Articles | Volume 8, issue 7
https://doi.org/10.5194/gmd-8-2153-2015
https://doi.org/10.5194/gmd-8-2153-2015
Methods for assessment of models
 | 
20 Jul 2015
Methods for assessment of models |  | 20 Jul 2015

Development of PM2.5 source impact spatial fields using a hybrid source apportionment air quality model

C. E. Ivey, H. A. Holmes, Y. T. Hu, J. A. Mulholland, and A. G. Russell

Related authors

A Preliminary Assessment of the Impacts of Multiple Temporal-scale Variations in Particulate Matter on its Source Apportionment
Xing Peng, Jian Gao, Guoliang Shi, Xurong Shi, Yanqi Huangfu, Jiayuan Liu, Yuechong Zhang, Yinchang Feng, Wei Wang, Ruoyu Ma, Cesunica E. Ivey, and Yi Deng
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2017-997,https://doi.org/10.5194/acp-2017-997, 2018
Preprint withdrawn
Short summary
Fine particulate matter source apportionment using a hybrid chemical transport and receptor model approach
Y. Hu, S. Balachandran, J. E. Pachon, J. Baek, C. Ivey, H. Holmes, M. T. Odman, J. A. Mulholland, and A. G. Russell
Atmos. Chem. Phys., 14, 5415–5431, https://doi.org/10.5194/acp-14-5415-2014,https://doi.org/10.5194/acp-14-5415-2014, 2014

Related subject area

Atmospheric sciences
Selecting CMIP6 global climate models (GCMs) for Coordinated Regional Climate Downscaling Experiment (CORDEX) dynamical downscaling over Southeast Asia using a standardised benchmarking framework
Phuong Loan Nguyen, Lisa V. Alexander, Marcus J. Thatcher, Son C. H. Truong, Rachael N. Isphording, and John L. McGregor
Geosci. Model Dev., 17, 7285–7315, https://doi.org/10.5194/gmd-17-7285-2024,https://doi.org/10.5194/gmd-17-7285-2024, 2024
Short summary
Improved definition of prior uncertainties in CO2 and CO fossil fuel fluxes and its impact on multi-species inversion with GEOS-Chem (v12.5)
Ingrid Super, Tia Scarpelli, Arjan Droste, and Paul I. Palmer
Geosci. Model Dev., 17, 7263–7284, https://doi.org/10.5194/gmd-17-7263-2024,https://doi.org/10.5194/gmd-17-7263-2024, 2024
Short summary
RASCAL v1.0: an open-source tool for climatological time series reconstruction and extension
Álvaro González-Cervera and Luis Durán
Geosci. Model Dev., 17, 7245–7261, https://doi.org/10.5194/gmd-17-7245-2024,https://doi.org/10.5194/gmd-17-7245-2024, 2024
Short summary
Introducing graupel density prediction in Weather Research and Forecasting (WRF) double-moment 6-class (WDM6) microphysics and evaluation of the modified scheme during the ICE-POP field campaign
Sun-Young Park, Kyo-Sun Sunny Lim, Kwonil Kim, Gyuwon Lee, and Jason A. Milbrandt
Geosci. Model Dev., 17, 7199–7218, https://doi.org/10.5194/gmd-17-7199-2024,https://doi.org/10.5194/gmd-17-7199-2024, 2024
Short summary
Enabling high-performance cloud computing for the Community Multiscale Air Quality Model (CMAQ) version 5.3.3: performance evaluation and benefits for the user community
Christos I. Efstathiou, Elizabeth Adams, Carlie J. Coats, Robert Zelt, Mark Reed, John McGee, Kristen M. Foley, Fahim I. Sidi, David C. Wong, Steven Fine, and Saravanan Arunachalam
Geosci. Model Dev., 17, 7001–7027, https://doi.org/10.5194/gmd-17-7001-2024,https://doi.org/10.5194/gmd-17-7001-2024, 2024
Short summary

Cited articles

Baker, K. R., Simon, H., and Kelly, J. T.: Challenges to Modeling "Cold Pool" Meteorology Associated with High Pollution Episodes, Environ. Sci. Technol., 45, 7118–7119, https://doi.org/10.1021/Es202705v, 2011.
Balachandran, S., Pachon, J. E., Hu, Y. T., Lee, D., Mulholland, J. A., and Russell, A. G.: Ensemble-trained source apportionment of fine particulate matter and method uncertainty analysis, Atmos. Environ., 61, 387–394, https://doi.org/10.1016/j.atmosenv.2012.07.031, 2012.
Balachandran, S., Chang, H. H., Pachon, J. E., Holmes, H. A., Mulholland, J. A., and Russell, A. G.: Bayesian-Based Ensemble Source Apportionment of PM2.5, Environ. Sci. Technol., 47, 13511–13518, https://doi.org/10.1021/Es4020647, 2013.
Bell, M. L.: The use of ambient air quality modeling to estimate individual and population exposure for human health research: A case study of ozone in the Northern Georgia Region of the United States, Environ. Int., 32, 586–593, 2006.
Binkowski, F. S. and Roselle, S. J.: Models-3 Community Multi-scale Air Quality (CMAQ) model aerosol component: 1. Model description, J. Geophys. Res., 108, 4183, https://doi.org/10.1029/2001JD001409, 2003.
Download
Short summary
An integral part of air quality management is knowledge of the impact of pollutant sources on ambient concentrations of particulate matter (PM). This work presents a novel spatiotemporal source apportionment method that generates source impacts for the continental USA. Key sources presented include fossil fuel combustion, biomass burning, dust, sea salt, as well as agricultural activities, biogenics, and aircraft.