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Abstract. Meteorological time series with 1h time steps
are required in many applications in geoscientific modelling.
These hourly time series generally cover shorter periods
of time compared to daily meteorological time series. We
present an open-source MEteoroLOgical observation time
series DISaggregation Tool (MELODIST). This software
package is written in Python and comprises simple meth-
ods to temporally downscale (disaggregate) daily meteoro-
logical time series to hourly data. MELODIST is capable
of disaggregating the most commonly used meteorological
variables for geoscientific modelling including temperature,
precipitation, humidity, wind speed, and shortwave radiation.
In this way, disaggregation is performed independently for
each variable considering a single site without spatial depen-
dencies. The algorithms are validated against observed me-
teorological time series for five sites in different climates.
Results indicate a good reconstruction of diurnal features at
those sites. This makes the methodology interesting to users
of models operating at hourly time steps, who want to apply
their models for longer periods of time not covered by hourly
observations.

1 Introduction

Continuous recordings of meteorological data are available
since the late 18th century. During the 20th century, obser-
vational networks have been refined intensively, even at re-
mote sites. However, these observations are generally not dis-
tributed equally in space and their temporal resolutions range
from some hours (e.g. three measurements of temperature for
each day) to 1 day (e.g. rain gauges). Later, in the late 20th

century, the instrumentation of meteorological stations has
been supplemented by the installation of automatic weather
stations (AWS), which are capable of collecting meteorolog-
ical data continuously with a frequency ranging from 1h to
I min or even shorter periods of time (Rassmussen et al.,
1993).

Figure 1 depicts the global temporal evolution of data
availability for daily and hourly meteorological time series
during the 20th century and beyond. This diagram has been
compiled using two freely available data sets through query-
ing the temporal coverage of available data of each data set:
daily data are collected continuously in the Global Histor-
ical Climatology Network (GHCN) daily database (Menne
et al., 2012; NOAA, 2015b), whereas the Integrated Sur-
face Database (ISD) provides hourly time series of stations
worldwide (Smith et al., 2011; NOAA, 2015a). This com-
parison reveals that the availability of hourly observations as
provided by AWS is restricted to a few decades only. When
observing Fig. 1, it becomes obvious that a large number of
AWS have only been mounted in the last 2 or 3 decades.

In contrast, hourly meteorological time series are required
for numerous applications in geoscientific modelling. Typi-
cal applications in hydrology include both derived flood fre-
quency analyses (e.g. Haberlandt and Radtke, 2014) and wa-
ter balance simulations (e.g. Waichler and Wigmosta, 2003).
In ecological modelling, sub-daily meteorological data are
required for, e.g., the estimation of epidemic dynamics of
plant fungal pathogens (Bregaglio et al., 2010).

Consequently, the question arises how to generate hourly
time series of meteorological variables, e.g., by using avail-
able daily observations in order to benefit from their longer
temporal coverage and higher spatial network density. In
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general, three completely different approaches exist (listed
in descending order regarding their potential to reconstruct
the originally measured hourly values that are representative
for a given location and time):

1. Temporal disaggregation of daily meteorological obser-
vation (e.g. Waichler and Wigmosta, 2003; Schnorbus
and Alila, 2004; Debele et al., 2007): this method is the
simplest approach among the methods listed here even
though more complex methodologies are also available,
especially for precipitation (e.g. Koutsoyiannis et al.,
2003). Simplicity holds, however, mostly true for com-
putational needs as well as for the complexity of the
methods itself. Deterministic equations or simple statis-
tical models are applied to daily time series in order to
derive hourly values. For each variable, the disaggrega-
tion is generally applied independently. Including statis-
tical evaluations might improve results at a specific site
compared to simple methods that are independent from
station recordings (Waichler and Wigmosta, 2003). For
instance, the rainfall disaggregation package “HyetosR”
(Kossieris et al., 2012; ITIA, 2016) provides an exten-
sive parameter estimation methodology, which is based
on observed time series. Despite their simplicity, dis-
aggregation methods have great potential to reconstruct
the originally measured hourly values for a given day
as they are forced by actual daily values valid for that
specific day.

2. Dynamical downscaling using limited area models
(LAM) of the atmosphere and atmospheric (re-)analysis
data (e.g. Kunstmann and Stadler, 2005; Liu et al., 2011;
Forster et al., 2014). As globally available data are used
(e.g. re-analysis data), this approach is mostly indepen-
dent of local observations although these local record-
ings might have contributed to the global data sets. It
is a physically based approach that preserves physical
consistency among all meteorological variables, which
holds not necessarily true for the first and third method-
ology. However, due to its physical base, it is more
complex and computationally expensive. Since atmo-
spheric (re-)analysis data represent the actual weather
for a given time, dynamical downscaling of this kind of
data is a sophisticated way to derive hourly values for
that time and arbitrary locations in a realistic manner.
However, small-scale precipitation might not be cov-
ered as accurately by the LAM in some cases due to
the very complex micro-physical nature of precipitation
and its variability (e.g. Forster et al., 2014).

3. Using weather generators to derive new synthetic time
series that match the statistics of available hourly data:
weather generators calculate statistics of observed time
series and apply these statistics using a random num-
ber generator to obtain new time series with equal sta-
tistical characteristics (Haberlandt et al., 2011; Ailliot
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Figure 1. Time series of the worldwide station data availability
in the 20th and 21st century according to the global ISD and the
GHCN data sets.

et al., 2015). For hourly time steps, resampling tech-
niques are applied in most cases (e.g. Sharif and Burn,
2007; Strasser, 2008). Time series derived by weather
generators only match the observations statistically. The
sequence of events is different due to its random na-
ture, which is why sub-daily time series do not provide
the originally measured values. Weather generators are
powerful tools that supplement deterministic modelling
by stochastic methods, and thus add a probabilistic com-
ponent to the otherwise pure mechanistic methodol-
ogy (mixed deterministic-stochastic models; see, e.g.,
Pechlivanidis et al., 2011). Combinations with disag-
gregation techniques are also possible (Mezghani and
Hingray, 2009).

In this study, we focus on the simplest method among the
listed approaches, the disaggregation of daily meteorological
data (no. 1). For instance, in hydrological modelling, sim-
ple methods are usually sufficient in order to force concep-
tual, process-based models (Waichler and Wigmosta, 2003;
Debele et al., 2007). To the authors’ knowledge there is nei-
ther any “best” way of disaggregating meteorological data
to hourly values nor any easy, ready to use and flexible
software package that enables this task for different mete-
orological variables including precipitation, temperature, hu-
midity, solar radiation, and wind speed. Therefore, we pro-
pose a robust and fully documented methodology includ-
ing alternative approaches for all these variables in order
to make the best use of available data. Although there are
more complex and sophisticated methods available for ob-
taining hourly values, MEteoroL.Ogical observation time se-
ries DISaggregation Tool (MELODIST) can be viewed as
good balance among several aspects such as data availability,
user’s prior knowledge, robustness, and computational costs.
Therefore, MELODIST addresses practitioners, who need to
run their model for long periods of time at 1 h time steps.
Here, emphasis is put on single stations rather than consid-
ering interdependencies among different stations. However,
the manuscript includes some specific remarks with respect
to this restriction.

The paper is organised as follows: first, the study sites in-
vestigated herein are briefly presented in Sect. 2. The next
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Figure 2. Map of stations investigated in this study. Dot size rep-
resents the mean annual precipitation, whereas the colour of each
station indicates the mean annual temperature.

section gives an overview of the disaggregation methods.
In the fourth section, the methods are statistically evaluated
with respect to their accuracy to reconstruct sub-daily fea-
tures. Finally, Sect. 5 includes concluding remarks and an
outlook for possible future work.

2 Study sites

The accuracy of disaggregation methodologies strongly de-
pends on diurnal characteristics of meteorological variables.
In turn, these diurnal characteristics might vary among dif-
ferent climates and environments. To test the robustness of
the methods described in the next section, a small number
of sites in different climates has been chosen (see Fig. 2 and
Table 1).

Except for Obergurgl, all station data are available for free.
For each station, all relevant meteorological variables have
been recorded for at least 1 decade. Only shortwave radiation
and precipitation are not available for Rio de Janeiro and Ny-
Alesund respectively (Table 1).

The available data sets have been subdivided into two in-
dependent periods of time, one for calibration purposes, if
required, and the other for an independent validation of the
disaggregation results. This subdivision has been defined in
order to enable a split-sample test (Klemes, 1986), which re-
quires an independent validation period for testing models.
In this study, the split-sample test is applied for the disaggre-
gation methods described in the next section.

3 Disaggregation of daily to hourly meteorological
values

3.1 Overview

In this section, all disaggregation methods employed in the
framework of this paper are described in brief. For each me-
teorological variable different options are available (Table 2).
Deterministic methods generally provide the same output if
input remains unchanged. In contrast, stochastic methods are
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based on random numbers. This means that the output dif-
fers in consecutive runs even if the input data set remains the
same. Thus, stochastic methods require multiple runs prior
to a sound statistical evaluation of these runs in order to
draw conclusions. Some models require the calibration of
model parameters that need to be adjusted for each site. Split-
sample tests (Klemes, 1986) are applied to test the methods
more rigorously.

The subsequent sections provide details for each of the
methods listed in Table 2. For each variable an example fig-
ure is provided, which gives an idea of how each of the meth-
ods works. The times and locations of these figures have been
randomly selected.

3.2 Temperature (T1)

Temperature on day i is disaggregated to hourly values j us-
ing a cosine function, whose amplitude is defined by the ob-
served minimum Tp;n ; and maximum temperature 7y, ; on
day i (e.g. Debele et al., 2007):

Tinin,i + Tiax,i w-(tj+a
Ti,jomin,,-er-(Hcos(%)). 1)

The parameter a is determined either through providing
an a priori guess of the temporal difference between the
solar noon and the occurrence of the maximum tempera-
ture or through calibration. Three options are provided by
MELODIST: minimum and maximum temperatures occur
at 7:00 and 14:00 LT, respectively (T1a). The second option
(T1b) relies on radiation geometry in order to calculate sun-
set as point in local time for minimum temperatures and sun
noon + 2 h as point in time for maximum temperatures (see,
Fig. 3). As the temporal shift of 2 h might not be viewed ac-
ceptable as a general rule of thumb, temporal shifts for each
month can be evaluated through statistical evaluation of ob-
served hourly time series (T1c).

In principle, the methodology is based upon the assump-
tion that the diurnal course of temperature simply tracks the
diurnal course of the incoming shortwave radiative flux with
a shift in time. This assumption does not hold true during
polar nights, which is why another method is applied for Ny-
Alesund. For this station, a linear interpolation between min-
imum and maximum temperature is applied (T1d nighttime
option). If temperature increases compared to the previous
day, minimum temperature is assumed to be representative
for the first 12 h of the current day and the maximum temper-
ature is likewise attributed to the second half of that day. If
temperature decreases from one day to the next, the opposite
assignment is applied. Even though this method is rather sim-
ple, it preserves minimum and maximum temperatures while
disaggregating.

Geosci. Model Dev., 9, 2315-2333, 2016
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Table 1. List of AWS investigated in this study. The elevation of each station z is given in metres above sea level. Data availability refers to
the available station recordings (hourly data). The first period of time refers to the calibration period, whereas the second period is preserved
for validation purposes. P is precipitation, T is air temperature, H is humidity, W is wind speed, R is solar radiation, and S is sunshine

duration. The location of each station is shown on the map in Fig. 2.

Station z  Data availability Source
1  DeBilt 2 1961-1990, 1991-2014, P, T, W,H,R, S KNMI (2015)
2 Ny—;\lesund 11 1993-2004, 2006-2011, T, W, H, R, S Maturilli et al. (2013a, b)
3 Obergurgl 1938  2000-2007, 2008-2014, P, T, W, H, R project data
4 Rio de Janeiro — Séo Cristovao 5 2003-2008, 2009-2014, P, T, W, H Alerta Rio (2015)
5  Tucson International Airport 779  1973-1993, 1994-2014, P, T, W, H, R NOAA (2015a), NREL (2015)

Table 2. Overview of disaggregation methods included in MELODIST. The fist letter indicates the parameter that is considered by each
method (P is precipitation, T is air temperature, H is humidity, W is wind speed, R is solar radiation, and X is all variables). For each method,

key references are given.

Method

Type Calib.

Tl Standard sine redistribution with different options (Waichler and Wigmosta, 2003)
(Bregaglio et al., 2010; Waichler and Wigmosta, 2003)

(Bregaglio et al., 2010; Waichler and Wigmosta, 2003)

H3  Linear variation of Ty, overlaid by sine function (Bregaglio et al., 2010)
(Bregaglio et al., 2010; Waichler and Wigmosta, 2003)

H1 Taew = Tinin
H2 Tgew = aTmin +b

H4 Hpin, Hmax
W1  Equal distribution

W2  Cosine function (Debele et al., 2007; Green and Kozek, 2003)

W3 Random distribution (Debele et al., 2007)

R1  Scaling of potential shortwave radiation (Liston and Elder, 2006)
R2 Angstrbm (1924) model for sunshine duration S, then R1

R3  Bristow and Campbell (1984) model, then R1

P1 Equal distribution “(ﬁ)” (Waichler and Wigmosta, 2003)

P2 Cascade model (Olsson, 1998)
P3  Redistribution according to another station
X1  Linear interpolation

deterministic  no
deterministic  no
deterministic  yes
deterministic  yes
deterministic  no
deterministic  no
deterministic  yes
stochastic no
deterministic  no
deterministic  yes
deterministic  yes
deterministic  no
stochastic yes
deterministic  no
deterministic  no

3.3 Humidity

3.3.1 Humidity disaggregation based on dew point
temperature (H1 to H3)

Relative humidity H [%] is defined as the ratio of actual
vapour pressure e, [hPa] to saturated vapour pressure e
[hPa]:

€a
H=100-—. 2)
€

It generally follows a diurnal course with the maximum
around sunrise and the minimum in the early afternoon (De-
bele et al., 2007).

All humidity disaggregation methods require already dis-
aggregated temperature recordings. Methods H1 to H3 gen-
erate hourly values of dew point temperature Tgew [K], as
the actual vapour pressure is assumed equal to the saturated
vapour pressure at dew point temperature. Hourly H values
can thus be calculated using hourly values of T and Tyew as
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es(Tgew)

H =100 ————.
es(T)

3)
Saturation vapour pressure for a given temperature 7' [°C]

is calculated using the Magnus formula (Alduchov and Es-
kridge, 1997):

17.08085T o

22.4420T °
610716Xp(w) T <0 C,

“)

eg =

while actual vapour pressure for a given temperature 7 and
relative humidity H [%] is calculated as

T i 5

ea = es( )'100- &)
Methods H1 and H2 use a model in the form of Tgew, day =
aTmin + b to calculate daily dew point temperature (i.e. no
diurnal dew point temperature variation is assumed). For H1,
a=1and b=0; i.e. Tgew, day is assumed to be equal to the
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Figure 3. Example application of the temperature disaggregation
model T1 performed with different settings for Obergurgl. Observed
and disaggregated time series are shown for temperature. T1a: fixed
abscissa values for minimum and maximum temperature; T1b: min-
imum and maximum temperature are related to sunrise and sun
noon + 2 h, respectively; T1c: similar approach as T1b with an addi-
tional empirical shift of the maximum temperature; T1d: option T1a
with modified nighttime option. The numbers in parentheses indi-
cate the root mean square error (RMSE) computed for each method.

daily minimum temperature. H2 uses hourly observations of
temperature and humidity to calculate the best fit for a and b
for a given site. Tyew is thereby calculated from 7' and H by
inverting Eq. (4):

T H
234.1751n%
: T >0°C
17.08085 — ln%
Tdew = ’ (6)
ea(Ta H)
éa(T, 2h) T <0°C.
22.4429 — Jp 27
6.1071

H3 assumes a diurnal dew point temperature variation
based on the assumptions that dew point temperature varies
linearly between consecutive days, and that mean daily
dew point temperature occurs around sunrise (Debele et al.,
2007). Dew point temperature for a given day (d) and hour
(h) is thereby calculated as

h
(Tdew)d,h :(Tdew, day) + — 24 ((Tdew day)d_H (TdEW, day)d)
+ (Tdew,A)hy @)

where

1 3
(TdeW,A)h = E sin ((l’l + l)kzr — TT[) . ®)

k: should be set to 6 for sites with average monthly radiation
higher than 100 W m~2, and to 12 otherwise (Debele et al.,
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Figure 4. Example application of different humidity disaggregation
models for Obergurgl. Observed and disaggregated time series are
shown for relative humidity. The numbers in parentheses indicate
the root mean square error (RMSE) computed for each method.

2007). An example application of these methods is shown in
Fig. 4.

3.3.2 Minimum and maximum humidity
disaggregation (H4)

Method H4 uses records of daily minimum and maximum
temperature and daily minimum and maximum relative hu-
midity as well as the disaggregated hourly temperature val-
ues to generate hourly humidity values:

T — Tmi
H = Hpax + T—mm

max — Tmin

(Hmin - Hmax) . (9)

If Hmin and Hpax are available for each day, this method is
the best available option among all available disaggregation
methods (Waichler and Wigmosta, 2003).

3.4 Wind speed

Wind speed is a meteorological variable subjected to high
variability at small temporal scales. This small-scale vari-
ability can be observed, e.g., from eddy-covariance measure-
ments (Stull, 2009). The methods compiled in this study fo-
cus on suitable wind speed time series for hourly time steps
without taking into account these sub-hourly considerations.
This idea best corresponds to averages of wind speed for a
given increment of time (e.g. 1h) rather than instantaneous
measurements.

3.4.1 Equal distribution (W1)

As for precipitation, this method applies one unique value
for each hour of the considered day. The daily mean value is
assumed to be valid for hourly values as is (W1). For many
applications, this assumption might be sufficient.

Geosci. Model Dev., 9, 2315-2333, 2016
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Figure 5. Example application of the wind disaggregation models
W1, W2 and W3 for Obergurgl. Observed and disaggregated time
series are shown for wind speed. For option W3, 10 realisations are
shown. The numbers in parentheses indicate the root mean square
error (RMSE) computed for each method.

3.4.2 Cosine function (W2)

Due to local and microclimatic conditions, wind speed is sub-
jected to diurnal variations on days with calm weather in ab-
sence of synoptic-scale weather patterns that obliterate local
and microclimatic forcings (Oke, 1987). Typical diurnal pat-
terns in wind speed (and wind direction as well) are related
to mountain-valley or land-sea wind systems. Besides these
local climatic wind systems, wind speed typically increases
during daytime and almost always diminishes after sunset.
This phenomenon is related to increased radiation-induced
momentum flux on fair weather days. Again, synoptic-scale
weather patterns such as low pressure systems might obliter-
ate local-scale effects. These patterns of diurnal wind speed
variations can be simply represented by a cosine function
(W2), which requires calibration using data observed at the
considered site. This model is similar to the temperature dis-
aggregation method T1 (see Eq. 1 in Debele et al., 2007)

-(t — At
Vit = Qw  Vj - COS (%) + by - v;. (10)

The wind speed representative for day i is disaggregated to
v;; for hour ¢ (Fig. 5). aw, by, and Aty, are parameters that
need to be calibrated for each site prior to the application of
this method.

3.4.3 Random wind speed disaggregation (W3)

According to Debele et al. (2007) a random disaggregation
of wind speed (W3) might also perform reasonably:

vi.: = vi - [—In(nd[0, 1))]1°3. (11)

The function rnd is a random number generator, which
draws random numbers between 0 and 1 from a uniform dis-
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tribution. Figure 5 includes 10 runs (realisations) for this op-
tion. The daily average is not necessarily preserved by this
method.

3.5 Shortwave radiation

3.5.1 Radiation model and disaggregation of daily
mean shortwave radiation (R1)

Shortwave radiation Ry in Wm~2 is computed for hourly
time steps using the methodology described by Liston and
Elder (2006), which predicts potential shortwave radiation
Ry for each time step. A simplified formula is provided that
assumes a flat surface (Liston and Elder, 2006):

Ry =1370 Wm2.cosZ - (Wair + Yaif)- (12)

The solar constant (1370 Wm~2) is scaled according to
the solar zenith angle Z, which depends on time (day of year
and hour measured from local solar noon) and latitude (Lis-
ton and Elder, 2006). Details on these calculations as well
as on the direct and diffuse radiation scaling values Wg;; and
Wyir are given by Liston and Elder (2006).

This methodology is applied for all three options. R1 as-
sumes daily averages of shortwave radiation. This type of
data is generally only available if hourly recordings of short-
wave radiation have been aggregated prior to the data dis-
semination. In contrast, options R2 and R3 do not require
shortwave radiation data as input.

3.5.2 Disaggregation of sunshine duration (R2)

The method R2 builds upon the same methodology as R1 but
runs the Angstrém (1924) model prior to the disaggregation
computations. This model relates sunshine duration to mean
shortwave radiation for daily time steps:

£=(a+b-£). (13)

Relative sunshine duration S/Sy is transformed to relative
global radiation R/Ry and then the Liston and Elder (2006)
radiation model is applied using this data.

The parameters a and b are by default set to 0.25 and 0.75,
respectively (Angstrdm, 1924), but can also be determined
by optimisation using observations of daily mean solar ra-
diation, if available. Figure 6 shows an example based on
method R2 for summertime radiation in De Bilt (Fig. 2). The
constants a and b have been obtained through linear regres-
sion of R and S time series covered by the calibration period.
If shortwave radiation and sunshine duration recordings are
available, it is recommended to calculate these values for the
site of interest.

3.5.3 The Bristow—Campbell model (R3)

If radiation is not available, option R3 might provide reliable
radiation estimates based on minimum and maximum tem-

www.geosci-model-dev.net/9/2315/2016/
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Figure 6. Example application of the radiation disaggregation
model R2 and R3 for De Bilt. Observed and disaggregated time
series are shown for shortwave radiation. Option R2 is based on
sunshine duration, whereas option R3 requires minimum and maxi-
mum temperature as input. The numbers in parentheses indicate the
root mean square error (RMSE) computed for each method.

perature. It is assumed that small differences between max-
imum and minimum temperatures typically occur on cloudy
days. However, larger differences are common on sunny days
with radiative cooling during nighttime and surface heating
caused by shortwave radiative flux during daytime. The cor-
responding method is named after its inventors, Bristow and
Campbell (1984):

R c
R=A [1 —exp(—B- AT )]. (14)

Here, relative global radiation R/Ry is related to the di-
urnal temperature range AT, which is estimated using max-
imum and minimum temperatures on specific day i and the
subsequent day i + 1:

(Tmin,i + Tmin,i+1)

ATi = Tmax,i - )

s)

Besides the parameters A =0.75 and C = 2.4, which
might be viewed as constants in a first step, B is a site-
specific parameter:

B =0.0036 - exp(—0.154 - AT). (16)

In contrast to AT, which refers to a certain day, AT
is the long-term average of differences between maximum
and minimum temperature for the month of the current day.
Based on these computations, radiation estimates are used as
input to the radiation model R1 (see Fig. 6). A site-specific
adjustment of the parameters A and C is possible by optimi-
sation using observations of shortwave radiation, daily mini-
mum and maximum temperature.

www.geosci-model-dev.net/9/2315/2016/
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3.6 Precipitation
3.6.1 Equal redistribution (P1)

Reconstructing sub-daily precipitation intensities from daily
values is challenging as precipitation intensities strongly vary
in time and space. In the framework of this study, three meth-
ods are presented. The first method is the simplest way of
disaggregating daily precipitation to hourly intensities by di-
viding the daily value by 24.

3.6.2 Cascade model (P2)

In order to provide a more sophisticated model that pre-
serves sub-daily precipitation characteristics and is still less
complex than typical weather generators, a simple statisti-
cal precipitation disaggregation approach has been set up:
the microcanonical, multiplicative cascade model by Olsson
(1998). Some enhancements proposed in the literature (Giint-
ner et al., 2001), such as weighting, have been taken into ac-
count as well. This method is a probabilistic approach pro-
viding different disaggregation results for each run (realisa-
tion). However, the statistical characteristics of each realisa-
tion are equal by definition.

The disaggregation is carried out assuming a doubling of
temporal resolution for each step. Due to this stepwise dou-
bling of resolution, the model is referred to as cascade model
(see Fig. 1 in Olsson, 1998). The time series of cascade
level i with time step Af; is disaggregated to level i + 1 with
time step Atjy] = % - At;. The procedure is applied succes-
sively until the desired temporal resolution is reached. The
doubling of elements of each subsequently derived time se-
ries implies that each box! of the higher level’s time series
has to be split in the next cascade level. Thus, the question
arises how the separation of the precipitation volume P; into
two temporally equidistant time steps Piy1,;1 = W1 - P; and
P11 =(1—Wp)-P; = Wy P; (branching) is done, whereby
W1 is the relative weight of branching for the first box of the
subsequent level with respect to the total precipitation vol-
ume to be branched (W, is the weight assigned to the sec-
ond box). Three cases are foreseen in the so-called branching
generator (Olsson, 1998; Miiller and Haberlandt, 2015):

Wi, Wy = 7)
Oand 1 with probability P(0/1)
1 and O with probability P (1/0)
x and 1 —x with probability P(x/(1 —x));0 <x < 1.
The first case indicates a branching that fills the second
box of the subsequent level only, whereas the second case

indicates the opposite. In contrast, the third case accounts for
a weighted branching into both boxes of the subsequent level.

IThe term box representing 1 data point, i.e. precipitation inten-
sity for a given increment of time, is introduced by Olsson (1998)
and, thus, herein used as well.

Geosci. Model Dev., 9, 2315-2333, 2016
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Figure 7. Example for precipitation disaggregation using the cascade model: 1h rainfall observed at Rio de Janeiro — Sdo Cristovdo on
5 December 2010 (blue). Based on statistical evaluations of long-term hourly precipitation series and their aggregation to coarser temporal
resolutions, all relevant steps of the cascade disaggregation applied to daily totals are presented (green). The time series of each cascade level
are shown for three realisations of the model n =1 (left), n =2 (centre), and n = 3 (right).
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For these cases, probabilities are provided for four different
types of wet boxes with P; > 0:

— Starting box: this type of box indicates a dry box in the
previous and a wet box in the next time step.

— Ending box: an ending box follows a wet box and is
followed by a dry box.

— Isolated box: in this case, the adjacent boxes of the pre-
vious and the next time step are dry.

— Enclosed box: the adjacent boxes of the previous and
next time step are wet.

These probabilities for the three different branching pos-
sibilities (Eq. 17) can be achieved by a reverse scaling pro-
cedure. Highly resolved precipitation time series are aggre-
gated by applying the cascade level branching assumption
backwards. In each case boxes are summed up pairwise
representing the respective total volume of the antecedent
higher level. Statistics are calculated for the branching types
mentioned above (probabilities are derived through dividing
counts of each case by the total number of elements of the
time series). Separate evaluations are prepared for precip-
itation intensities below and above the mean precipitation
value.

Additional statistics need to be computed for the case
P(x/(1 —x)) for which the relative weight x is evaluated
as well. For all box types and both intensity classes, the
relative weight ranging from 0-1 is simply divided into 7
bins (see histograms in Olsson, 1998; Giintner et al., 2001)
and counted according to the previously mentioned criteria
(four box types, two intensity classes, seven classes of x).
This procedure is applied for the aggregation steps 1 — 2h
(2'h), 2— 4h (2%h), 4 - 8h (2°h), 8 = 16h (2*h), and
16 — 32h (2°h). According to Giintner et al. (2001), a
count-related weight is assigned to the probabilities P(0/1),
P(1/0), and P(x/(1 —x)) in each aggregation step prior
to averaging the probabilities of all steps. The same proce-
dure is applied to the weights. Finally, as a result, matrices
of probabilities and weights are derived that represent the
station’s precipitation scaling. The parameterisation is done
by applying the empirical distributions of P(0/1), P(1/0),
P(x/(1—x)), and x to a random number generator (without
fitting analytical distributions).

In turn, these matrices of probabilities and weights are
used to disaggregate daily time series. The type of branching
is determined by drawing random numbers for each branch-
ing step incorporating the probabilities P(0/1), P(1/0), and
P(x/(1 —x)), which are evaluated cumulatively. If the ran-
dom number is within the range of P(x/(1 —x)), a similar
procedure is applied to determine the weight x using another
random number. In contrast to the aggregation procedure,
disaggregation is applied including the following steps (see
Fig. 7): 24 - 12h - 6h — 3h — 1.5h — 0.75h (Giint-
ner et al., 2001). The time series with a 45 min time step are
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equally distributed to time series with a 15 min time step.
These, in turn, are transformed uniformly to obtain time se-
ries with 1 h time step.

For all disaggregation steps described above, the cascade
model preserves mass, which means that the precipitation to-
tal of the disaggregated time series is equal to the respec-
tive value of the original time series (microcanonical cas-
cade model). Despite its simplicity with respect to model
complexity and parameter estimation (Molnar and Burlando,
2005), cascade models have been already used success-
fully in different climates (Giintner et al., 2001). In contrast
to more sophisticated models, the autocorrelation structure
might not necessarily be preserved (Koutsoyiannis, 2003;
Lombardo et al., 2012).

Remarks on spatial representativeness: if this procedure
is applied to more than one station, the sub-daily temporal
distribution of precipitation is randomly derived for each sta-
tion. These spatial patterns do not represent the actual spa-
tial structure of the events at sub-daily timescales. For prac-
tical applications at the mesoscale, it is therefore suggested
to redistribute the sub-daily intensities for each station ac-
cording to the cumulative relative sum of the station that is
subjected to the highest daily precipitation depth (Haberlandt
and Radtke, 2014), which can be performed using the method
described in the next paragraph. Areal peak intensities at sub-
daily time steps might be overestimated due to this assump-
tion, which limits the universal applicability of this approach.
However, this overestimation might be acceptable for some
applications like, e.g., derived flood frequency analyses for
hydrologic design purposes (Haberlandt and Radtke, 2014).
A more sophisticated but much more complex approach that
has been developed recently (Miiller and Haberlandt, 2015,
2016) takes spatial consistency explicitly into consideration.

3.6.3 Redistribution according to another station (P3)

Finally, a third method is supplied that addresses the gener-
ally higher network density of precipitation gauges compared
to other meteorological variables. If a mixed network includ-
ing hourly and daily observational sites is considered and if
the distance among these stations is small, the relative mass
curve of the station recordings at 1 h time step can be trans-
ferred to the other sites for which only daily recordings are
available. The values for the target sites are obtained through
multiplying the relative mass of the highly resolved station’s
curve with the daily precipitation depth observed at the tar-
get site. This methodology is also applied in the tool IDWP
(Inverse Distance Weighting for Precipitation), which is part
of the hydrological modelling system WaSiM (Water balance
Simulation Model) (Schulla, 2015). The applicability is lim-
ited to the period of time covered by recordings at a 1 h time
step.

Geosci. Model Dev., 9, 2315-2333, 2016
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Figure 8. Histograms of observed and disaggregated time series for each variable (columns) and each station (rows). Observed (disaggre-

gated) time series are displayed in grey (white).

4 Results and discussion
4.1 Overview

This section follows the same structure as the methodology
section. For each variable long-term averages of disaggre-
gated and observed time series are presented and evaluated
in order to assess the model skill of the disaggregation meth-
ods. The time series used for disaggregation represent hourly
observations aggregated to daily averages and totals. Empha-
sis is put on prediction of diurnal features since most methods
described herein are founded upon assumptions that imply a
certain diurnal course for a given variable. This holds espe-
cially true for temperature, humidity, wind speed, and radi-
ation. For precipitation, results are compiled and discussed
for the cascade model. Due to the involvement of a random
number generator in this method, evaluations with respect
to model skill require the analysis of multiple runs (realisa-
tions).

Geosci. Model Dev., 9, 2315-2333, 2016

Not all methods provided by MELODIST are evaluated.
We focus on a subset of methods, which might be relevant to
a broad range of users with respect to typical data availability
settings and typical applications. For each variable, the same
methodology is applied to all stations listed in Sect. 2.

In order to put light on the model skill in a more quanti-
tative way, statistical parameters have been derived for both
the observed and the disaggregated time series (see, e.g., Ta-
ble 3). All statistical parameters refer to the validation period
listed for each station in Table 1 and have been calculated
for hourly time steps. The mean value as well as the standard
deviation have been computed for both time series for each
station and each variable. The comparison of mean values
gives an idea about possible biases, whereas the comparison
of standard deviations is relevant to assess the comparability
of the variability inherent in both time series. Moreover, the
root mean square error (RMSE), the correlation coefficient
r, and the Nash—Sutcliffe model Efficiency (NSE) have been
calculated based on observed and disaggregated time series.

www.geosci-model-dev.net/9/2315/2016/
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Table 3. Model performance measures for temperature disaggregation (T1b model). X, and x5 are the mean values of observed and disaggre-
gated temperature, respectively. The standard deviation of the observed (6,) and disaggregated (o) time series are also specified. The root
mean square error (RMSE), the correlation coefficient », and the Nash—Sutcliffe model efficiency (NSE) are calculated using the observed

and disaggregated time series for each station.

Station Xo Xg 0o os RMSE r NSE

(unit of temperature [K]) [-] [-]
De Bilt 283.57 28345 6.88 6.94 1.74 097 0.94
Ny-z&lesund 269.55 269.65 7.24 7.27 1.63 097 095
Obergurgl 27590 27636 7.87 8.03 2.00 097 094
Rio de Janeiro  298.25 298.74 4.03 4.34 1.66 093 0.83
Tucson 29435 29445 9.53 949 269 096 0.92

Table 4. Model performance measures for humidity disaggregation (H3 model). X, and X are the mean values of observed and disaggregated
relative humidity, respectively. The standard deviation of the observed (c,) and disaggregated (o) time series are also specified. The root
mean square error (RMSE), the correlation coefficient r, and the Nash—Sutcliffe model efficiency (NSE) are calculated using the observed

and disaggregated time series for each station.

Station Xo Xs 0o os RMSE r NSE

(unit of relative humidity [%]) -] [-]
De Bilt 81.82 81.63 15.12 1548 12.67 0.66  0.30
Ny—Alesund 7496 74.82 12.61 12.30 17.41 0.02 -091
Obergurgl 70.83 6642 17.67 13.40 16.43 0.51 0.14
Rio de Janeiro 7095 6745 14.13 10.76 1039 0.72 046
Tucson 3531 3331 2196 10.51 1852 055 029

RMSE is a measure of deviations between observed and
disaggregated time series on an hour-to-hour basis. Smaller
values are generally better than larger values. The correlation
coefficient is ideally close to one and describes the coinci-
dence of phase for two series without considering biases. In
contrast, NSE can be viewed as a combined measure address-
ing deviations in terms of biases and shifts in phase. It ranges
from negative infinity indicating a low skill to one indicating
a perfect fit. A value of zero means that the model is as good
as applying the average value.

In order to gain some insight on how well the distribu-
tions of disaggregated time series match the observed ones,
histograms for each variable and each site are displayed for
both disaggregated and observed values in Fig. 8.

4.2 Temperature

Despite the fact that only one option is available for tem-
perature (T1), the standard-sine method enables different op-
tions to define the boundary conditions of the sine function
(see Fig. 3). This method uses minimum and maximum tem-
perature as input data. Here, results using the day-length-
dependent option are presented, where maximum tempera-
ture is assumed to occur 2h after the solar noon. For Ny-
Alesund, the modified nighttime option was activated as well
in order to reliably disaggregate nighttime temperatures dur-
ing polar nights, when the assumption of a distinct diurnal
course does not hold true.

www.geosci-model-dev.net/9/2315/2016/

Long-term averages of hourly temperature derived for all
sites are compiled in Fig. 9 alongside with the corresponding
observations. The disaggregated diurnal course of tempera-
ture coincides well with observations for each station. Diur-
nal features are reliably preserved in the disaggregated time
series. However, the amplitude is slightly overestimated for
each site, attributable to the fixed assignment of minimum
and maximum temperature for a given day of year. This as-
sumption is mostly valid on fair weather days with surface
heating but in some cases, e.g. when fronts cross the site of
interest, minimum and maximum temperatures might occur
at different times. Thus, minimum and maximum tempera-
tures are more spread throughout the day in the observed data
sets, resulting in a slightly smaller amplitude on average.

Besides this visual comparison, Table 3 summarises the
model skill of temperature disaggregations for each station.
Mean temperature values are well represented in the data set
given that the mean temperature was assumed to be unknown
and only minimum and maximum temperatures have been
involved in the analyses. The differences are smaller than
0.5K. Due to the prescribed difference between minimum
and maximum temperature, the standard deviations of ob-
served and disaggregated time series are very similar. How-
ever, the magnitude of RMSE values shows that differences
on an hour-to-hour basis exceed the average bias. However,
given that only two values per day are used as input data, the
RMSE values can be viewed as good model performance.

Geosci. Model Dev., 9, 2315-2333, 2016
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Figure 9. Long-term averages of diurnal courses of observed
(dashed) and disaggregated (solid) temperature. Option T1b has
been chosen and the sine curve was modelled based on sunset and
sun noon computations for minimum and maximum temperature,
respectively. The period of time involved in this analysis is listed in
Table 1 for each station.

This holds also true for » and NSE, indicating a high model
skill.

Disaggregated time series of each station are of similar
model performance. Only Rio de Janeiro has a slightly lower
model skill, which can still be viewed as good model repre-
sentation. Observations derived at Ny-Alesund indicate that
even an application of average values might be sufficient
as disaggregation procedure, which can be explained by the
lower impact of radiation on diurnal features of meteorologi-
cal variables for that site. To conclude, temperature disaggre-
gation based on minimum and maximum temperature should
provide reliable estimates. This finding is also supported by
the good agreement of the histograms constructed for both
disaggregated and observed time series (Fig. 8, 1st column).

Geosci. Model Dev., 9, 2315-2333, 2016
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4.3 Humidity

As for temperature, Fig. 10 depicts the long-term mean of
the diurnal course of relative humidity for all stations (H3
model). The diurnal patterns of relative humidity are reason-
ably disaggregated through simulating a drop in humidity in
the afternoon, which is observed at most stations. However,
the accordance is less pronounced than for temperature. It
is worth noting that the disaggregation of relative humidity
depends on hourly temperature values. For these analyses,
the results described for temperature in the previous sections
have been applied for the disaggregation of relative humidity.
Hence, uncertainties involved in the prior step also contribute
to deviations between observation and disaggregation.

A closer look at the statistical evaluations derived for hu-
midity disaggregation as compiled in Table 4 shows that the
model performance is lower than the corresponding values
obtained for temperature. The mean values are reproduced
within a range of £5 %. Even though no information about
daily minimum and maximum values of humidity have been
involved in the disaggregation procedure, the standard devi-
ations computed for observed and disaggregated time series
are of similar magnitude. The RMSE amounts to 20 % in-
dicating comparably large differences between observed and
disaggregated values even though the mean bias is substan-
tially lower. For all but one station, the correlation coefficient
is higher than 0.5. In Ny-Alesund a correlation close to zero
could be interpreted as inadequate model skill, which is un-
derlined when considering the negative NSE value. It may
be assumed that the generally lower impact of radiation on
other meteorological variables would suggest to use an equal
redistribution of humidity values for that station.

However, the model performance achieved for the other
stations is better given that the RMSE is lower and r and
NSE are higher, respectively. In contrast to temperature, the
humidity disaggregation performs best for Rio de Janeiro. To
summarise, the disaggregation of humidity is reliable consid-
ering the fact that disaggregated temperature time series and
only one humidity value per day have been used as input.
Hence, minimum and maximum humidity are not preserved
by this approach. This finding becomes apparent when con-
sidering the mismatch of minimum and maximum humidity
reconstructions for some sites (e.g. Tucson, see Fig. 8, 2nd
column for further details). These findings prove previous
work that also discussed the accuracy of humidity disaggre-
gation techniques (Waichler and Wigmosta, 2003; Bregaglio
et al., 2010). If daily minimum and maximum values of rela-
tive humidity are available, the redistribution of these values
should be pursued (see Fig. 4 and Bregaglio et al., 2010).

4.4 Wind speed
Wind speed disaggregation has been accomplished using the

modified sine curve (W2). In Fig. 11 the long-term averages
of the diurnal course of wind speed is plotted separately for

www.geosci-model-dev.net/9/2315/2016/
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Table 5. Model performance measures for wind speed disaggregation (W2 model). X, and X are the mean values of observed and disaggre-
gated wind speed, respectively. The standard deviation of the observed (¢,) and disaggregated (o) time series are also specified. The root
mean square error (RMSE), the correlation coefficient », and the Nash—Sutcliffe model efficiency (NSE) are calculated using the observed

and disaggregated time series for each station.

Station Xo Xg 0o os RMSE r NSE

(unit of wind speed [m g1 D [-] -]
De Bilt 349 349 1.89 1.59 1.05 0.83 0.69
Ny-Alesund 403 4.03 323 257 195 0.80 0.64
Obergurgl 1.38 138 151 1.06 1.08 0.70 0.49
Rio de Janeiro 141 141 121 0.75 0.85 0.72 0.50
Tucson 327 327 207 1.17 1.70 0.57 0.32

Table 6. Model performance measures for radiation disaggregation (R2 model). X, and x5 denote the mean values of observed and disag-
gregated shortwave radiation, respectively. The standard deviation of the observed (6,) and disaggregated (6) time series are also specified.
The root mean square error (RMSE), the correlation coefficient », and the Nash—Sutcliffe model efficiency (NSE) are calculated using the

observed and disaggregated time series for each station.

Station Xo Xs 0o os RMSE r NSE

(unit of radiative flux [W m~2]) [-] (-1
De Bilt 113.65 123.05 188.11 182.17 6130 095 0.89
Ny—z&lesund 59.73 63.21 92.42 89.38 31.90 094 0.88

observed and disaggregated wind speed, respectively. In this
figure, wind speed is scaled as “normative” wind speed; i.e.
the value for each hour is divided by the mean value. Maxi-
mum wind speed, which is typically observed during the af-
ternoon hours, is well represented in the disaggregated time
series. Small-scale variability, as discussed in the methodol-
ogy section, is not reproducible by this approach.

As the mean value is simply redistributed according to a
sine function, mean values are exactly reproduced by the dis-
aggregation approach. As already mentioned, variability (i.e.
fluctuations) is neglected resulting in lower predicted stan-
dard deviations when compared to the corresponding stan-
dard deviations derived for the observed time series (Table 5).
This also becomes evident when observing the falling limb
of the histograms of disaggregated values shown in Fig. 8
(third column). If these fluctuations are not relevant for fur-
ther evaluation, this disaggregation methodology for wind
speed has an acceptable model skill, which can be observed
from the correlation coefficients and NSE values. Although
these values are lower than those derived for temperature,
they indicate a good model performance for all sites. The
best model skill is achieved for De Bilt, whereas the lowest
performance is achieved for Tucson, where a secondary wind
speed maximum is observed in the morning. This diurnal pat-
tern might be related to a local wind system that is subject to
a change in wind direction and, hence, to a change in wind
speed. Such phenomena are not addressed by this method.

www.geosci-model-dev.net/9/2315/2016/

4.5 Radiation

Even though radiation observations are available to most of
the sites investigated in this study, the availability of daily
mean shortwave radiation in absence of sub-daily time series
is not so common. One exception is climate model output,
which is typically aggregated to daily values. A typical real-
world-case is, however, a long data set of sunshine duration
recordings. Therefore, method R2 is applied even though it
is only applicable to De Bilt and Ny-Alesund. The diurnal
course of mean hourly values derived through averaging the
observed and disaggregated data sets is displayed in Fig. 12.

Given that the disaggregation is based on sunshine dura-
tion, the model skill can be viewed as very good for both
sites. The timing of solar noon radiative fluxes as well as
the phase of the disaggregated time series track observations
very well, which is also underlined by the performance mea-
sures presented in Table 6. Deviations between the mean val-
ues can be related to uncertainties involved in the Angstrém
(1924) model, which has been fitted prior to disaggregation
for both stations using the data from the calibration period.
However, the disaggregated time series are subjected to sim-
ilar variabilities as the observed time series, which is ex-
pressed by the very similar standard deviations and the co-
incidence of histograms computed for disaggregated and ob-
served time series as displayed in Fig. 8 (fourth column). As
expected, the RMSE is comparably high when compared to
the mean value of the time series since shortwave radiation is
subjected to fluctuations due to the presence and absence of
clouds causing rapid changes in shortwave radiation even for

Geosci. Model Dev., 9, 2315-2333, 2016
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Table 7. Model performance of the precipitation cascade model (P2) evaluated for each station. For the validation period, mean values are
given for some relevant characteristics of the precipitation time series. An event is defined through consecutive hours with precipitation
intensity greater than 0 mm h~!. Numbers in parentheses refer to the respective observed time series of each station.

De Bilt  Obergurgl Rio de Janeiro Tucson

Duration of events [h] 3.91 4.72 3.41 2.90
(2.99) (3.73) (2.70) (2.20)

Rainfall of events [mm] 2.52 2.78 4.87 3.46
(2.45) (2.78) (4.63) (3.81)

Duration of dry spells [h] 21.76 23.05 39.24 118.44
(22.02) (24.00) (37.87) (131.47)

Number of events per year 342 316 206 72
(351) (316) (216) (66)
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Figure 10. Long-term averages of diurnal courses of observed
(dashed) and disaggregated (solid) relative humidity (H3 model).
The period of time involved in this analysis is listed in Table 1 for
each station.
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small increments in time. Notwithstanding these restrictions,
the model skill expressed through the correlation coefficient
and the NSE can be viewed as very good.

4.6 Precipitation

In contrast to the meteorological variables previously de-
scribed, precipitation has been disaggregated using the cas-
cade model (P2), which is a probabilistic model. As already
explained, this change from deterministic to probabilistic
methods requires a modified evaluation of model perfor-
mance. Even though the precipitation total is preserved for
each day throughout the disaggregation procedure, the oc-
currence and sequence of precipitation intensities differ from
run to run. For rigorous testing and validation of the method,
multiple runs are needed and their results have to be statisti-
cally evaluated. Figure 8 (fifth column) shows histograms for
both disaggregated and observed time series for each station.
The comparison of histograms derived from disaggregated
and observed values reveals that the empirical distributions
are similar. The falling limb of the histograms is also reliably
reconstructed by the cascade model for which 100 runs have
been considered to compute the histograms.

In addition to this visual comparison, the evaluation has
been carried out according to the validation approaches de-
scribed by Olsson (1998) and Glintner et al. (2001). Fol-
lowing their ideas, Quantile-Quantile plots (Q—Q plots) of
precipitation intensities are shown in Fig. 13, with close at-
tention paid to the highest 1 % of precipitation intensities.
Since autocorrelation structure is not explicitly warranted by
the cascade model, this feature is also tested (see, Fig. 14).
As the common performance measures cannot be applied
appropriately for random distributions of daily disaggrega-
tions, other performance criteria have to be considered. An
approach similar to that described by Olsson (1998) was cho-
sen for that reason (see Table 7).

First, the simulation of peak intensities is studied through
comparing observed and disaggregated intensities in a Q-
Q plot (Fig. 13). For each station for which precipitation is

www.geosci-model-dev.net/9/2315/2016/
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Figure 11. Long-term averages of diurnal courses of (a) observed and (b) disaggregated “normative” wind speed (W2 model). The normative
wind speed indicates the ratio of the long-term mean of the wind speed observed or modelled at a specified hour to the respective value
averaged for the entire day. The period of time involved in this analysis is listed in Table 1 for each station.
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Figure 12. Long-term averages of diurnal courses of observed

(dashed) and disaggregated (solid) shortwave radiation. Disaggre-
gation is based on daily recordings of sunshine duration (R2 model).

available the highest 1 % of disaggregated intensity values is
plotted against the corresponding sorted time series of ob-
served values. The cascade model was run 100 times, which
is why 100 realisations are similarly evaluated. The areas
shaded in light blue represent the range of values achieved
through involving all realisations in the analyses. In contrast,
the area shaded in dark blue corresponds to the standard de-
viation of the considered quantile. Moreover, the mean of all
realisations is drawn as blue line for each station.

Even though intensity peaks are only represented implic-
itly through branching probabilities, precipitation peaks are
well captured from a statistical point of view. For Rio de
Janeiro, Tucson, and De Bilt, precipitation intensities are
slightly underestimated. In contrast, an overestimation can

www.geosci-model-dev.net/9/2315/2016/

be observed in the results of Obergurgl. The range of values
indicate that some of the highest values in the observed data
sets are even exceeded in some realisations, which might un-
derline the need for multiple runs.

Other characteristics that are also relevant for evaluations
of sub-daily precipitation characteristics are summarised in
Table 7. The mean duration of events ranges from 3 to Sh
and is overestimated for all stations, which was also found
by Olsson (1998) and Giintner et al. (2001). In contrast, the
mean precipitation total of events derived through disaggre-
gation is on average similar to the respective observed value.
This finding holds for all stations. It is evident that this value
is higher in the subtropics than in the mid-latitudes. Although
the total annual rainfall in Tucson is comparably small and
the number of events per year is low, the average rainfall of
events is also higher than in the mid-latitudes. This feature
is correctly predicted by the cascade model. The duration of
dry periods is also in good agreement compared to observa-
tions. Even though the length of events is over-predicted, the
characteristics of the observed precipitation time series are
captured very well for each site by the cascade model.

To conclude, the cascade model preserves major charac-
teristics of the observed hourly time series. However, these
sub-daily characteristics can only be statistically evaluated
due to the probabilistic nature of the approach. The model
skill achieved for the stations listed in Table 7 can be viewed
as reasonable reconstruction.

As for the intensity plot, shaded areas are added to the dia-
grams in Fig. 14 to show the variability in terms of total range
and standard deviation of values. The autocorrelation derived
for the disaggregated time series match observed values very
well for Rio de Janeiro, Tucson, and De Bilt. For Obergurgl,
higher ry values are observed, which are not covered by the
model results. The results derived using the cascade model
for these sites can be viewed as good reconstruction of hourly
precipitation features given that intensities, major character-

Geosci. Model Dev., 9, 2315-2333, 2016
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Figure 13. Modelled (blue) vs. observed (black) precipitation in-
tensities for the 1 % highest intensities derived using a split-sample
test for the cascade model (P2). For all panels the shaded areas refer
to the standard deviation (dark blue) and range of values (light blue)
computed for 100 realisations, respectively.

istics of precipitation events, and the autocorrelation struc-
ture of the disaggregated time series are in good agreement
with observation.

5 Conclusions and outlook

The application of a simple and easy-to-use toolbox of dis-
aggregation methods has been presented. Most of the meth-
ods included in MELODIST are parsimonious with respect
to theory and computational costs (disaggregating 5 years of
daily precipitation recordings using the cascade model takes
less than 4 s on a notebook with a 2 GHz i7 CPU). The basic
levels of complexity have been chosen keeping practitioners
in mind, who need a package that is capable of disaggre-
gating all relevant meteorological variables needed for en-
vironmental modelling. Available studies on disaggregation
often focus on single variables such as precipitation rather
than providing a unified framework for disaggregation. How-
ever, the presented package can be easily extended by more
complex methods available in the literature as it provides ba-
sic functionalities for handling of time series with different
temporal resolutions.

A set of methods relevant for real-world cases has been
presented based on a split-sample test and statistical eval-
uations performed for the validation period. The presented
methods perform well for different stations situated in differ-
ent climates, which underlines the robustness of the methods
applied in the framework of this study. The highest model
skill is achieved for temperature. Humidity disaggregation
is, however, less reliable given that only one value per day is
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Figure 14. Autocorrelation ry as function of time lag &k (in hours)
plotted for modelled (blue) and observed (black) precipitation time
series. For all panels the shaded areas refer to the standard devia-
tion (dark blue) and range of values (light blue) computed for 100
realisations, respectively.

provided. The availability of minimum and maximum rel-
ative humidity improves the model skill. Wind speed dis-
aggregation based on diurnal variations also works well if
fluctuations are not required for further analyses. In contrast,
the random wind speed function might be an alternative as
it provides higher variabilities. Hourly radiation time series
can be obtained with good agreement compared with ob-
servations, even if daily recordings of sunshine duration are
used as input. Although precipitation was disaggregated us-
ing a stochastic approach, which matches observations only
in terms of long-term statistical evaluations, major character-
istics of hourly precipitation features coincide well with ob-
servations. Based on this validation and the fact that different
meteorological variables and stations have been involved in
the validation analyses, MELODIST can be viewed as a reli-
able and robust tool.

Some of the methods provided by MELODIST are based
upon analyses of time series for parameter estimation, which
requires a certain quality of data to derive sound parame-
ters for performing the disaggregation runs. In general, it is
important to note that data homogeneity might not always
apply to long time series as changes in the instrumentation,
microclimate, and processing of data might have caused dis-
continuities in the time series (see, e.g., Rassmussen et al.,
1993). For instance, Maturilli et al. (2013a) describe trends in
the Ny-Alesund data sets, which are also tested herein. This
is especially important if statistical disaggregation methods
are applied that have been tuned for small periods of time
only. Moreover, the limited availability of hourly observa-
tions involved in the statistics achieved in this study has to be

www.geosci-model-dev.net/9/2315/2016/
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carefully reviewed with respect to representativeness from a
climatological point of view. In this study, different stations
have been considered to investigate the robustness of meth-
ods rather than drawing conclusions in terms of climatic dif-
ferences.

Homogeneity might be also relevant for disaggregation of
time series that are subject to changes in climate. Ideas to
cope with changing climatic conditions for disaggregation
approaches are currently investigated. Two examples relevant
in this context for the statistics-based cascade model are a
circulation-based parameterisation in order to better predict
changing weather patterns related to changing climate (Lis-
niak et al., 2013) and an intensity-based categorisation (Anis
and Rode, 2014). Current research also focuses on the incor-
poration of the Clausius—Clapeyron relation to better predict
rainfall intensities in future climates (Biirger et al., 2014).
These studies only address single stations or a limited study
area without the consideration of different climates. Hence,
the applicability of new methods should also be critically re-
viewed with respect to transferability.

In contrast to weather generators and dynamical downscal-
ing approaches, physical consistency among the meteorolog-
ical variables considered in this framework is not inherent in
the methodology. This limitation might restrict the method-
ology to derive input data only for conceptual models that are
not pure physics-based approaches as the latter are more de-
manding with respect to this consistency. However, for most
conceptual “grey box” models (see, e.g., Refsgaard, 1996)
the quality of data provided by this disaggregation methods
should be sufficient as tested in the framework of other model
experiments (Waichler and Wigmosta, 2003). A better repre-
sentation of the dependencies among the most relevant me-
teorological variables should be addressed explicitly in the
future. Moreover, further emphasis should be on spatial con-
sistency in disaggregation as already pursued by some au-
thors (see, e.g., Koutsoyiannis, 2003; Miiller and Haberlandt,
2015). The ongoing research on disaggregation methods un-
derlines the need for sound and robust tools for disaggregat-
ing meteorological variables.

Even though MELODIST provides robust methods that do
not include those very recent developments, it might serve as
tool for both practitioners and scientists. For the latter group,
MELODIST could be viewed as framework for performing
future research on disaggregation since new disaggregations
methods can be easily plugged in.

6 Code availability

MELODIST is free open-source software and is licensed un-
der the GNU General Public License version 3 (GPL3). The
software package is written in Python and has been tested
under Python 2.7 and 3.5. The packages pandas, numpy,
and scipy are required as dependencies. The following is a
list of ways the reader can get MELODIST:

www.geosci-model-dev.net/9/2315/2016/
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— doi:10.5281/zenodo.54676
— https://github.com/kristianfoerster/melodist.git

— run pip install melodist on the command
line.
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