Articles | Volume 8, issue 3
https://doi.org/10.5194/gmd-8-631-2015
https://doi.org/10.5194/gmd-8-631-2015
Development and technical paper
 | 
20 Mar 2015
Development and technical paper |  | 20 Mar 2015

Evaluation of the global aerosol microphysical ModelE2-TOMAS model against satellite and ground-based observations

Y. H. Lee, P. J. Adams, and D. T. Shindell

Related authors

Potential impact of a US climate policy and air quality regulations on future air quality and climate change
Yunha Lee, Drew T. Shindell, Greg Faluvegi, and Rob W. Pinder
Atmos. Chem. Phys., 16, 5323–5342, https://doi.org/10.5194/acp-16-5323-2016,https://doi.org/10.5194/acp-16-5323-2016, 2016
Short summary
Evaluation of observed and modelled aerosol lifetimes using radioactive tracers of opportunity and an ensemble of 19 global models
N. I. Kristiansen, A. Stohl, D. J. L. Olivié, B. Croft, O. A. Søvde, H. Klein, T. Christoudias, D. Kunkel, S. J. Leadbetter, Y. H. Lee, K. Zhang, K. Tsigaridis, T. Bergman, N. Evangeliou, H. Wang, P.-L. Ma, R. C. Easter, P. J. Rasch, X. Liu, G. Pitari, G. Di Genova, S. Y. Zhao, Y. Balkanski, S. E. Bauer, G. S. Faluvegi, H. Kokkola, R. V. Martin, J. R. Pierce, M. Schulz, D. Shindell, H. Tost, and H. Zhang
Atmos. Chem. Phys., 16, 3525–3561, https://doi.org/10.5194/acp-16-3525-2016,https://doi.org/10.5194/acp-16-3525-2016, 2016
Short summary
Uncertainties in global aerosols and climate effects due to biofuel emissions
J. K. Kodros, C. E. Scott, S. C. Farina, Y. H. Lee, C. L'Orange, J. Volckens, and J. R. Pierce
Atmos. Chem. Phys., 15, 8577–8596, https://doi.org/10.5194/acp-15-8577-2015,https://doi.org/10.5194/acp-15-8577-2015, 2015
Short summary
Multi-model mean nitrogen and sulfur deposition from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): evaluation of historical and projected future changes
J.-F. Lamarque, F. Dentener, J. McConnell, C.-U. Ro, M. Shaw, R. Vet, D. Bergmann, P. Cameron-Smith, S. Dalsoren, R. Doherty, G. Faluvegi, S. J. Ghan, B. Josse, Y. H. Lee, I. A. MacKenzie, D. Plummer, D. T. Shindell, R. B. Skeie, D. S. Stevenson, S. Strode, G. Zeng, M. Curran, D. Dahl-Jensen, S. Das, D. Fritzsche, and M. Nolan
Atmos. Chem. Phys., 13, 7997–8018, https://doi.org/10.5194/acp-13-7997-2013,https://doi.org/10.5194/acp-13-7997-2013, 2013
Representation of nucleation mode microphysics in a global aerosol model with sectional microphysics
Y. H. Lee, J. R. Pierce, and P. J. Adams
Geosci. Model Dev., 6, 1221–1232, https://doi.org/10.5194/gmd-6-1221-2013,https://doi.org/10.5194/gmd-6-1221-2013, 2013

Related subject area

Climate and Earth system modeling
Modernizing the open-source community Noah with multi-parameterization options (Noah-MP) land surface model (version 5.0) with enhanced modularity, interoperability, and applicability
Cenlin He, Prasanth Valayamkunnath, Michael Barlage, Fei Chen, David Gochis, Ryan Cabell, Tim Schneider, Roy Rasmussen, Guo-Yue Niu, Zong-Liang Yang, Dev Niyogi, and Michael Ek
Geosci. Model Dev., 16, 5131–5151, https://doi.org/10.5194/gmd-16-5131-2023,https://doi.org/10.5194/gmd-16-5131-2023, 2023
Short summary
Simulated stable water isotopes during the mid-Holocene and pre-industrial periods using AWI-ESM-2.1-wiso
Xiaoxu Shi, Alexandre Cauquoin, Gerrit Lohmann, Lukas Jonkers, Qiang Wang, Hu Yang, Yuchen Sun, and Martin Werner
Geosci. Model Dev., 16, 5153–5178, https://doi.org/10.5194/gmd-16-5153-2023,https://doi.org/10.5194/gmd-16-5153-2023, 2023
Short summary
Rainbows and climate change: a tutorial on climate model diagnostics and parameterization
Andrew Gettelman
Geosci. Model Dev., 16, 4937–4956, https://doi.org/10.5194/gmd-16-4937-2023,https://doi.org/10.5194/gmd-16-4937-2023, 2023
Short summary
ModE-Sim – a medium-sized atmospheric general circulation model (AGCM) ensemble to study climate variability during the modern era (1420 to 2009)
Ralf Hand, Eric Samakinwa, Laura Lipfert, and Stefan Brönnimann
Geosci. Model Dev., 16, 4853–4866, https://doi.org/10.5194/gmd-16-4853-2023,https://doi.org/10.5194/gmd-16-4853-2023, 2023
Short summary
MESMAR v1: a new regional coupled climate model for downscaling, predictability, and data assimilation studies in the Mediterranean region
Andrea Storto, Yassmin Hesham Essa, Vincenzo de Toma, Alessandro Anav, Gianmaria Sannino, Rosalia Santoleri, and Chunxue Yang
Geosci. Model Dev., 16, 4811–4833, https://doi.org/10.5194/gmd-16-4811-2023,https://doi.org/10.5194/gmd-16-4811-2023, 2023
Short summary

Cited articles

Abdou, W. A., Diner, D. J., Martonchik, J. V., Bruegge, C. J., Kahn, R. A., Gaitley, B. J., Crean, K. A., Remer, L. A., and Holben, B.: Comparison of coincident Multiangle Imaging Spectroradiometer and Moderate Resolution Imaging Spectroradiometer aerosol optical depths over land and ocean scenes containing Aerosol Robotic Network sites, J. Geophys. Res.-Atmos., 110, D10S07, https://doi.org/10.1029/2004jd004693, 2005.
Adams, P. J. and Seinfeld, J. H.: Predicting global aerosol size distributions in general circulation models, J. Geophys. Res.-Atmos., 107, 4370, https://doi.org/10.1029/2001JD001010, 2002.
Andres, R. J. and Kasgnoc, A. D.: A time-averaged inventory of subaerial volcanic sulfur emissions, J. Geophys. Res.-Atmospheres, 103, 25251–25261, https://doi.org/10.1029/98JD02091, 1998.
Arimoto, R., Ray, B. J., Duce, R. A., Hewitt, A. D., Boldi, R., and Hudson, A.: CONCENTRATIONS, SOURCES, AND FLUXES OF TRACE-ELEMENTS IN THE REMOTE MARINE ATMOSPHERE OF NEW-ZEALAND, J. Geophys. Res.-Atmos., 95, 22389–22405, https://doi.org/10.1029/JD095iD13p22389, 1990.
Ayers, G. P., Ivey, J. P., and Gillett, R. W.: COHERENCE BETWEEN SEASONAL CYCLES OF DIMETHYL SULFIDE, METHANESULFONATE AND SULFATE IN MARINE AIR, Nature, 349, 404–406, https://doi.org/10.1038/349404a0, 1991.
Download
Short summary
We have implemented the TwO-Moment Aerosol Sectional (TOMAS) microphysics model in NASA GISS ModelE2, called “ModelE2-TOMAS”. We compared global budgets of ModelE2-TOMAS to other global aerosol models and evaluated the model with various observations such as aerosol precursor gas, aerosol mass, number concentrations, and aerosol optical depth. We found that ModelE2-TOMAS agrees with observations reasonably and that its predictions are within the range of other global aerosol model predictions.