modelling systems. For cities

located in highly urbanized regions, such as Rotterdam, the

uncertainties of evaluating regional background can be even

more important. Clearly, sources or source categories that

are missing from the computations can also have a signif-

icant effect. For instance, we performed computations for

Rotterdam, neglecting the contributions from shipping and

harbours. The fractional biases (FBs) were −0.36 (includ-

ing shipping that was −0.22) and +0.13 (including shipping

+0.20).

4 Conclusions

We have presented the results of the modelling of PNCs

in five European cities in 2008. Novel emission inventories

of particle numbers have been compiled both on urban and

European scales (the latter is called the TRANSPHORM

inventory). It has not previously been possible to conduct

such computations on a European scale, due to the deficien-

cies of the previously available emission inventories. The

TRANSPHORM PN emission inventory was based on a pre-

vious inventory that was compiled in the EUCAARI project

(Kulmala et al., 2011). The new inventory focused on im-

proving the representation of the emissions of the transport

sector; major improvements were made to the previous in-

ventory in this respect. The previous emission inventory was

also substantially re-structured and improved for particulate

matter emissions.

However, there are still unresolved issues on PN emis-

sions. The semi-volatile particulate matter should also be al-

lowed for, in addition to solid state particles. Another chal-

lenge is to allow for the short-term temporal transformations

of particulate matter, after the exhaust of pollutants from an

engine or an industrial process. PNC is not a conserved quan-

tity, and the emission values are therefore dependent on the

detailed definition of emissions; especially on the assumed

spatial distance from the emission source. Clearly, the trans-

formation is dependent on ambient conditions, especially on

the ambient air temperature. The values of measured PN

emissions are also dependent on the selected lower partic-

ulate matter limit; this is commonly determined by the capa-

bilities of the experimental techniques. The impacts of fuel

quality and the sulfur content of fuels on PN emissions are

also not currently sufficiently understood.

We have also compiled detailed and extensive urban-scale

emission inventories in the five target cities. However, the

information regarding some source sectors is still missing.

The present knowledge is also not sufficiently accurate, espe-

cially for shipping and small-scale combustion, and in terms

of various environmental conditions. In future work, an in-

depth inter-comparison of such urban emission inventories

would also be valuable, in terms of both the physical assump-

tions and the numerical emission values.

We have conducted dispersion modelling on both Euro-

pean and urban scales. The European-scale computations in-

cluded aerosol process modelling; however, it was not pos-

sible to include a detailed treatment of aerosol processes to

all of the urban-scale modelling systems. Instead, the influ-

ence of coagulation and deposition was examined numeri-

cally for the background air pollution in Oslo in 2008. These

processes were estimated to reduce the background air PNCs

maximally by approximately 40–50 % in the considered en-

vironmental conditions. However, the above-mentioned eval-

uation did not allow for the evaporation and condensation

processes; these may also significantly influence the ambient

concentrations. The urban-scale modelling in this study also

did not explicitly allow for the influence of urban buildings

and other structures.

In all of the target cities, the highest concentrations oc-

curred in the vicinity of the most densely trafficked roads,

and near the junctions of such roads and other major roads.

The concentrations were also elevated in the city centres. The

influence of shipping and harbours was also significant for all

the target cities, except for London. Three of the target cities

are located on the seaside (Helsinki, Oslo, and Athens), and

two are situated along major rivers (Rotterdam and London).

The regional background concentrations were an important

factor for London, and the largest factor for Rotterdam. In

Oslo, the PNCs were also enhanced near the road tunnel en-

trances.

The predicted and measured annual average PNCs in four

cities agreed within approximately ≤ 26 %, except for one

traffic station in London. We consider this agreement to be

reasonable, considering the many potential uncertainties as-

sociated with the PNC modelling. The indexes of agreement

(IA) for the comparisons of hourly measured and predicted

time series in Oslo and Helsinki ranged from 0.75 to 0.79, in-
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dicating a fairly good agreement. However, the amount of ex-

perimental data that could be used for model evaluation was

modest: only one or two stations for each city, and no relevant

data were available for Athens. More long-term hourly mea-

surements of PNCs would therefore be valuable for a more

thorough model evaluation in various urban locations.
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Appendix A: The locations of major harbours, airports,

and tunnel entrances in the target cities

Figure A1. The locations of major harbours, airports, and tunnel entrances in the target cities. The harbour areas have been marked with oval

shapes. The airports have been marked with rectangles, except for Oslo, for which the rectangles correspond to the locations of the tunnel

entrances. The geographical areas denoted by the shapes in the panels are approximates. (a)–(e) correspond to Helsinki, Oslo, Rotterdam,

London, and Athens, respectively.
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Code availability

The computer code of the LOTOS-EUROS model can be

made available upon request (contact Astrid Manders at

astrid.manders@tno.nl). The code is written in FORTRAN

90 and uses NetCDF libraries and python scripts.

The access to the CAR-FMI model for educational

and non-commercial research use can be granted af-

ter signing a collaborative agreement with the Finnish

Meteorological Institute (contact Jaakko Kukkonen at

jaakko.kukkonen@fmi.fi). The code is written in FORTRAN

77.

The computer code of the EPISODE model can be

made available upon request (contact Leonor Tarrason at

leonor.tarrason@nilu.no). The code is written in FORTRAN

90.

The OSCAR model can be configured for any urban area

in collaboration with the Centre for Atmospheric and Instru-

mentation Research (CAIR) at the University of Hertford-

shire, UK. Access to the model for educational and non-

commercial research use can be granted after signing a col-

laborative agreement with the University of Hertfordshire.

The code has been developed to assess air quality and ex-

posure to air pollution at local scales across cities (contact

Ranjeet S Sokhi at r.s.sokhi@herts.ac.uk). The model code is

written in FORTRAN 90, except for emission model, which

is written in Matlab.

The MEMO and MARS-aero models can be obtained

for educational and non-commercial research use, after

signing an end-user license agreement from the Aristotle

University of Thessaloniki (contact George Tsegas at gt-

seg@aix.meng.auth.gr). The code is written in FORTRAN

95 and uses OpenMP and MPI directives.
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