Articles | Volume 9, issue 7
Geosci. Model Dev., 9, 2315–2333, 2016
https://doi.org/10.5194/gmd-9-2315-2016
Geosci. Model Dev., 9, 2315–2333, 2016
https://doi.org/10.5194/gmd-9-2315-2016

Model description paper 06 Jul 2016

Model description paper | 06 Jul 2016

An open-source MEteoroLOgical observation time series DISaggregation Tool (MELODIST v0.1.1)

Kristian Förster et al.

Related authors

Event generation for probabilistic flood risk modelling: multi-site peak flow dependence model vs. weather-generator-based approach
Benjamin Winter, Klaus Schneeberger, Kristian Förster, and Sergiy Vorogushyn
Nat. Hazards Earth Syst. Sci., 20, 1689–1703, https://doi.org/10.5194/nhess-20-1689-2020,https://doi.org/10.5194/nhess-20-1689-2020, 2020
Short summary
Rainfall disaggregation for hydrological modeling: is there a need for spatial consistence?
Hannes Müller-Thomy, Markus Wallner, and Kristian Förster
Hydrol. Earth Syst. Sci., 22, 5259–5280, https://doi.org/10.5194/hess-22-5259-2018,https://doi.org/10.5194/hess-22-5259-2018, 2018
Short summary
Projected cryospheric and hydrological impacts of 21st century climate change in the Ötztal Alps (Austria) simulated using a physically based approach
Florian Hanzer, Kristian Förster, Johanna Nemec, and Ulrich Strasser
Hydrol. Earth Syst. Sci., 22, 1593–1614, https://doi.org/10.5194/hess-22-1593-2018,https://doi.org/10.5194/hess-22-1593-2018, 2018
Short summary
Retrospective forecasts of the upcoming winter season snow accumulation in the Inn headwaters (European Alps)
Kristian Förster, Florian Hanzer, Elena Stoll, Adam A. Scaife, Craig MacLachlan, Johannes Schöber, Matthias Huttenlau, Stefan Achleitner, and Ulrich Strasser
Hydrol. Earth Syst. Sci., 22, 1157–1173, https://doi.org/10.5194/hess-22-1157-2018,https://doi.org/10.5194/hess-22-1157-2018, 2018
Short summary
A snow and ice melt seasonal prediction modelling system for Alpine reservoirs
Kristian Förster, Felix Oesterle, Florian Hanzer, Johannes Schöber, Matthias Huttenlau, and Ulrich Strasser
Proc. IAHS, 374, 143–150, https://doi.org/10.5194/piahs-374-143-2016,https://doi.org/10.5194/piahs-374-143-2016, 2016
Short summary

Related subject area

Atmospheric sciences
GCAP 2.0: a global 3-D chemical-transport model framework for past, present, and future climate scenarios
Lee T. Murray, Eric M. Leibensperger, Clara Orbe, Loretta J. Mickley, and Melissa Sulprizio
Geosci. Model Dev., 14, 5789–5823, https://doi.org/10.5194/gmd-14-5789-2021,https://doi.org/10.5194/gmd-14-5789-2021, 2021
Short summary
Incorporation of volcanic SO2 emissions in the Hemispheric CMAQ (H-CMAQ) version 5.2 modeling system and assessing their impacts on sulfate aerosol over the Northern Hemisphere
Syuichi Itahashi, Rohit Mathur, Christian Hogrefe, Sergey L. Napelenok, and Yang Zhang
Geosci. Model Dev., 14, 5751–5768, https://doi.org/10.5194/gmd-14-5751-2021,https://doi.org/10.5194/gmd-14-5751-2021, 2021
Short summary
Efficient ensemble generation for uncertain correlated parameters in atmospheric chemical models: a case study for biogenic emissions from EURAD-IM version 5
Annika Vogel and Hendrik Elbern
Geosci. Model Dev., 14, 5583–5605, https://doi.org/10.5194/gmd-14-5583-2021,https://doi.org/10.5194/gmd-14-5583-2021, 2021
Short summary
Position correction in dust storm forecasting using LOTOS-EUROS v2.1: grid-distorted data assimilation v1.0
Jianbing Jin, Arjo Segers, Hai Xiang Lin, Bas Henzing, Xiaohui Wang, Arnold Heemink, and Hong Liao
Geosci. Model Dev., 14, 5607–5622, https://doi.org/10.5194/gmd-14-5607-2021,https://doi.org/10.5194/gmd-14-5607-2021, 2021
Short summary
Atmosphere–ocean–aerosol–chemistry–climate model SOCOLv4.0: description and evaluation
Timofei Sukhodolov, Tatiana Egorova, Andrea Stenke, William T. Ball, Christina Brodowsky, Gabriel Chiodo, Aryeh Feinberg, Marina Friedel, Arseniy Karagodin-Doyennel, Thomas Peter, Jan Sedlacek, Sandro Vattioni, and Eugene Rozanov
Geosci. Model Dev., 14, 5525–5560, https://doi.org/10.5194/gmd-14-5525-2021,https://doi.org/10.5194/gmd-14-5525-2021, 2021
Short summary

Cited articles

Ailliot, P., Allard, D., Monbet, V., and Naveau, P.: Stochastic weather generators: An overview of weather type models, Journal de la Société Française de Statistique, 156, 101–113, 2015.
Alduchov, O. and Eskridge, R.: Improved Magnus' form approximation of saturation vapor pressure, Tech. rep., Department of Commerce, Asheville, NC (United States), https://doi.org/10.2172/548871, 1997.
Alerta Rio: Dados Meteorológicos do Sistema de Alerta de Chuvas da Prefeitura do Rio de Janeiro (Meteorological data of the urban floods warning system Alerta Rio of the Prefecture Rio de Janeiro), available at: http://alertario.rio.rj.gov.br/ (last access: 1 March 2016), 2015.
Ångström, A.: Solar and terrestrial radiation. Report to the international commission for solar research on actinometric investigations of solar and atmospheric radiation, Q. J. Roy. Meteor. Soc., 50, 121–126, https://doi.org/10.1002/qj.49705021008, 1924.
Anis, M. R. and Rode, M.: A new magnitude category disaggregation approach for temporal high-resolution rainfall intensities, Hydrol. Process., 29, 1119–1128, https://doi.org/10.1002/hyp.10227, 2014.
Download
Short summary
For many applications in geoscientific modelling hourly meteorological time series are required, which generally cover shorter periods of time compared to daily time series. We present an open-source MEteoroLOgical observation time series DISaggregation Tool (MELODIST) capable of disaggregating temperature, precipitation, humidity, wind speed, and shortwave radiation (i.e. making 24 out of 1 value). Results indicate a good reconstruction of diurnal features at five sites in different climates.