Articles | Volume 9, issue 7
https://doi.org/10.5194/gmd-9-2315-2016
https://doi.org/10.5194/gmd-9-2315-2016
Model description paper
 | 
06 Jul 2016
Model description paper |  | 06 Jul 2016

An open-source MEteoroLOgical observation time series DISaggregation Tool (MELODIST v0.1.1)

Kristian Förster, Florian Hanzer, Benjamin Winter, Thomas Marke, and Ulrich Strasser

Related authors

Decadal re-forecasts of glacier climatic mass balance
Larissa van der Laan, Anouk Vlug, Adam A. Scaife, Fabien Maussion, and Kristian Förster
EGUsphere, https://doi.org/10.5194/egusphere-2024-387,https://doi.org/10.5194/egusphere-2024-387, 2024
Short summary
Event generation for probabilistic flood risk modelling: multi-site peak flow dependence model vs. weather-generator-based approach
Benjamin Winter, Klaus Schneeberger, Kristian Förster, and Sergiy Vorogushyn
Nat. Hazards Earth Syst. Sci., 20, 1689–1703, https://doi.org/10.5194/nhess-20-1689-2020,https://doi.org/10.5194/nhess-20-1689-2020, 2020
Short summary
Rainfall disaggregation for hydrological modeling: is there a need for spatial consistence?
Hannes Müller-Thomy, Markus Wallner, and Kristian Förster
Hydrol. Earth Syst. Sci., 22, 5259–5280, https://doi.org/10.5194/hess-22-5259-2018,https://doi.org/10.5194/hess-22-5259-2018, 2018
Short summary
Projected cryospheric and hydrological impacts of 21st century climate change in the Ötztal Alps (Austria) simulated using a physically based approach
Florian Hanzer, Kristian Förster, Johanna Nemec, and Ulrich Strasser
Hydrol. Earth Syst. Sci., 22, 1593–1614, https://doi.org/10.5194/hess-22-1593-2018,https://doi.org/10.5194/hess-22-1593-2018, 2018
Short summary
Retrospective forecasts of the upcoming winter season snow accumulation in the Inn headwaters (European Alps)
Kristian Förster, Florian Hanzer, Elena Stoll, Adam A. Scaife, Craig MacLachlan, Johannes Schöber, Matthias Huttenlau, Stefan Achleitner, and Ulrich Strasser
Hydrol. Earth Syst. Sci., 22, 1157–1173, https://doi.org/10.5194/hess-22-1157-2018,https://doi.org/10.5194/hess-22-1157-2018, 2018
Short summary

Related subject area

Atmospheric sciences
A novel method for quantifying the contribution of regional transport to PM2.5 in Beijing (2013–2020): combining machine learning with concentration-weighted trajectory analysis
Kang Hu, Hong Liao, Dantong Liu, Jianbing Jin, Lei Chen, Siyuan Li, Yangzhou Wu, Changhao Wu, Shitong Zhao, Xiaotong Jiang, Ping Tian, Kai Bi, Ye Wang, and Delong Zhao
Geosci. Model Dev., 18, 3623–3634, https://doi.org/10.5194/gmd-18-3623-2025,https://doi.org/10.5194/gmd-18-3623-2025, 2025
Short summary
Quantification of CO2 hotspot emissions from OCO-3 SAM CO2 satellite images using deep learning methods
Joffrey Dumont Le Brazidec, Pierre Vanderbecken, Alban Farchi, Grégoire Broquet, Gerrit Kuhlmann, and Marc Bocquet
Geosci. Model Dev., 18, 3607–3622, https://doi.org/10.5194/gmd-18-3607-2025,https://doi.org/10.5194/gmd-18-3607-2025, 2025
Short summary
Diagnosis of winter precipitation types using the spectral bin model (version 1DSBM-19M): comparison of five methods using ICE-POP 2018 field experiment data
Wonbae Bang, Jacob T. Carlin, Kwonil Kim, Alexander V. Ryzhkov, Guosheng Liu, and GyuWon Lee
Geosci. Model Dev., 18, 3559–3581, https://doi.org/10.5194/gmd-18-3559-2025,https://doi.org/10.5194/gmd-18-3559-2025, 2025
Short summary
Improving winter condition simulations in SURFEX-TEB v9.0 with a multi-layer snow model and ice
Gabriel Colas, Valéry Masson, François Bouttier, Ludovic Bouilloud, Laura Pavan, and Virve Karsisto
Geosci. Model Dev., 18, 3453–3472, https://doi.org/10.5194/gmd-18-3453-2025,https://doi.org/10.5194/gmd-18-3453-2025, 2025
Short summary
UA-ICON with the NWP physics package (version ua-icon-2.1): mean state and variability of the middle atmosphere
Markus Kunze, Christoph Zülicke, Tarique A. Siddiqui, Claudia C. Stephan, Yosuke Yamazaki, Claudia Stolle, Sebastian Borchert, and Hauke Schmidt
Geosci. Model Dev., 18, 3359–3385, https://doi.org/10.5194/gmd-18-3359-2025,https://doi.org/10.5194/gmd-18-3359-2025, 2025
Short summary

Cited articles

Ailliot, P., Allard, D., Monbet, V., and Naveau, P.: Stochastic weather generators: An overview of weather type models, Journal de la Société Française de Statistique, 156, 101–113, 2015.
Alduchov, O. and Eskridge, R.: Improved Magnus' form approximation of saturation vapor pressure, Tech. rep., Department of Commerce, Asheville, NC (United States), https://doi.org/10.2172/548871, 1997.
Alerta Rio: Dados Meteorológicos do Sistema de Alerta de Chuvas da Prefeitura do Rio de Janeiro (Meteorological data of the urban floods warning system Alerta Rio of the Prefecture Rio de Janeiro), available at: http://alertario.rio.rj.gov.br/ (last access: 1 March 2016), 2015.
Ångström, A.: Solar and terrestrial radiation. Report to the international commission for solar research on actinometric investigations of solar and atmospheric radiation, Q. J. Roy. Meteor. Soc., 50, 121–126, https://doi.org/10.1002/qj.49705021008, 1924.
Anis, M. R. and Rode, M.: A new magnitude category disaggregation approach for temporal high-resolution rainfall intensities, Hydrol. Process., 29, 1119–1128, https://doi.org/10.1002/hyp.10227, 2014.
Download
Short summary
For many applications in geoscientific modelling hourly meteorological time series are required, which generally cover shorter periods of time compared to daily time series. We present an open-source MEteoroLOgical observation time series DISaggregation Tool (MELODIST) capable of disaggregating temperature, precipitation, humidity, wind speed, and shortwave radiation (i.e. making 24 out of 1 value). Results indicate a good reconstruction of diurnal features at five sites in different climates.
Share