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Abstract. A Global Carbon Assimilation System based on

the ensemble Kalman filter (GCAS-EK) is developed for as-

similating atmospheric CO2 data into an ecosystem model to

simultaneously estimate the surface carbon fluxes and atmo-

spheric CO2 distribution. This assimilation approach is simi-

lar to CarbonTracker, but with several new developments, in-

cluding inclusion of atmospheric CO2 concentration in state

vectors, using the ensemble Kalman filter (EnKF) with 1-

week assimilation windows, using analysis states to itera-

tively estimate ensemble forecast errors, and a maximum

likelihood estimation of the inflation factors of the forecast

and observation errors. The proposed assimilation approach

is used to estimate the terrestrial ecosystem carbon fluxes

and atmospheric CO2 distributions from 2002 to 2008. The

results show that this assimilation approach can effectively

reduce the biases and uncertainties of the carbon fluxes sim-

ulated by the ecosystem model.

1 Introduction

The carbon dioxide concentration in the atmosphere plays an

essential role in the study of global change for its potential to

warm up the atmosphere and the surface. A better estimation

of carbon fluxes over global ecosystems would help in better

understanding each nation’s contribution to global warming

and improve global warming science.

In the past decade, many efforts have been made to

estimate the surface CO2 fluxes using both atmosphere-

based top-down and land-based bottom-up methods. Carbon-

Tracker (Peters et al., 2005, 2007) may be one of the most

advanced among these efforts. It uses an ensemble square

root filter to assimilate atmospheric CO2 mole fractions into

an ecosystem model coupled with an atmospheric transport

model.

The model state vectors in CarbonTracker are carbon

fluxes only. However, the observed CO2 consists of both ini-

tial state of atmosphere CO2 and recently released carbon

fluxes, and therefore including CO2 concentration in the state

vectors should improve the estimation of initial atmosphere

CO2 (Miyazaki et al., 2011). This could lead to further im-

provement of carbon flux estimation. Kang et al. (2011) and

Liu et al. (2012) also added CO2 concentrations to the state

vectors due to their strong correlations with weather vari-

ables that are simultaneously assimilated. However, their ef-

forts mainly focus on studying the performance of the assim-

ilation methodology and observation settings by using ideal-

ized models only, not on assimilating real observations.

The length of the assimilation window in CarbonTracker

is 5 weeks. This would include CO2 observations far from

the analysis time. However, this may not necessarily improve

the flux analysis compared to an instantaneous analysis due

to the attenuation of the detailed information as discussed

by Enting (2002). A shorter assimilation window reduces the

attenuation of observed CO2 information, because the analy-

sis system can use near-surface CO2 observations before the

transport of CO2 blurs out the essential information of near-

surface CO2 forcing (Kang et al., 2012).
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It is well known that correct estimation of the forecast er-

ror statistics is crucial for the accuracy of any data assimila-

tion algorithm. In all existing ensemble Kalman filter (EnKF)

assimilations for estimating carbon fluxes, the ensemble fore-

cast errors are estimated by the difference of perturbed fore-

casts and their ensemble mean. The perturbed forecast errors

are defined as the perturbed forecast states minus the true

state. Motivated by the fact that the analysis state is a bet-

ter estimate of the true state than the forecast state, Wu et

al. (2013) proposed a new estimator for the perturbed fore-

cast errors by using the difference between the perturbed

forecast states and the analysis state. Moreover, they demon-

strated through a simulation study that the new estimator

can lead to better assimilations for models with large errors.

Since the errors of ecosystem models are generally large, the

new estimation of the perturbed forecast errors is potentially

useful to improve EnKF assimilation for estimating carbon

fluxes.

Besides forecast errors, the observation errors also need be

accurately estimated. In the majority of schemes for estimat-

ing carbon fluxes, including CarbonTracker, the observation

error variances are not estimated but empirically assigned.

The quality of the estimation of observation error variances

critically depends on whether the forecast error covariance

matrix is appropriately estimated (Desroziers et al., 2005).

However, appropriate estimation of the forecast error covari-

ance matrix is a challenge in real applications.

In this paper, we propose several modifications to the con-

ventional EnKF for assimilating atmospheric CO2 observa-

tions into ecosystem models. First, the model state contains

both the surface carbon fluxes and atmospheric CO2 con-

centration as suggested by Miyazaki et al. (2011), Kang et

al. (2011) and Liu et al. (2012). Second, the analysis state is

used to adaptively estimate forecast errors as suggested by

Wu et al. (2013) and Zheng et al. (2013), and both forecast

and observation errors are inflated as suggested by Liang et

al. (2012). Finally, the 1-week assimilation window is tested

against longer windows. This modified EnKF is used to as-

similate real CO2 concentration data into the Boreal Ecosys-

tem Productivity Simulator (BEPS; Chen et al., 1999; Liu

et al., 1999; Mo et al., 2008) for estimating the real terres-

trial carbon fluxes with 3-hourly and 1◦× 1◦ resolution from

2002 to 2008.

This paper consists of six sections. The models and data

used in this study are introduced in Sect. 2, while the method-

ology is described in Sect. 3. Section 4 presents the valida-

tions of the new methodologies using the real observing sys-

tem. A real data application of the proposed methodology is

presented in Sect. 5. Conclusions and discussions are given

in Sect. 6.

2 Models and data

2.1 Surface carbon flux models

The surface carbon fluxes mainly arise from fossil fuel com-

bustion, vegetation fire, oceanic exchange, and biosphere. In

this study, only the surface carbon fluxes from biosphere are

simulated using BEPS, while the rests are taken from data

sets of CarbonTracker 2011 (http://www.esrl.noaa.gov/gmd/

ccgg/carbontracker/).

BEPS is a process-based ecosystem model mainly devel-

oped to simulate forest ecosystem carbon budgets (Chen et

al., 1999; Ju et al., 2006; Liu et al., 1999). For many reasons,

including the complexity of ecosystem processes, spatial–

temporal variabilities, and representative errors, parameters

in process-based models often do not represent their true val-

ues when these models are used to calculate carbon budgets

over large areas or for long time periods (Mo et al., 2008).

Errors in these parameters lead to biases in model results

(other uncertainties, such as lack of knowledge on histori-

cal land use change and land management, also have influ-

ence on model results). In this study, we try to reduce biases

in the BEPS-simulated carbon fluxes by incorporating atmo-

spheric CO2 concentration measurements with data assimi-

lation methods. The prior carbon fluxes simulated by BEPS

are at a spatial resolution of 1◦× 1◦ and for every 1 h. On

each model grid, BEPS calculates carbon fluxes of six differ-

ent plant function types and outputs the sum of them through

weighting the fluxes against areal fractions of the plant func-

tion types. Figure 1 shows the plant function types with the

largest weight on each grid.

The vegetation fire flux is taken from CarbonTracker

2011 data set, which is modeled using the Carnegie–Ames–

Stanford Approach (CASA) biosphere model (Potter et al.,

1993) based on the Global Fire Emission Database (GFED)

(van der Werf et al., 2006).

The oceanic CO2 flux is taken from CarbonTracker 2011

optimized results, whose a priori estimates are based on two

different data sets: namely, the ocean inversion flux result

(Jacobson et al., 2007) and pCO2-Clim prior estimate de-

rived from the climatology of seawater pCO2 (Takahashi et

al., 2009).

The fossil fuel combustion estimate is the data set prepro-

cessed by CarbonTracker 2011 from the global total fossil

fuel emission of the Carbon Dioxide Information and Analy-

sis Center (CDIAC) (Boden et al., 2011) and the Open-source

Data Inventory of Anthropogenic CO2 emission (ODIAC)

data set (Oda and Maksyutov, 2011).

2.2 Atmospheric transport model

The global chemical transport Model for OZone And Related

chemical Tracers (MOZART; Emmons et al., 2010) is used

as the atmospheric transport model. In this study, MOZART

is run at a horizontal resolution of approximately 2.8◦× 2.8◦
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Figure 1. Land areas of six plant function types used in ecosystem model BEPS.

with 28 vertical levels. The forcing meteorology is from the

National Center For Atmospheric Research (NCAR) reanal-

ysis of the National Centers for Environmental Prediction

(NCEP) forecasts (Kalnay et al., 1996; Kistler et al., 2001).

Since CO2 is chemically inert in the atmosphere, we turn off

all the chemical processes and leave only transport of CO2

by atmospheric motions. Given the atmospheric CO2 con-

centration in the previous week and the surface carbon fluxes

in the current week, MOZART is used to forecast gridded

atmospheric CO2 concentration within the current week.

2.3 Observation

The atmospheric CO2 concentration measure-

ments collected and preprocessed by Observation

Package (ObsPack) data product (Masarie et al.,

2014) are used in this study (Product Version:

obspack_co2_1_CARBONTRACKER_CT2013_2014-

05-08). The selected CO2 measurements on 92 sites include

observations of two main types: the measurements of air

samples at surface sites and in situ quasi-continuous CO2

time series from towers. Since some stations have multiple

observations within a week, on average there are about

140 observations every week during 2002 and 2008. Six

laboratories (NOAA Global Monitoring Division, Com-

monwealth Scientific and Industrial Research Organization,

National Center For Atmospheric Research, Environment

Canada, Lawrence Berkeley National Laboratory and

Instituto de Pesquisas Energéticas e Nucleares) provided

these measurements and information of observation sites

used in this study is listed in Table 1. CO2 concentration

measurements reflect the variability of the total surface

carbon fluxes (i.e. fossil fuel combustion, vegetation fire,

oceanic uptake and biosphere) as well as inter-exchange

among CO2 air mass in the initial atmosphere.

The observation error variances are also provided in

obspack_co2_1_CARBONTRACKER_CT2013_2014-05-

08. They were subjectively chosen and manually tuned to fit

into specific atmospheric transport models and observations

(Peters et al., 2005, 2007). Since these values depend on

the atmospheric transport model used in a carbon data

assimilation system, they are just used as prior values for

this study and will be adaptively adjusted with the proposed

assimilation scheme.

3 Methodology

Within t th week, let ct be a set of gridded atmospheric

CO2 concentrations every 3 h, f t be the set of prior car-

bon fluxes every 3 h, and λt be a set of factors defined

as constants on areas and within a week for adjusting f t .

Then, the model state is defined as xt =
(
cTt ,λ

T
t

)T
. In this

study, only land surface carbon fluxes need to be adjusted.

The partition of the adjustment factors (i.e. λt ) is based

on 11 Transcom regions (Gurney et al., 2004) and 19 Ol-

son ecosystem types, as in CarbonTracker. Thus, the size of

the state vector in this study is 128× 64× 28× 8× 7 (ct :

lon× lat× lev× times/day× days) plus 145 (λt ). We refer to

this data assimilation scheme as the Global Carbon Assimi-

lation System based on the ensemble Kalman filter (GCAS-

EK).

3.1 EnKF with error inflations

Using the notations of Ide et al. (1997), the first EnKF algo-

rithm used in this study consists of the following three main

steps:
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Table 1. Listed are 92 observation sites used in this study. r refers to prescribed observation error (µmol µmol−1).

Site code Lat (◦) Long (◦) r Lab Site code Lat (◦) Long (◦) r Lab

ABP_01D0 −12.27 −38.17 2.50 NOAA∗ MID_01D0 28.21 −177.38 1.50 NOAA

ABP_26D0 −12.27 −38.17 2.50 IPEN∗ MKN_01D0 −0.05 37.30 2.50 NOAA

ALT_01D0 82.45 −62.51 1.50 NOAA MLO_01C0_02LST 19.54 −155.58 0.75 NOAA

ALT_06C0_14LST 82.45 −62.51 2.50 EC∗ MLO_01D0 19.54 −155.58 1.50 NOAA

AMT_01C3_14LST 45.03 −68.68 3.00 NOAA MQA_02D0 −54.48 158.97 0.75 CSIRO

AMT_01P0 45.03 −68.68 3.00 NOAA NMB_01D0 −23.58 15.03 2.50 NOAA

ASC_01D0 −7.97 −14.40 0.75 NOAA NWR_01D0 40.05 −105.58 1.50 NOAA

ASK_01D0 23.18 5.42 1.50 NOAA NWR_03C0_02LST 40.05 −105.58 3.00 NCAR∗

AZR_01D0 38.77 −27.38 1.50 NOAA OBN_01D0 55.11 36.60 7.50 NOAA

BAL_01D0 55.35 17.22 7.50 NOAA OXK_01D0 50.03 11.80 2.50 NOAA

BAO_01C3_14LST 40.05 −105.00 3.00 NOAA PAL_01D0 67.97 24.12 2.50 NOAA

BAO_01P0 40.05 −105.00 3.00 NOAA POC_01D1 −0.39 −132.32 0.75 NOAA

BHD_01D0 −41.41 174.87 1.50 NOAA PSA_01D0 −64.92 −64.00 0.75 NOAA

BKT_01D0 −0.20 100.32 7.50 NOAA PTA_01D0 38.95 −123.74 7.50 NOAA

BME_01D0 32.37 −64.65 1.50 NOAA RPB_01D0 13.17 −59.43 1.50 NOAA

BMW_01D0 32.27 −64.88 1.50 NOAA SCT_01C3_14LST 33.41 −81.83 3.00 NOAA

BRW_01C0_14LST 71.32 −156.61 2.50 NOAA SEY_01D0 −4.67 55.17 0.75 NOAA

BRW_01D0 71.32 −156.61 1.50 NOAA SGP_01D0 36.80 −97.50 2.50 NOAA

BSC_01D0 44.17 28.68 7.50 NOAA SGP_64C3_16LST 36.80 −97.50 3.00 LBNL∗

CBA_01D0 55.21 −162.72 1.50 NOAA SHM_01D0 52.72 174.10 2.50 NOAA

CDL_06C0_14LST 53.99 −105.12 3.00 EC SIS_02D0 60.17 −1.17 2.50 CSIRO

CFA_02D0 −19.28 147.06 2.50 CSIRO∗ SMO_01C0_14LST −14.25 −170.56 0.75 NOAA

CGO_01D0 −40.68 144.69 0.75 NOAA SMO_01D0 −14.25 −170.56 1.50 NOAA

CGO_02D0 −40.68 144.69 0.75 CSIRO SNP_01C3_02LST 38.62 −78.35 3.00 NOAA

CHR_01D0 1.70 −157.17 0.75 NOAA SPL_03C0_02LST 40.45 −106.73 3.00 NCAR

CRZ_01D0 −46.45 51.85 0.75 NOAA SPO_01C0_14LST −89.98 −24.80 0.75 NOAA

CYA_02D0 −66.28 110.52 0.75 CSIRO SPO_01D0 −89.98 −24.80 1.50 NOAA

EGB_06C0_14LST 44.23 −79.78 3.00 EC STM_01D0 66.00 2.00 1.50 NOAA

EIC_01D0 −27.15 −109.45 7.50 NOAA STR_01P0 37.76 −122.45 3.00 NOAA

ETL_06C0_14LST 54.35 −104.98 3.00 EC SUM_01D0 72.58 −38.48 1.50 NOAA

FSD_06C0_14LST 49.88 −81.57 3.00 EC SYO_01D0 −69.00 39.58 0.75 NOAA

GMI_01D0 13.43 144.78 1.50 NOAA TAP_01D0 36.73 126.13 7.50 NOAA

HBA_01D0 −75.58 −26.50 0.75 NOAA TDF_01D0 −54.87 −68.48 0.75 NOAA

HPB_01D0 47.80 11.01 7.50 NOAA THD_01D0 41.05 −124.15 2.50 NOAA

HUN_01D0 46.95 16.65 7.50 NOAA UTA_01D0 39.90 −113.72 2.50 NOAA

ICE_01D0 63.40 −20.29 1.50 NOAA UUM_01D0 44.45 111.10 2.50 NOAA

KEY_01D0 25.67 −80.16 2.50 NOAA WBI_01C3_14LST 41.72 −91.35 3.00 NOAA

KUM_01D0 19.52 −154.82 1.50 NOAA WBI_01P0 41.72 −91.35 3.00 NOAA

KZD_01D0 44.06 76.82 2.50 NOAA WGC_01C3_14LST 38.27 −121.49 3.00 NOAA

KZM_01D0 43.25 77.88 2.50 NOAA WGC_01P0 38.27 −121.49 3.00 NOAA

LEF_01C3_14LST 45.95 −90.27 3.00 NOAA WIS_01D0 31.13 34.88 2.50 NOAA

LEF_01P0 45.95 −90.27 3.00 NOAA WKT_01C3_14LST 31.31 −97.33 3.00 NOAA

LLB_06C0_14LST 54.95 −112.45 3.00 EC WKT_01P0 31.31 −97.33 3.00 NOAA

LMP_01D0 35.52 12.62 1.50 NOAA WLG_01D0 36.29 100.90 1.50 NOAA

MAA_02D0 −67.62 62.87 0.75 CSIRO WSA_06C0_14LST 49.93 −60.02 3.00 EC

MHD_01D0 53.33 −9.90 2.50 NOAA ZEP_01D0 78.90 11.88 1.50 NOAA

∗ NOAA: NOAA Global Monitoring Division; CSIRO: Commonwealth Scientific and Industrial Research Organization; NCAR: National Center For Atmospheric

Research; EC: Environment Canada; IPEN: Instituto de Pesquisas Energéticas e Nucleares; LBNL: Lawrence Berkeley National Laboratory.
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3.1.1 Forecast step

The perturbed forecast states are estimated as

λf
t,i =

2

3
+

1

3
λa
t−1,i + ξ t,i, (1)

cf
t,i =G

(
ca
t−1,i,λ

f
t,i

)
, (2)

where i represents an ensemble member, ξ t,i are vectors

sampled from a distribution with mean zero and a given

covariance matrix (taken from prior covariance structure in

CarbonTracker; see the document of CarbonTracker and Pe-

ters et al., 2005, 2007), and G is the atmospheric transport

operator which maps ct−1 and the λt adjusted f t onto grid-

ded CO2 concentration. Then the forecast state is estimated

as

xf
t =

1

m

m∑
i=1

xf
t,i, (3)

where m is the ensemble size.

3.1.2 Error step

The ensemble forecast errors and the observation error co-

variance matrix are estimated as
√
θtX

f
t and µtRt , respec-

tively, where

Xf
t =

(
xf
t,1− x

f
t xf

t,2− x
f
t . . . xf

t,m− x
f
t

)
, (4)

and Rt is the prescribed observation error covariance matrix.

θt and µt are the inflation factors of the forecast error and

the observation error, respectively, which are estimated by

minimizing the objective function (Liang et al., 2012; Zheng,

2009):

− 2Lt (θ,µ)= ln

{
det

(
θ

m− 1
Ht (Xf

t )H(Xf
t )
T
+µRt

)}
+

(
yo
t −Ht (xf

t )
)T( θ

m− 1
Ht (Xf

t )(Ht (Xf
t ))

T
+µRt

)−1

(
yo
t −Ht (xf

t )
)
, (5)

where yo
t is the vector of atmospheric CO2 concentration

measurements,Ht is a linear observation operator, which in-

terpolates gridded CO2 concentrations at observation times

and locations. Michalak et al. (2005) used a similar objec-

tive function for estimating the statistical parameters in the

atmospheric inverse problems of surface fluxes.

Figure 2. Flowchart of modified ensemble Kalman filter.

3.1.3 Analysis step

The perturbed analysis states are estimated as

xa
t,i = x

f
t,i +

√
θtX

f
t[

(m− 1)I +Ht
(√
θtX

f
t

)T
(µtRt )

−1Ht
(√
θtX

f
t

)]−1

(
Ht
(√
θtX

f
t

))T
(µtRt )

−1
(
yo
t −Ht (xf

t,i)+ εt,i

)
, (6)

where εt,i is a normal random variable with mean zero and

covariance matrix µtRt (Burgers et al., 1998). The analysis

state xa
t is estimated as

xa
t =

1

m

m∑
i=1

xa
t,i . (7)

Finally, set t = t+1 and return to the forecast step (1) for the

assimilation at next time step.

The assimilated surface carbon fluxes are from all sources

because the observed CO2 concentrations arise from all

sources. Then, the surface carbon fluxes from the biosphere

are estimated by the assimilated total carbon fluxes minus

carbon fluxes from other sources supplied by the forcing

data.

3.2 Constructing error statistics using analysis

Let xt
t be the true state. Then the ensemble forecast error

should be defined as xf
t,i − x

t
t . However, xt

t is estimated by

xf
t in Eq. (4). Since xa

t is derived by assimilating observations

into the model, it is a better estimate of xt
t than xf

t , especially

when the model error is large (Wu et al., 2013). Therefore,

after the analysis step (3) in Sect. 3.1, it is suggested to re-

turn to the error step (2), and substitute xf
t in Eq. (4) by xa

t .

This procedure is repeated until the corresponding objective

function (Eq. 5) converges (Wu et al., 2013; Zheng et al.,

2013). In this study, the iteration is stopped when the differ-

ence between the minima of −2Lt (θ,µ) at nth and n+ 1th

iterations is less than 1. A flowchart of the proposed assimi-

lation scheme is shown in Fig. 2.

www.geosci-model-dev.net/8/805/2015/ Geosci. Model Dev., 8, 805–816, 2015
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Figure 3. χ2 statistics of the analysis state for four estimates of

error covariance. Original refers to the case without inflations, one

Inf refers to the case with inflation on forecast error covariance only,

both Inf refers to the case with inflations on both forecast and ob-

servation error covariances and iteration refers to the case with both

inflations and further using analysis to improve forecast error statis-

tics. The closer χ2/nobs is to 1, the better the corresponding error

estimates.

3.3 Removing carbon mass imbalance

In this study, the background CO2 concentration field at the

beginning of a week is the analysis state at the end of the pre-

vious week. It is then updated using the observations within

the week; therefore, the estimated CO2 concentration at the

beginning of the week is different from that at the end of the

previous week. This results in inexact carbon mass balance.

To remove this imbalance, a corrected atmospheric CO2 con-

centration is generated using the sequential forecast of CO2

concentration with the optimized carbon fluxes from the very

beginning of the entire assimilation period. The corrected

CO2 concentration is denoted by cca
t .

3.4 Validation statistics

Chi-square statistics (Tarantola, 2005) are used to test the er-

ror covariances constructed in this study. For the t th week, it

is defined as

χ2
2,Iter =

(
yo
t −Ht

(
xf
t

))T
(

θ

m− 1
Ht
(
X̃f
t

)
Ht
(
X̃f
t

)T
+µRt

)−1

(
yo
t −Ht

(
xf
t

))
, (8)

where

X̃f
t =

(
xf
t,1− x

a
t xf

t,2− x
a
t . . . xf

t,m− x
a
t

)
, (9)

and θ,µ are the estimated inflation factors for the week.

If the forecast and observation error covariance matrix are

correctly estimated, χ2
2,Iter follows a Chi-square distribution

with nobs degrees of freedom, where nobs is the number of

observations within t th week. Since the mean and the vari-

Figure 4. Annual means of carbon budgets (PgC yr−1) on 11

Transcom regions in four different cases. Four cases are associated

with prior values modeled with ecosystem model BEPS, assimi-

lated results using GCAS-EK with 1-week assimilation windows,

2-week windows and 3-week windows. In all, 11 regions in x axis

refer to North American boreal (NAB), North American temperate

(NAT), South American tropical (SATr), South American temperate

(SAT), northern Africa (NAf), southern Africa (SAf), Eurasia bo-

real (EAB), Eurasia temperate (EAT), tropical Asia (TA), Australia

(AU) and Europe (EU), respectively.

ance of χ2
2,Iter/nobs are 1 and 2/nobs, respectively, the value

of χ2
2,Iter/nobs should be close to 1.

The Chi-square statistics for the error covariance matrices

without using the analysis state can be defined similarly to

Eq. (8), but with X̃f
t replaced byXf

t . They are denoted as χ2
0 ,

χ2
1 and χ2

2 for the cases of no inflation, inflation on forecast

error only and inflation on both forecast and observation er-

rors, respectively. The closer χ2
j /nobs,j = 0,1,2 to 1 is, the

better the corresponding error statistics.

The root mean square error (RMSE) of estimated CO2 ob-

servations is defined as√
1

L

∑
i,l

(
yca
i (l)− y

o
i (l)

)2
, (10)

where yca
i (l) is generated by interpolating cca

t to the obser-

vation site l and time i, and L is the total number of the CO2

concentration observations during the entire assimilation pe-

riod. The smaller RMSE means better assimilation scheme.

4 Discussions on methodology

4.1 Error covariance statistics

To validate the construction of error statistics used in this

study, we plot the weekly time series of χ2
2,Iter/nobs (Eq. 8)

from 2002 to 2003 in Fig. 3, which shows that the values are

remarkably close to 1. In contrast, the weekly time series of

χ2
0 /nobs, χ

2
1 /nobs, and χ2

2 /nobs (for the cases of no inflation,

inflation on forecast error only, and inflation on both forecast

and observation errors) are not as close to 1 as χ2
2,Iter/nobs.
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Figure 5. Mean components of CO2 concentration at observation sites (Site IDs: LEF_01P0, BAL_01D0, WLG_01D0, BKT_01D0,

BHD_01D0, MKN_01D0 and ABP_01D0) from 11 Transcom regions in each of the 25 days before the observation time; x axis refers

to days before the observation time; y axis refers to the amount of CO2 concentration in ppm. Different colors within a bar refer to CO2

concentration from 11 different Transcom regions; 11 regions refer to North American boreal (N-Ame-B), North American temperate (N-

Ame-T), South American tropical (S-Ame-Tr), South American temperate (S-Ame-T), northern Africa (N-Afr), southern Africa (S-Afr),

Eurasia boreal (Era-B), Eurasia temperate (Era-T), tropical Asia (Tr-Asa), Australia (Aus) and Europe (Eur), respectively.

This indicates that the construction of error statistics using

the analysis state iteratively (Sect. 3.2) is effective for cor-

rectly estimating the error statistics.

Figure 3 also shows that χ2
2 /nobs is closer to 1 than

χ2
1 /nobs, and both are closer to 1 than χ2

0 /nobs. This suggests

that the inflations on forecast error and observation error are

also both effective in improving the estimation of error statis-

tics.

4.2 Inclusion of CO2 concentration in state vectors

In this study, the CO2 concentration is included in state vec-

tors. The benefit of this inclusion needs to be tested against

the traditional approach without this inclusion. This issue is

studied with the 1-week assimilation window.

For this purpose we design a comparative experiment as

follows. In every week, the CO2 concentration (i.e. c) is not

updated (Eq. 6). Instead the analysis CO2 concentration is

derived by sequentially predicting atmospheric CO2 concen-

tration forced by the updated flux within the week. The car-

bon mass is automatically balanced in this experiment. The

results show that RMSE of the analysis CO2 concentration

observations (Eq. 10) is 8.5 % larger than that of the corrected

analysis CO2 concentration described in Sect. 3.3. This sug-

gests that inclusion of CO2 concentration in state vectors can

significantly alter the CO2 mass balance and may have an

advantage in optimizing the surface CO2 flux.

If the CO2 concentration is not included in state vectors,

the analysis CO2 concentration at the beginning of each week

is just the analysis CO2 concentration at the end of the pre-

vious week, so the CO2 concentration observations within

the current week are not used to optimize the CO2 concen-

tration at the beginning of each week. However, when the

CO2 concentration is included in state vectors, all the obser-

vations within the current week and the previous weeks are

used to estimate the CO2 concentration at the beginning of

the current week. So the CO2 concentration at the beginning

of each week estimated by inclusion of CO2 concentration in

state vectors could be more accurate than estimated without

inclusion. Therefore, the estimated flux associated with the

updated CO2 concentration at the beginning of the current

week should have better quality. This is more clearly demon-

strated by smaller RMSE in Eq. (10) with the inclusion than

that without the inclusion.

4.3 Length of assimilation window

Different lengths of the assimilation window are used in var-

ious systems (5 weeks in CarbonTracker, 3 and 7 days in

Miyazaki et al., 2011, and 6 h in Kang et al., 2012). We

choose the 1-week assimilation window in our methodology

for the following reasons. First, since most surface stations

only have weekly observations, we need at least 1 week of

data to cover the globe. Second, beyond 1 week the errors of

the atmospheric transport model may be significant, and they

are very difficult to quantify. Third, the detailed information

of observations may be attenuated with time by atmospheric

diffusion and advection (Enting, 2002).

For comparison to longer assimilation windows, the fol-

lowing alternative experiments with moving assimilation

windows were carried out. In the first alternative experiment,

the length of the moving window is set to be 2 weeks while

the forecast time step is still 1 week. The CO2 concentra-

tion observation system is still the same as that described in
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Sect. 3, but is used to update the global carbon flux and the

atmospheric CO2 concentration within the current week and

the previous week. This procedure is similar to Eq. (6), while

the ensemble forecast state of the first week in the assimila-

tion window is set as its ensemble analysis state at previ-

ous assimilation time step. Therefore, carbon fluxes and CO2

concentration every week are optimized twice with the ob-

servations in the current week and the next week. The cor-

rected analysis of CO2 concentration is also retrieved from

rerunning the atmospheric transport model as described in

Sect. 3.3. The second alternative experiment is similar to the

first one, but with the 3-week moving window.

The linear trends for the observations, the estimates with

1-week, 2-week and 3-week moving windows are 2.14,

2.17, 1.59, and 1.13 ppm yr−1, respectively. It seems that the

longer the moving window is, the larger difference is the

long-term growth rate to the measurements. For further in-

vestigating the reason, the annual mean carbon budgets on

11 Transcom regions are shown in Fig. 4. It can be found

that the longer the moving window is, the larger are the car-

bon budget adjustments. Long windows result in underesti-

mation of the corresponding long-term growth rate.

To further investigate the long time and long distance im-

pact of atmospheric transport on CO2 observations, compo-

nents of CO2 concentration at observation sites associated

with different Transcom regions in each day before their ob-

servation times are calculated in the following way. For a

given region and some day before the observation time, prior

fluxes on other regions and in other days are all masked. Then

the atmospheric transport model can be run with a homoge-

neous initial atmospheric CO2 concentration and forced by

the masked fluxes to obtain the corresponding CO2 concen-

tration components.

These components at individual sites are then averaged in

time to investigate general impacts of carbon fluxes from dif-

ferent sources. The results at 7 selected sites are shown in

Fig. 5. For these sites, CO2 concentrations resulting from

carbon fluxes within 25 days are mainly from local carbon

fluxes within 7 days (although mostly within 3 days). Car-

bon fluxes beyond seven days or regions far from the ob-

servation locations have very small impacts, indicating that

they have little information in observations (i.e. the contribu-

tion is less than observation error), even if the atmospheric

transport model is accurate. Actually majority of observa-

tions (approximately 49) over continental sites used in this

study have similar properties to these seven sites. If the er-

rors of the transport and ecosystem models are considered,

the information of fluxes 1 week before may be even more

difficult to estimate.

The setting of length of the assimilation window is closely

related to spatial and temporal localizations of forecast er-

rors. For the observation network and the atmospheric trans-

port model used in this study, the 1-week assimilation win-

dow seems most suitable.

Figure 6. Comparisons between real observations and simulated

concentrations by control runs: (top) control run forcing by prior

carbon fluxes; (bottom) control run forcing by assimilated carbon

fluxes by GCAS-EK. Both simulations start from 1 January 2002

and all simulated concentrations at observation locations and times

in 2005 are compared here.

5 Application and results

In this section we use the data assimilation methods de-

scribed in Sect. 3 to estimate the land surface carbon fluxes

from 2002 to 2008.

5.1 Adjustment to total carbon budget of BEPS

We first carry out a control run starting from 1 January 2002

with no adjustment of prior fluxes. The simulated CO2 con-

centrations are interpolated at observation times and loca-

tions, and compared with real observations in the year 2005.

The result in Fig. 6 (top) shows that the simulated concentra-

tions have a bias of 2.945 ppm and an RMSE of 4.525 ppm,

implying an underestimation of carbon sinks by BEPS. Using

GCAS-EK to estimate the ecosystem fluxes, we carry out an-

other control run and comparisons. The bias and RMSE are

reduced to 0.967 and 3.675 ppm, respectively (Fig. 6, bot-

tom).

It is worthwhile to point out that the underestimation of

carbon sinks by BEPS is conditioned on the estimated carbon
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Figure 7. Global carbon budget (gC m−2) distributions on mul-

tiyear average from 2002 to 2008: prior carbon fluxes simulated

by BEPS; assimilated carbon fluxes by GCAS-EK; CarbonTracker

2011 estimated carbon fluxes.

fluxes released by fossil fuel and fire, even if the ocean fluxes

used in our assimilation system are accurate. As described in

Sect. 2, the observed variability of CO2 concentration is due

to the variability of carbon fluxes from all sources, including

fossil fuel combustion, vegetation fire, oceanic uptake, and

biosphere exchange. If non-biospheric carbon sources are un-

derestimated, the carbon sinks from the biosphere simulated

by BEPS would also be underestimated. Nevertheless, our

adjustment to carbon sinks simulated by BEPS appears rea-

sonable.

5.2 Multiyear average of the global carbon flux

distribution

Figure 7 shows the distribution of the average global carbon

budget from 2002 to 2008 where the two spatial patterns of

carbon fluxes related to BEPS (BEPS and GCAS-EK) are

Figure 8. Annual mean carbon budgets (PgC yr−1) on areas with

six BEPS plant function types in Transcom regions from 2002 to

2008. The errors of GCAS-EK fluxes are the root mean square er-

rors of the ensemble.

similar, although they are quite different from that of Car-

bonTracker 2011.

Carbon budgets are calculated based on the BEPS ecosys-

tem types and the 11 Transcom regions (Fig. 8). Similar to

the global distribution maps (Fig. 7), GCAS-EK carbon bud-

gets (Fig. 8) have almost the same property in sources or

sinks with that simulated by BEPS. However, they are quite

different from that of CarbonTracker 2011 in many aspects.

For example, for the C4 and the shrub in Australia, BEPS

simulates carbon sources while CarbonTracker 2011 shows

carbon sinks. Moreover, in North America, there is a large

carbon sink increase of the GCAS-EK over the BEPS sim-

ulated. A further diagnostic (not shown here) reveals that,

between October and April, the carbon sinks estimated by

CarbonTracker 2011 are much larger than that estimated by

GCAS-EK. But between May and September, the carbon

sinks estimated by CarbonTracker 2011 and GCAS-EK are

very close.

5.3 Interannual and seasonal variations

The interannual variations of the global total carbon bud-

gets are shown in Fig. 9. It shows that CarbonTracker

2011 predicts the largest multiyear average carbon sink

(−3.89 PgC yr−1), compared with the smallest one simu-

lated by BEPS (−2.23 PgC yr−1). The assimilated mean car-

bon sink (−3.87 PgC yr−1) is virtually identical to that esti-

mated by CarbonTracker 2011. The carbon sinks simulated

by BEPS and predicted by CarbonTracker 2011 obviously

have more interannual oscillation than that assimilated by

GCAS-EK.
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Figure 9. Comparison of interannual variations of global carbon

budgets from 2002 to 2008 by three products: BEPS, GCAS-EK

and CarbonTracker 2011.

Figure 10. Comparison of multiyear average monthly variations

from 2002 to 2008 by three products: BEPS, GCAS-EK and Car-

bonTracker 2011.

The monthly variations of the multiyear-averaged carbon

budgets before and after the assimilation of BEPS results

are compared with that by CarbonTracker 2011 in Fig. 10.

Clearly, the seasonal variability of the carbon budgets by Car-

bonTracker 2011 is the largest. The assimilated fluxes based

on BEPS have larger sinks in the summer and smaller sources

in the winter than those before the assimilation.

5.4 Comparison to other flux estimations

Two independent gridded carbon flux estimates are compared

with GCAS-EK estimates.

The first independent data set is net carbon exchange of

U.S. terrestrial ecosystems by Xiao et al. (2011) which is

generated by integrating eddy covariance flux measurements

and satellite observations from Moderate Resolution Imag-

ing Spectroradiometer (MODIS), and is referred to as EC-

MOD. The original data set is during 2002 to 2006 with spa-

tial resolution of 1 km and temporal resolution of 8 day. For

Figure 11. The distribution of averaged net ecosystem exchange

(gC m−2 yr−1) from 2002 to 2006 for conterminous U.S. by EC-

MOD, GCAS-EK and CarbonTracker 2011, respectively. The pat-

tern correlation coefficient is 0.47 between EC-MOD and GCAS-

EK, and 0.22 between CarbonTracker 2011 and EC-MOD.

comparison, Xiao’s data were grouped from 1 km to 1◦ spa-

tial resolution. The carbon flux distributions of the multiyear

average from 2002 to 2006 over United States are shown

in Fig. 11 for Xiao’s data, GCAS-EK and CarbonTracker

2011. It shows that spatial pattern of the flux assimilated

by GCAS-EK is closer to Xiao’s data (with spatial standard

deviation 153 gC m2 yr−1 and spatial correlation 0.47) than

that by CarbonTracker 2011 (with spatial standard deviation

197 gC m2 yr−1 and spatial correlation 0.22).

The carbon budgets estimated by GCAS-EK were also

compared to those by Lauvaux et al. (2012), Penn State Uni-

versity (PSU) inversion and Colorado State University (CSU)

inversion (Schuh et al., 2013) for the Mid-Continent Inten-

sive (MCI) area from June to December 2007. The spatial

patterns by GCAS-EK and CarbonTracker 2011 are simi-

lar to those estimated by PSU, CSU (Schuh et al., 2013)

and Lauvaux et al. (2012) (not shown here). The regional-

averaged carbon sinks estimated by GCAS-EK and by Car-

bonTracker 2011 are 0.19 and 0.26 PgC, respectively, while

the averaged carbon sinks estimated by PSU and CSU (Schuh

et al., 2013) and by Lauvaux et al. (2012) are between 0.14

and 0.18 PgC, which are closer to that estimated by GCAS-

EK than that by CarbonTracker 2011.

Since the true values of carbon flux are unknown, the

closeness to the independent gridded carbon flux estimates

does not mean a better assimilation. However, these two ex-
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amples indicate that the carbon fluxes estimated by GCAS-

EK may provide some useful new information of global car-

bon flux estimation to the atmospheric inversion community.

Therefore, the development of the new assimilation system

is worthwhile.

6 Conclusion

We propose a methodology to assimilate atmospheric CO2

concentration into surface carbon fluxes simulated by an

ecosystem model. In our framework, CO2 concentration is

included in the state vector, and the assimilation window is

restricted to 1 week. Both forecast and observation errors are

inflated, and forecast error statistics are estimated in an adap-

tive procedure using the analysis states. Generally speaking,

these adaptive estimations improve the accuracy of assim-

ilated error statistics in EnKF, which leads to further im-

provement in the accuracy of analysis states. Importantly,

pre-assigned values of the observation error variance are im-

proved if these adaptive procedures are applied.

The application of the methodology to real data shows that

the assimilated total carbon budgets by GCAS-EK are com-

parable to those reported by CarbonTracker 2011. However,

there are significant regional differences between carbon flux

distributions assimilated by GCAS-EK and CarbonTracker

2011, which may be attributed to the differences between the

ecosystem models, atmospheric transport models, or the as-

similation methodologies.

In our future study, we will investigate the sensitivity of as-

similation results to the accuracy of ecosystem and transport

models. Also, more observation data sets, such as remote-

sensing CO2 column data, will be introduced into the GCAS-

EK.
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