Articles | Volume 8, issue 3
Model description paper
25 Mar 2015
Model description paper |  | 25 Mar 2015

A global carbon assimilation system using a modified ensemble Kalman filter

S. Zhang, X. Zheng, J. M. Chen, Z. Chen, B. Dan, X. Yi, L. Wang, and G. Wu

Related authors

Improving the ensemble transform Kalman filter using a second-order Taylor approximation of the nonlinear observation operator
G. Wu, X. Yi, L. Wang, X. Liang, S. Zhang, X. Zhang, and X. Zheng
Nonlin. Processes Geophys., 21, 955–970,,, 2014

Related subject area

A global behavioural model of human fire use and management: WHAM! v1.0
Oliver Perkins, Matthew Kasoar, Apostolos Voulgarakis, Cathy Smith, Jay Mistry, and James D. A. Millington
Geosci. Model Dev., 17, 3993–4016,,, 2024
Short summary
Terrestrial Ecosystem Model in R (TEMIR) version 1.0: simulating ecophysiological responses of vegetation to atmospheric chemical and meteorological changes
Amos P. K. Tai, David H. Y. Yung, and Timothy Lam
Geosci. Model Dev., 17, 3733–3764,,, 2024
Short summary
biospheremetrics v1.0.2: an R package to calculate two complementary terrestrial biosphere integrity indicators – human colonization of the biosphere (BioCol) and risk of ecosystem destabilization (EcoRisk)
Fabian Stenzel, Johanna Braun, Jannes Breier, Karlheinz Erb, Dieter Gerten, Jens Heinke, Sarah Matej, Sebastian Ostberg, Sibyll Schaphoff, and Wolfgang Lucht
Geosci. Model Dev., 17, 3235–3258,,, 2024
Short summary
Modeling boreal forest soil dynamics with the microbially explicit soil model MIMICS+ (v1.0)
Elin Ristorp Aas, Heleen A. de Wit, and Terje K. Berntsen
Geosci. Model Dev., 17, 2929–2959,,, 2024
Short summary
Optimal enzyme allocation leads to the constrained enzyme hypothesis: the Soil Enzyme Steady Allocation Model (SESAM; v3.1)
Thomas Wutzler, Christian Reimers, Bernhard Ahrens, and Marion Schrumpf
Geosci. Model Dev., 17, 2705–2725,,, 2024
Short summary

Cited articles

Boden, T. A., Marland, G., and Andres, R. J.: Global, Regional, and National Fossil-Fuel CO2 Emissions, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, Tenn., USA,, 2011.
Burgers, G., Jan van Leeuwen, P., and Evensen, G.: Analysis Scheme in the Ensemble Kalman Filter, Mon. Weather Rev., 126, 1719–1724,<1719:asitek>;2, 1998.
Chen, J. M., Liu, J., Cihlar, J., and Goulden, M. L.: Daily canopy photosynthesis model through temporal and spatial scaling for remote sensing applications, Ecol. Model., 124, 99–119,, 1999.
Desroziers, G., Berre, L., Chapnik, B., and Poli, P.: Diagnosis of observation, background and analysis-error statistics in observation space, Q. J. Roy. Meteor. Soc., 131, 3385–3396,, 2005.
Emmons, L. K., Walters, S., Hess, P. G., Lamarque, J.-F., Pfister, G. G., Fillmore, D., Granier, C., Guenther, A., Kinnison, D., Laepple, T., Orlando, J., Tie, X., Tyndall, G., Wiedinmyer, C., Baughcum, S. L., and Kloster, S.: Description and evaluation of the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4), Geosci. Model Dev., 3, 43–67,, 2010.
Short summary
A Global Carbon Assimilation System based on the Ensemble Kalman filter (GCAS-EK) is developed for assimilating atmospheric CO2 data into an ecosystem model to simultaneously estimate the surface carbon fluxes and atmospheric CO2 distribution. This assimilation approach is similar to CarbonTracker, but with several new developments. The results showed that this assimilation approach can effectively reduce the biases and uncertainties of the carbon fluxes simulated by the ecosystem model.