Articles | Volume 8, issue 7
https://doi.org/10.5194/gmd-8-2153-2015
https://doi.org/10.5194/gmd-8-2153-2015
Methods for assessment of models
 | 
20 Jul 2015
Methods for assessment of models |  | 20 Jul 2015

Development of PM2.5 source impact spatial fields using a hybrid source apportionment air quality model

C. E. Ivey, H. A. Holmes, Y. T. Hu, J. A. Mulholland, and A. G. Russell

Related authors

A Preliminary Assessment of the Impacts of Multiple Temporal-scale Variations in Particulate Matter on its Source Apportionment
Xing Peng, Jian Gao, Guoliang Shi, Xurong Shi, Yanqi Huangfu, Jiayuan Liu, Yuechong Zhang, Yinchang Feng, Wei Wang, Ruoyu Ma, Cesunica E. Ivey, and Yi Deng
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2017-997,https://doi.org/10.5194/acp-2017-997, 2018
Preprint withdrawn
Short summary
Fine particulate matter source apportionment using a hybrid chemical transport and receptor model approach
Y. Hu, S. Balachandran, J. E. Pachon, J. Baek, C. Ivey, H. Holmes, M. T. Odman, J. A. Mulholland, and A. G. Russell
Atmos. Chem. Phys., 14, 5415–5431, https://doi.org/10.5194/acp-14-5415-2014,https://doi.org/10.5194/acp-14-5415-2014, 2014

Related subject area

Atmospheric sciences
Introducing graupel density prediction in Weather Research and Forecasting (WRF) double-moment 6-class (WDM6) microphysics and evaluation of the modified scheme during the ICE-POP field campaign
Sun-Young Park, Kyo-Sun Sunny Lim, Kwonil Kim, Gyuwon Lee, and Jason A. Milbrandt
Geosci. Model Dev., 17, 7199–7218, https://doi.org/10.5194/gmd-17-7199-2024,https://doi.org/10.5194/gmd-17-7199-2024, 2024
Short summary
Enabling high-performance cloud computing for the Community Multiscale Air Quality Model (CMAQ) version 5.3.3: performance evaluation and benefits for the user community
Christos I. Efstathiou, Elizabeth Adams, Carlie J. Coats, Robert Zelt, Mark Reed, John McGee, Kristen M. Foley, Fahim I. Sidi, David C. Wong, Steven Fine, and Saravanan Arunachalam
Geosci. Model Dev., 17, 7001–7027, https://doi.org/10.5194/gmd-17-7001-2024,https://doi.org/10.5194/gmd-17-7001-2024, 2024
Short summary
Atmospheric-river-induced precipitation in California as simulated by the regionally refined Simple Convective Resolving E3SM Atmosphere Model (SCREAM) Version 0
Peter A. Bogenschutz, Jishi Zhang, Qi Tang, and Philip Cameron-Smith
Geosci. Model Dev., 17, 7029–7050, https://doi.org/10.5194/gmd-17-7029-2024,https://doi.org/10.5194/gmd-17-7029-2024, 2024
Short summary
Recent improvements and maximum covariance analysis of aerosol and cloud properties in the EC-Earth3-AerChem model
Manu Anna Thomas, Klaus Wyser, Shiyu Wang, Marios Chatziparaschos, Paraskevi Georgakaki, Montserrat Costa-Surós, Maria Gonçalves Ageitos, Maria Kanakidou, Carlos Pérez García-Pando, Athanasios Nenes, Twan van Noije, Philippe Le Sager, and Abhay Devasthale
Geosci. Model Dev., 17, 6903–6927, https://doi.org/10.5194/gmd-17-6903-2024,https://doi.org/10.5194/gmd-17-6903-2024, 2024
Short summary
GPU-HADVPPM4HIP V1.0: using the heterogeneous-compute interface for portability (HIP) to speed up the piecewise parabolic method in the CAMx (v6.10) air quality model on China's domestic GPU-like accelerator
Kai Cao, Qizhong Wu, Lingling Wang, Hengliang Guo, Nan Wang, Huaqiong Cheng, Xiao Tang, Dongxing Li, Lina Liu, Dongqing Li, Hao Wu, and Lanning Wang
Geosci. Model Dev., 17, 6887–6901, https://doi.org/10.5194/gmd-17-6887-2024,https://doi.org/10.5194/gmd-17-6887-2024, 2024
Short summary

Cited articles

Baker, K. R., Simon, H., and Kelly, J. T.: Challenges to Modeling "Cold Pool" Meteorology Associated with High Pollution Episodes, Environ. Sci. Technol., 45, 7118–7119, https://doi.org/10.1021/Es202705v, 2011.
Balachandran, S., Pachon, J. E., Hu, Y. T., Lee, D., Mulholland, J. A., and Russell, A. G.: Ensemble-trained source apportionment of fine particulate matter and method uncertainty analysis, Atmos. Environ., 61, 387–394, https://doi.org/10.1016/j.atmosenv.2012.07.031, 2012.
Balachandran, S., Chang, H. H., Pachon, J. E., Holmes, H. A., Mulholland, J. A., and Russell, A. G.: Bayesian-Based Ensemble Source Apportionment of PM2.5, Environ. Sci. Technol., 47, 13511–13518, https://doi.org/10.1021/Es4020647, 2013.
Bell, M. L.: The use of ambient air quality modeling to estimate individual and population exposure for human health research: A case study of ozone in the Northern Georgia Region of the United States, Environ. Int., 32, 586–593, 2006.
Binkowski, F. S. and Roselle, S. J.: Models-3 Community Multi-scale Air Quality (CMAQ) model aerosol component: 1. Model description, J. Geophys. Res., 108, 4183, https://doi.org/10.1029/2001JD001409, 2003.
Download
Short summary
An integral part of air quality management is knowledge of the impact of pollutant sources on ambient concentrations of particulate matter (PM). This work presents a novel spatiotemporal source apportionment method that generates source impacts for the continental USA. Key sources presented include fossil fuel combustion, biomass burning, dust, sea salt, as well as agricultural activities, biogenics, and aircraft.