Articles | Volume 8, issue 7
https://doi.org/10.5194/gmd-8-2231-2015
https://doi.org/10.5194/gmd-8-2231-2015
Model description paper
 | Highlight paper
 | 
24 Jul 2015
Model description paper | Highlight paper |  | 24 Jul 2015

EMPOWER-1.0: an Efficient Model of Planktonic ecOsystems WrittEn in R

T. R. Anderson, W. C. Gentleman, and A. Yool

Related authors

Marine regime shifts in ocean biogeochemical models: a case study in the Gulf of Alaska
Claudie Beaulieu, Harriet Cole, Stephanie Henson, Andrew Yool, Thomas R. Anderson, Lee de Mora, Erik T. Buitenhuis, Momme Butenschön, Ian J. Totterdell, and J. Icarus Allen
Biogeosciences, 13, 4533–4553, https://doi.org/10.5194/bg-13-4533-2016,https://doi.org/10.5194/bg-13-4533-2016, 2016
Short summary
iMarNet: an ocean biogeochemistry model intercomparison project within a common physical ocean modelling framework
L. Kwiatkowski, A. Yool, J. I. Allen, T. R. Anderson, R. Barciela, E. T. Buitenhuis, M. Butenschön, C. Enright, P. R. Halloran, C. Le Quéré, L. de Mora, M.-F. Racault, B. Sinha, I. J. Totterdell, and P. M. Cox
Biogeosciences, 11, 7291–7304, https://doi.org/10.5194/bg-11-7291-2014,https://doi.org/10.5194/bg-11-7291-2014, 2014
Benthic biomass size spectra in shelf and deep-sea sediments
B. A. Kelly-Gerreyn, A. P. Martin, B. J. Bett, T. R. Anderson, J. I. Kaariainen, C. E. Main, C. J. Marcinko, and A. Yool
Biogeosciences, 11, 6401–6416, https://doi.org/10.5194/bg-11-6401-2014,https://doi.org/10.5194/bg-11-6401-2014, 2014
Regional variability of acidification in the Arctic: a sea of contrasts
E. E. Popova, A. Yool, Y. Aksenov, A. C. Coward, and T. R. Anderson
Biogeosciences, 11, 293–308, https://doi.org/10.5194/bg-11-293-2014,https://doi.org/10.5194/bg-11-293-2014, 2014
MEDUSA-2.0: an intermediate complexity biogeochemical model of the marine carbon cycle for climate change and ocean acidification studies
A. Yool, E. E. Popova, and T. R. Anderson
Geosci. Model Dev., 6, 1767–1811, https://doi.org/10.5194/gmd-6-1767-2013,https://doi.org/10.5194/gmd-6-1767-2013, 2013

Related subject area

Biogeosciences
Alquimia v1.0: a generic interface to biogeochemical codes – a tool for interoperable development, prototyping and benchmarking for multiphysics simulators
Sergi Molins, Benjamin J. Andre, Jeffrey N. Johnson, Glenn E. Hammond, Benjamin N. Sulman, Konstantin Lipnikov, Marcus S. Day, James J. Beisman, Daniil Svyatsky, Hang Deng, Peter C. Lichtner, Carl I. Steefel, and J. David Moulton
Geosci. Model Dev., 18, 3241–3263, https://doi.org/10.5194/gmd-18-3241-2025,https://doi.org/10.5194/gmd-18-3241-2025, 2025
Short summary
Soil nitrous oxide emissions from global land ecosystems and their drivers within the LPJ-GUESS model (v4.1)
Jianyong Ma, Almut Arneth, Benjamin Smith, Peter Anthoni, Xu-Ri, Peter Eliasson, David Wårlind, Martin Wittenbrink, and Stefan Olin
Geosci. Model Dev., 18, 3131–3155, https://doi.org/10.5194/gmd-18-3131-2025,https://doi.org/10.5194/gmd-18-3131-2025, 2025
Short summary
Parameterization toolbox for a physical–biogeochemical model compatible with FABM – a case study: the coupled 1D GOTM–ECOSMO E2E for the Sylt–Rømø Bight, North Sea
Hoa Nguyen, Ute Daewel, Neil Banas, and Corinna Schrum
Geosci. Model Dev., 18, 2961–2982, https://doi.org/10.5194/gmd-18-2961-2025,https://doi.org/10.5194/gmd-18-2961-2025, 2025
Short summary
H2MV (v1.0): global physically constrained deep learning water cycle model with vegetation
Zavud Baghirov, Martin Jung, Markus Reichstein, Marco Körner, and Basil Kraft
Geosci. Model Dev., 18, 2921–2943, https://doi.org/10.5194/gmd-18-2921-2025,https://doi.org/10.5194/gmd-18-2921-2025, 2025
Short summary
NN-TOC v1: global prediction of total organic carbon in marine sediments using deep neural networks
Naveenkumar Parameswaran, Everardo González, Ewa Burwicz-Galerne, Malte Braack, and Klaus Wallmann
Geosci. Model Dev., 18, 2521–2544, https://doi.org/10.5194/gmd-18-2521-2025,https://doi.org/10.5194/gmd-18-2521-2025, 2025
Short summary

Cited articles

Alderkamp, A.-C., Kulk, G., Buma, G. J., Visser, R. J. W., Van Dijken, G. L., Mills, M. M., and Arrigo, K. R.: The effect of iron limitation on photophysiology of Phaeocycstis Antarctica (Prymnesiophyceae) and Flagiariopsis cylindrus (Bacillariophyceae) under dynamic irradiance, J. Phycol., 8, 45–59, 2012.
Anderson, T. R.: A spectrally averaged model of light penetration and photosynthesis, Limnol. Oceanogr., 38, 1403–1419, 1993.
Anderson, T. R.: Relating C:N ratios in zooplankton food and faecal pellets using a biochemical model, J. Exp. Mar. Biol. Ecol., 184, 183–199, 1994.
Anderson, T. R.: Plankton functional type modelling: running before we can walk?, J. Plankton Res., 27, 1073–1081, 2005.
Anderson, T. R.: Progress in marine ecosystem modelling and the "unreasonable effectiveness of mathematics", J. Mar. Syst., 81, 4–11, 2010.
Download
Short summary
Ecosystem models provide a powerful tool for simulating ocean biology. Care must be exercised when selecting appropriate equations and parameter values to represent chosen marine ecosystems. Here, we present an efficient plankton model testbed, using simplified physics and coded in the freely available language R. Multiple runs can be undertaken for different ocean sites, permitting thorough evaluation of ecosystem model performance. The testbed also serves as an excellent resource for teaching.
Share