Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.240
IF5.240
IF 5-year value: 5.768
IF 5-year
5.768
CiteScore value: 8.9
CiteScore
8.9
SNIP value: 1.713
SNIP1.713
IPP value: 5.53
IPP5.53
SJR value: 3.18
SJR3.18
Scimago H <br class='widget-line-break'>index value: 71
Scimago H
index
71
h5-index value: 51
h5-index51
Volume 8, issue 2
Geosci. Model Dev., 8, 381–408, 2015
https://doi.org/10.5194/gmd-8-381-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
Geosci. Model Dev., 8, 381–408, 2015
https://doi.org/10.5194/gmd-8-381-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Development and technical paper 23 Feb 2015

Development and technical paper | 23 Feb 2015

Modelling of primary aerosols in the chemical transport model MOCAGE: development and evaluation of aerosol physical parameterizations

B. Sič et al.

Related authors

Aerosol data assimilation in the MOCAGE chemical transport model during the TRAQA/ChArMEx campaign: lidar observations
Laaziz El Amraoui, Bojan Sič, Andrea Piacentini, Virginie Marécal, Nicolas Frebourg, and Jean-Luc Attié
Atmos. Meas. Tech., 13, 4645–4667, https://doi.org/10.5194/amt-13-4645-2020,https://doi.org/10.5194/amt-13-4645-2020, 2020
Short summary
Monitoring aerosols over Europe: an assessment of the potential benefit of assimilating the VIS04 measurements from the future MTG/FCI geostationary imager
Maxence Descheemaecker, Matthieu Plu, Virginie Marécal, Marine Claeyman, Francis Olivier, Youva Aoun, Philippe Blanc, Lucien Wald, Jonathan Guth, Bojan Sič, Jérôme Vidot, Andrea Piacentini, and Béatrice Josse
Atmos. Meas. Tech., 12, 1251–1275, https://doi.org/10.5194/amt-12-1251-2019,https://doi.org/10.5194/amt-12-1251-2019, 2019
Short summary
Aerosol data assimilation in the chemical transport model MOCAGE during the TRAQA/ChArMEx campaign: aerosol optical depth
Bojan Sič, Laaziz El Amraoui, Andrea Piacentini, Virginie Marécal, Emanuele Emili, Daniel Cariolle, Michael Prather, and Jean-Luc Attié
Atmos. Meas. Tech., 9, 5535–5554, https://doi.org/10.5194/amt-9-5535-2016,https://doi.org/10.5194/amt-9-5535-2016, 2016

Related subject area

Atmospheric Sciences
Can machine learning improve the model representation of turbulent kinetic energy dissipation rate in the boundary layer for complex terrain?
Nicola Bodini, Julie K. Lundquist, and Mike Optis
Geosci. Model Dev., 13, 4271–4285, https://doi.org/10.5194/gmd-13-4271-2020,https://doi.org/10.5194/gmd-13-4271-2020, 2020
Short summary
PAMTRA 1.0: the Passive and Active Microwave radiative TRAnsfer tool for simulating radiometer and radar measurements of the cloudy atmosphere
Mario Mech, Maximilian Maahn, Stefan Kneifel, Davide Ori, Emiliano Orlandi, Pavlos Kollias, Vera Schemann, and Susanne Crewell
Geosci. Model Dev., 13, 4229–4251, https://doi.org/10.5194/gmd-13-4229-2020,https://doi.org/10.5194/gmd-13-4229-2020, 2020
Short summary
Predicting the morphology of ice particles in deep convection using the super-droplet method: development and evaluation of SCALE-SDM 0.2.5-2.2.0, -2.2.1, and -2.2.2
Shin-ichiro Shima, Yousuke Sato, Akihiro Hashimoto, and Ryohei Misumi
Geosci. Model Dev., 13, 4107–4157, https://doi.org/10.5194/gmd-13-4107-2020,https://doi.org/10.5194/gmd-13-4107-2020, 2020
Short summary
An exploratory performance assessment of the CHIMERE model (version 2017r4) for the northwestern Iberian Peninsula and the summer season
Swen Brands, Guillermo Fernández-García, Marta García Vivanco, Marcos Tesouro Montecelo, Nuria Gallego Fernández, Anthony David Saunders Estévez, Pablo Enrique Carracedo García, Anabela Neto Venâncio, Pedro Melo Da Costa, Paula Costa Tomé, Cristina Otero, María Luz Macho, and Juan Taboada
Geosci. Model Dev., 13, 3947–3973, https://doi.org/10.5194/gmd-13-3947-2020,https://doi.org/10.5194/gmd-13-3947-2020, 2020
Short summary
Development of the global atmospheric chemistry general circulation model BCC-GEOS-Chem v1.0: model description and evaluation
Xiao Lu, Lin Zhang, Tongwen Wu, Michael S. Long, Jun Wang, Daniel J. Jacob, Fang Zhang, Jie Zhang, Sebastian D. Eastham, Lu Hu, Lei Zhu, Xiong Liu, and Min Wei
Geosci. Model Dev., 13, 3817–3838, https://doi.org/10.5194/gmd-13-3817-2020,https://doi.org/10.5194/gmd-13-3817-2020, 2020
Short summary

Cited articles

Adler, R. F., Huffman, G. J., Chang, A., Ferraro, R., Xie, P.-P., Janowiak, J., Rudolf, B., Schneider, U., Curtis, S., Bolvin, D., Gruber, A., Susskind, J., Arkin, P., and Nelkin, E.: The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present), J. Hydrometeorol., 4, 1147–-1167, https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2, 2003.
Alfaro, S. C., Gaudichet, A., Gomes, L., and Maillé, M.: Mineral aerosol production by wind erosion: Aerosol particle sizes and binding energies, Geophys. Res. Lett., 25, 991–994, 1998.
Andronache, C.: Estimated variability of below-cloud aerosol removal by rainfall for observed aerosol size distributions, Atmos. Chem. Phys., 3, 131–143, https://doi.org/10.5194/acp-3-131-2003, 2003.
Andronache, C.: Diffusion and electric charge contributions to below-cloud wet removal of atmospheric ultra-fine aerosol particles, J. Aerosol Sci., 35, 1467–1482, 2004.
Andronache, C., Grönholm, T., Laakso, L., Phillips, V., and Venäläinen, A.: Scavenging of ultrafine particles by rainfall at a boreal site: observations and model estimations, Atmos. Chem. Phys., 6, 4739–4754, https://doi.org/10.5194/acp-6-4739-2006, 2006.
Publications Copernicus
Download
Citation