Articles | Volume 8, issue 10
Geosci. Model Dev., 8, 3231–3245, 2015
https://doi.org/10.5194/gmd-8-3231-2015
Geosci. Model Dev., 8, 3231–3245, 2015
https://doi.org/10.5194/gmd-8-3231-2015

Development and technical paper 13 Oct 2015

Development and technical paper | 13 Oct 2015

Analysis of the impact of inhomogeneous emissions in the Operational Street Pollution Model (OSPM)

T.-B. Ottosen et al.

Related authors

Atmospheric VOC measurements at a High Arctic site: characteristics and source apportionment
Jakob B. Pernov, Rossana Bossi, Thibaut Lebourgeois, Jacob K. Nøjgaard, Rupert Holzinger, Jens L. Hjorth, and Henrik Skov
Atmos. Chem. Phys., 21, 2895–2916, https://doi.org/10.5194/acp-21-2895-2021,https://doi.org/10.5194/acp-21-2895-2021, 2021
Short summary
Projections of shipping emissions and the related impact on air pollution and human health in the Nordic region
Camilla Geels, Morten Winther, Camilla Andersson, Jukka-Pekka Jalkanen, Jørgen Brandt, Lise M. Frohn, Ulas Im, Wing Leung, and Jesper H. Christensen
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-1274,https://doi.org/10.5194/acp-2020-1274, 2021
Preprint under review for ACP
Short summary
Dynamics of gaseous oxidized mercury at Villum Research Station during the High Arctic summer
Jakob Boyd Pernov, Bjarne Jensen, Andreas Massling, Daniel Charles Thomas, and Henrik Skov
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-1287,https://doi.org/10.5194/acp-2020-1287, 2021
Preprint under review for ACP
Short summary
Present and future aerosol impacts on Arctic climate change in the GISS-E2.1 Earth system model
Ulas Im, Kostas Tsigaridis, Gregory Faluvegi, Peter L. Langen, Joshua P. French, Rashed Mahmood, Thomas Manu, Knut von Salzen, Daniel C. Thomas, Cynthia H. Whaley, Zbigniew Klimont, Henrik Skov, and Jørgen Brandt
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-1296,https://doi.org/10.5194/acp-2020-1296, 2021
Revised manuscript accepted for ACP
Short summary
Pan-Arctic surface ozone: modelling vs. measurements
Xin Yang, Anne-M. Blechschmidt, Kristof Bognar, Audra McClure-Begley, Sara Morris, Irina Petropavlovskikh, Andreas Richter, Henrik Skov, Kimberly Strong, David W. Tarasick, Taneil Uttal, Mika Vestenius, and Xiaoyi Zhao
Atmos. Chem. Phys., 20, 15937–15967, https://doi.org/10.5194/acp-20-15937-2020,https://doi.org/10.5194/acp-20-15937-2020, 2020
Short summary

Related subject area

Atmospheric sciences
OpenIFS@home version 1: a citizen science project for ensemble weather and climate forecasting
Sarah Sparrow, Andrew Bowery, Glenn D. Carver, Marcus O. Köhler, Pirkka Ollinaho, Florian Pappenberger, David Wallom, and Antje Weisheimer
Geosci. Model Dev., 14, 3473–3486, https://doi.org/10.5194/gmd-14-3473-2021,https://doi.org/10.5194/gmd-14-3473-2021, 2021
Short summary
Regional CO2 inversions with LUMIA, the Lund University Modular Inversion Algorithm, v1.0
Guillaume Monteil and Marko Scholze
Geosci. Model Dev., 14, 3383–3406, https://doi.org/10.5194/gmd-14-3383-2021,https://doi.org/10.5194/gmd-14-3383-2021, 2021
Short summary
The Detailed Emissions Scaling, Isolation, and Diagnostic (DESID) module in the Community Multiscale Air Quality (CMAQ) modeling system version 5.3.2
Benjamin N. Murphy, Christopher G. Nolte, Fahim Sidi, Jesse O. Bash, K. Wyat Appel, Carey Jang, Daiwen Kang, James Kelly, Rohit Mathur, Sergey Napelenok, George Pouliot, and Havala O. T. Pye
Geosci. Model Dev., 14, 3407–3420, https://doi.org/10.5194/gmd-14-3407-2021,https://doi.org/10.5194/gmd-14-3407-2021, 2021
Short summary
Evaluation of the dynamic core of the PALM model system 6.0 in a neutrally stratified urban environment: comparison between LES and wind-tunnel experiments
Tobias Gronemeier, Kerstin Surm, Frank Harms, Bernd Leitl, Björn Maronga, and Siegfried Raasch
Geosci. Model Dev., 14, 3317–3333, https://doi.org/10.5194/gmd-14-3317-2021,https://doi.org/10.5194/gmd-14-3317-2021, 2021
Short summary
Implementing a sectional scheme for early aerosol growth from new particle formation in the Norwegian Earth System Model v2: comparison to observations and climate impacts
Sara M. Blichner, Moa K. Sporre, Risto Makkonen, and Terje K. Berntsen
Geosci. Model Dev., 14, 3335–3359, https://doi.org/10.5194/gmd-14-3335-2021,https://doi.org/10.5194/gmd-14-3335-2021, 2021
Short summary

Cited articles

Assael, M. J., Delaki, M., and Kakosimos, K. E.: Applying the OSPM model to the calculation of PM10 concentration levels in the historical centre of the city of Thessaloniki, Atmos. Environ., 42, 65–77, 2008.
Berkowicz, R., Palmgren, F., Hertel, O., and Vignati, E.: Using measurements of air pollution in streets for evaluiation of urban air quality – meteorological analysis and model calculations, Sci. Total Environ., 189/190, 259–265, 1996.
Berkowicz, R., Hertel, O., Larsen, S. E., Sørensen, N. N., and Nielsen, M.: Modelling traffic pollution in streets, Ministry of Environment and Energy, National Environmental Research Institute, Roskilde, Denmark, available at: http://www2.dmu.dk/1_viden/2_Miljoe-tilstand/3_luft/4_spredningsmodeller/5_OSPM/5_description/ModellingTrafficPollution_report.pdf (last access: October 2015), 1997.
Berkowicz, R., Winther, M., and Ketzel, M.: Traffic pollution modelling and emission data, Environ. Model. Softw., 21, 454–460, 2006.
Boulter, P. and McCrae, I.: Assessment and reliability of transport emission models and inventory systems, TRL Limited, available at: http://www.trl.co.uk/reports-publications/trl-reports/report/?reportid=6413 (last access: October 2015), 2007.
Download
Short summary
Semi-parameterised street canyon models are popular due to their speed and low input requirements. One often-used assumption is that emissions are homogeneously distributed in the entire length and width of the street. It is thus the aim of the present study to analyse the impact of this assumption by implementing an inhomogeneous emission geometry scheme and validating it. The results show an improved performance, however, confounded by challenges in estimating the emissions accurately.