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Abstract. An integral part of air quality management is

knowledge of the impact of pollutant sources on ambient

concentrations of particulate matter (PM). There is also a

growing desire to directly use source impact estimates in

health studies; however, source impacts cannot be directly

measured. Several limitations are inherent in most source ap-

portionment methods motivating the development of a novel

hybrid approach that is used to estimate source impacts by

combining the capabilities of receptor models (RMs) and

chemical transport models (CTMs). The hybrid CTM–RM

method calculates adjustment factors to refine the CTM-

estimated impact of sources at monitoring sites using pollu-

tant species observations and the results of CTM sensitivity

analyses, though it does not directly generate spatial source

impact fields. The CTM used here is the Community Mul-

tiscale Air Quality (CMAQ) model, and the RM approach

is based on the chemical mass balance (CMB) model. This

work presents a method that utilizes kriging to spatially in-

terpolate source-specific impact adjustment factors to gen-

erate revised CTM source impact fields from the CTM–RM

method results, and is applied for January 2004 over the con-

tinental United States. The kriging step is evaluated using

data withholding and by comparing results to data from alter-

native networks. Data withholding also provides an estimate

of method uncertainty. Directly applied (hybrid, HYB) and

spatially interpolated (spatial hybrid, SH) hybrid adjustment

factors at withheld observation sites had a correlation coeffi-

cient of 0.89, a linear regression slope of 0.83± 0.02, and an

intercept of 0.14± 0.02. Refined source contributions reflect

current knowledge of PM emissions (e.g., significant differ-

ences in biomass burning impact fields). Concentrations of

19 species and total PM2.5 mass were reconstructed for with-

held observation sites using HYB and SH adjustment fac-

tors. The mean concentrations of total PM2.5 at withheld ob-

servation sites were 11.7 (± 8.3), 16.3 (± 11), 8.59 (± 4.7),

and 9.2 (± 5.7) µg m−3 for the observations, CTM, HYB, and

SH predictions, respectively. Correlations improved for con-

centrations of major ions, including nitrate (CMAQ–DDM

(decoupled direct method): 0.404, SH: 0.449), ammonium

(CMAQ–DDM: 0.454, SH: 0.492), and sulfate (CMAQ–

DDM: 0.706, SH: 0.730). Errors in simulated concentrations

of metals were reduced considerably: 295 % (CMAQ–DDM)

to 139 % (SH) for vanadium; and 1340 % (CMAQ–DDM) to

326 % (SH) for manganese. Errors in simulated concentra-

tions of some metals are expected to remain given the uncer-

tainties in source profiles. Species concentrations were re-

constructed using SH results, and the error relative to ob-

served concentrations was greatly reduced as compared to

CTM-simulated concentrations. Results demonstrate that the

hybrid method along with a spatial extension can be used for

large-scale, spatially resolved source apportionment studies

where observational data are spatially and temporally lim-

ited.

1 Introduction

Variations in ambient pollutant species concentrations, in-

cluding particulate matter (PM) and gases, are correlated

with health outcomes – such as lower birth weight (Darrow et

al., 2011; Wang et al., 1997), higher occurrences of bradycar-

dia and central apnea (Campen et al., 2001; Peel et al., 2011),

decreased peak expiratory flows and increased respiratory

symptoms in non-smoking asthmatics (Peters et al., 1997)
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– and all cause lung cancer and cardiopulmonary mortality

(Pope et al., 2002). Additionally, nanotoxicological studies

report that particle uptake by cells and entry into blood and

lymphs leads to oxidative stress in sensitive areas of the body

such as lymph nodes, bone marrow, and the spleen (Ober-

dorster et al., 2005). Recently, in a study on the global bur-

den of disease, of the 67 risk factors studied, exposure to am-

bient particulate matter (PM) pollution was the ninth high-

est risk factor leading to disability-adjusted life years (Lim

et al., 2012). Many past epidemiological studies focused on

associating PM mass (e.g., PM2.5/10: PM with aerodynamic

diameters less than 2.5 or 10 µm) with the health outcomes,

as opposed to individual species or the sources of the PM

due to limited data availability or difficulties in quantifying

source impacts. Epidemiological studies are examining the

associations between individual species and health outcomes

using data from ground observation networks, such as the

Chemical Speciation Network (CSN) and the Southeastern

Aerosol Research and Characterization Network (SEARCH)

(Dominici et al., 2010; Samet et al., 2000; Sarnat et al., 2008;

Tolbert et al., 2007). It is of further interest to determine

the degree to which individual sources are influencing health

events and to link human exposure and subsequent adverse

impacts to sources and multi-pollutant mixtures (Laden et

al., 2000; Thurston et al., 2005). Attributing individual com-

ponent concentrations and the overall mixture of observed air

pollution to specific sources, as well as linking those sources

with adverse health impacts, is challenging. Typically, recep-

tor models (RMs) are used to generate source apportionment

(SA) results for epidemiological studies because longer time

series are required (e.g., greater than 2 years) (Sarnat et al.,

2008).

Several receptor-oriented SA models have been developed

to quantify emission source impacts on pollutant concentra-

tions. Each model has its own unique characteristics and as-

sociated uncertainties (Balachandran et al., 2012; Seigneur

et al., 2000). Schauer and Cass (2000) used organic tracers

for source apportionment using the chemical mass balance

(CMB) method at two urban sites and one background site

in central California (Watson et al., 1984). Their implemen-

tation addressed the improper accounting of volatile organic

compounds (VOCs) from motor vehicle exhaust and wood

combustion. Watson et al. (2001) reviewed several studies

that used CMB for source apportionment, and reported that

uncertainties in source contributions of VOCs led to uncer-

tainties in impacts from important sources such as off-road

vehicles, solvent use, diesel and gasoline exhaust, meat cook-

ing, and biomass burning. The authors also describe several

limitations of CMB, including reliance on existing observa-

tions and overlooking profiles that change between source

and receptor due to factors such as dilution, aerosol ag-

ing, and deposition. Maykut et al. (2003) used positive ma-

trix factorization (PMF) for source apportionment at an ur-

ban Seattle, Washington (USA), site with selected trace ele-

ments to distinguish combustion sources (Pattero and Tapper,

1994). Temperature-resolved organic and elemental carbon

fractions were also used in Unmix to distinguish diesel and

other mobile sources but did not lead to significantly differ-

ent results (Henry, 2005). There was also difficulty in dis-

tinguishing small sodium-rich industrial sources due to the

similarity to the aged marine aerosol source profile.

In an effort to improve the spatial and temporal resolution

of SA data and improve source distinction, chemical trans-

port models (CTMs) have been adapted to estimate emission

impacts on pollutant concentrations. Marmur et al. (2006)

conducted a comparison of source-oriented and receptor-

oriented modeling results for a winter and summer month

in the southeastern USA. The brute force method was used

in the Community Multiscale Air Quality (CMAQ) model

to calculate impacts from mobile sources, biomass burning,

coal-fired power plants, and dust. The authors determined

that meteorological effects had a strong impact on the tem-

poral variation of CMAQ source impacts, where receptor

model results exhibited more day-to-day variability. Koo et

al. (2009) used the decoupled direct method (DDM) in the

comprehensive air quality model with extensions (CAMx)

to determine the sensitivity of particle sulfate concentra-

tion to changes in emissions of SO2 and NOX from point

sources; NOX, VOC, and NH3 from area sources; and all

emissions from on-road mobile sources (Byun and Schere,

2006; Dunker, 1981, 1984; Napelenok et al., 2006). DDM

first-order sensitivities underestimated the impacts on sulfate

concentration when all emissions are removed due to non-

linearities, as compared to brute force method results. Zhang

et al. (2012) addressed this issue by calculating second-order

sensitivities of inorganic aerosols using DDM, which better

captured nonlinear responses to changes in emissions up to

50 %.

This work utilizes a hybrid CTM–RM method to provide

spatial fields of source impacts for use in detailed health-

related, spatiotemporal analyses (e.g., Sarnat et al., 2008).

Spatially resolved source impacts and concentrations are key

inputs for residential or county level exposure studies that

investigate the impact of air pollution on regional health out-

comes (Bell, 2006). The CTM–RM method combines the

strengths of both source apportionment techniques in an ef-

fort to reduce uncertainty in source impact estimates. The

goal of this study is to create spatial fields of source im-

pacts by spatially interpolating source impact adjustment fac-

tors (ratios, or R’s) and then applying those adjustments to

CTM source impact fields. R’s are generated by a hybrid

CTM–RM SA approach that integrates observational data

and results from a CTM to calculate an emission-based ad-

justment of source impacts at receptor locations (Hu et al.,

2014). Kriging is employed to generate spatial fields of R’s

for 33 emissions sources. The spatial fields of adjustment

factors are applied to original source impact fields to pro-

duce hybrid-adjusted source impact and species concentra-

tion fields for the continental USA. The adjustments can

also be interpolated in time to adjust source impact fields on
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days when speciated observations are not available. The per-

formance of the spatial extension is evaluated by perform-

ing data withholding and by comparing results to observa-

tions from other monitoring networks. The hybrid CTM–RM

method, along with the spatial extension, provides air quality

data fields for health studies that require spatially resolved

exposure metrics. This approach can also be used to assist

air quality planners in developing state implementation plans

(SIPs) and assessing exceptional events, such as wildland

fires.

2 Data and methods

2.1 Data

Observational data from 189 CSN monitors were used for

model development and evaluation (Fig. 1). Data were ob-

tained on 1 in every 3 or 6 days in January 2004 for a to-

tal of 9 days (e.g., 4, 7, 10, ... 28 January), which led to

varying sample sizes for each observation day. The number

of available monitors with speciated PM2.5 data on obser-

vation days ranged from approximately 40 to 150 and each

site had 5 to 9 observations over the period examined. CSN

monitor measurements include total PM2.5, organic and el-

emental carbon, ions, and 35 metals. CSN monitors tend to

be located in more densely populated areas such as urban

and suburban areas, and data are more associated with high-

population emissions sources such as mobile and cooking

sources. Speciated PM2.5 data are also available from the

SEARCH (Hansen et al., 2003, 2006) and IMPROVE (Chow

et al., 1993) networks, and those data were used for fur-

ther model evaluation. The SEARCH network includes eight

monitors in the southeastern USA, configured as urban/rural

pairs. IMPROVE monitors are mainly located in pristine lo-

cations such as national parks and wilderness areas. Thirty-

eight IMPROVE monitors in the eastern USA were used for

model evaluation. IMPROVE monitors in the eastern USA

were used due to their closer proximity with urban monitor-

ing sites (e.g., less than 50 km), as opposed to western IM-

PROVE sites which are much more spatially sparse. Addi-

tionally, modeled processes have higher uncertainty for the

western USA due to complex terrain and meteorology, lead-

ing to added bias in the observation and model comparison

(Baker et al., 2011).

2.2 CTM–RM hybrid method

This study utilizes a hybrid SA method that combines tech-

niques of both CTMs and RMs to generate adjustment fac-

tors (symbolized byR) that improve source impact estimates.

Hu et al. (2014) described the hybrid approach in detail,

but it is briefly summarized here. First, gridded concentra-

tions and emissions sensitivities of PM2.5 species are gener-

ated using CMAQ–DDM (v. 4.5). CMAQ–DDM model sen-

sitivities to emissions are designated as the original (base

Figure 1. Modeling domain (dotted, red line) and CSN, SEARCH,

and IMPROVE monitors used for model development, application,

and evaluation.

case) source impacts (SAbase
i,j ) for species i and source j .

CMAQ–DDM was run with strict mass conservation (Hu

et al., 2006), the SAPRC-99 chemical mechanism (Carter,

2000) and the aerosol module described in Binkowski and

Roselle (2003). The modeling domain contains the conti-

nental USA, southern Canada, and northern Mexico, with

36 km grid resolution, Lambert Conformal Conic geographic

projection, and 13 vertical layers of variable thickness ex-

tending from the surface to 70 hPa. Meteorological inputs

were generated using the fifth-generation PSU/NCAR (Penn-

sylvania State University-National Center for Atmospheric

Research) mesoscale model (MM5) with 35 vertical lay-

ers, implemented with the Pleim–Xiu land surface model

(Grell et al., 1994, Pleim and Xiu, 1995; Xiu and Pleim,

2001). Emissions inputs were processed using the Sparse

Matrix Operator Kernel Emissions (SMOKE) module (CEP,

2003). Emissions data originated from a 2004 inventory that

was projected from the 2002 National Emissions Inventory

(NEI2002). Please refer to the preceding publication by Hu

et al. (2014) for additional details about the emissions inven-

tory.

Next, the original source impacts, receptor observations,

and uncertainties are used as inputs to the objective function

(Eq. 1) of the hybrid SA model:

X2
=

N∑
i=1



[(
cobs
i − c

sim
i −

J∑
j=1

SAbase
i,j (Rj − 1)

)]2

σ 2
i, obs+ σ

2
i,CTM


+0

J∑
j=1

ln(Rj )
2

σ 2
ln(Rj )

, (1)

www.geosci-model-dev.net/8/2153/2015/ Geosci. Model Dev., 8, 2153–2165, 2015



2156 C. E. Ivey et al.: Development of PM2.5 source impact spatial fields

where the adjustment factors Rj are optimized by minimiz-

ing the objective function, χ2. The initial Rj values are spe-

cific to 1 site and 1 day, as the method is applied at mon-

itors when speciated PM2.5 data are available on observa-

tion days, and are then kriged and interpolated. The terms

cobs
i and csim

i represent the observed and CMAQ-simulated

concentrations, respectively; 0 weights the amount of change

in source impact. Uncertainties in observation measure-

ment (σi, obs), modeled concentrations (σi,CTM), and source

strength (σln(Rj )) are also included in the model. Specifi-

cally, σi, obs is reported with measurements for each day from

the CSN network; σi,CTM is error in modeled concentra-

tions, which is proportional to observed concentrations and

remains constant for all sites and days; and σln(Rj ) is uncer-

tainty in source contribution expressed as the log of the fac-

tor of uncertainty, which also remains constant for each site

and day.The uncertainties weight the adjustment of modeled

source impacts, in that components with larger uncertainties

are weighted less.

The objective function is minimized by using a nonlinear

optimization approach known as sequential quadratic pro-

gramming (Fletcher, 1987; Gill et al., 1981). The function is

modeled using a ridge regression structure, as demonstrated

by the second term, and uses an effective variance approach

to balance model outputs. The effective variance approach

is also utilized by versions of CMB, and the optimization

method used here is, in essence, an extended CMB approach

(Watson et al., 1984). Uncertainties in the first term of the ob-

jective function serve as effective variances of the numerator

and are specified for each species i. Finally, Rj are applied

to SAbase
i,j to adjust original source impact estimates (Eq. 2)

and reconstruct simulated concentrations (c
adj

i ) at receptors

to more closely reflect observations (Eq. 3).

SA
adj

i,j = RjSAbase
i,j (2)

c
adj

i = c
sim
i +

J∑
j=1

SAbase
i,j (Rj − 1) (3)

Given that many of the source impact profiles are similar be-

tween categories such that colinearities are present, the vari-

ation of the Rj values are constrained to 0.1≤ Rj ≤ 10.

Source impact profiles are derived from the information

provided by Reff et al. (2009). In this manuscript, “source

impact profiles” are different than “source profiles” in that

they describe the source fingerprint at the receptor. In other

words, the source profile can be altered, for example by the

formation of secondary species. However, for many of the

species, there is no secondary formation. It is assumed that

within the accumulation mode, which contains most of the

fine PM mass in CMAQ, the composition of the primary por-

tion of the PM2.5 from any source is the same, but secondary

species can be formed, altering the source profile at the re-

ceptor. The specific steps taken in applying source profiles

to CMAQ-generated data are described as follows. Source

profiles for 84 source categories were presented in Reff et

al. (2009), which were aggregated from roughly 300 PM2.5

SPECIATE v4.0 profiles and contain estimates of trace metal

contributions. The 84 PM2.5 profiles were further aggregated

into 33 categories, consistent with the sources of interest in

this study. Then the contributions in the 33 profiles were

used to speciate the “other” (sometimes called unidentified)

portion of PM2.5 (species name: A25) as output by CMAQ.

The contributions of the 35 trace species were then used to

split the “other” PM2.5 into individual species, and results for

these species, along with the other primary and secondary

species are used. At the receptor, both the primary and sec-

ondary PM2.5 contribution at the receptor are used to deter-

mine the new, receptor-oriented, source impact profiles. This

same approach was used to generate receptor-oriented pro-

files in the preceding publication by Hu et al. (2014).

The hybrid method produces results that more closely re-

flect observations than the original CTM results, which are

often biased (Hu et al., 2014). It accounts for more known

source categories than traditional RM approaches (e.g., 33

vs. 6), and it links sources and observations both temporally

and spatially. Additionally, the hybrid method generates es-

timates of the uncertainty in source impact predictions and

identifies potential errors in source strength and composition.

One limitation of the hybrid method is that results are only

available at receptor locations when observations are avail-

able, limiting its spatial and temporal scope. In this paper, a

spatial hybrid method is presented and evaluated, and it ex-

tends the benefits of the hybrid CTM–RM method through

spatial interpolation.

2.3 Development of spatiotemporal fields

Spatial and temporal source impact fields can be developed

by combining the hybrid CTM–RM method and geosta-

tistical techniques. Hybrid-generated Rj values were spa-

tially interpolated for each observation day using kriging

to generate spatial fields of source impact adjustment fac-

tors. Matlab© (v. 7.14.0.739) was used to perform all geo-

statistical and optimization calculations. Daily-averaged spa-

tial fields of CMAQ–DDM source impacts are adjusted by

grid-by-grid multiplication of the original fields by the cor-

responding adjustment factor field, resulting in spatial fields

of hybrid-adjusted source impacts that are available every

third day, as are observations. Source impact fields for in-

tervening periods are developed by interpolation of the Rj
spatial fields. Temporally interpolating Rj values and then

applying those adjustments to simulated source impact fields

is preferred over simply interpolating the 1-in-3 day hybrid-

adjusted source impact fields because temporally interpolat-

ing adjusted source impacts would smooth the fields, and the

day-specific spatial and temporal variability in the emissions

and meteorology captured by the CTM would be lost.
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2.4 Method evaluation

Performance of the spatial extension was evaluated using a

data withholding approach, as well as by comparison with

data from the SEARCH and IMPROVE networks. For data

withholding, we removed 10 % of the available observations

(75 sets of observations at the monitors with speciated PM2.5

data) and re-ran the spatial hybrid model. This led to a total

of 75 observation sets being used in the model evaluation.

All references to “withheld CSN data” refer to these 75 sets

of withheld data. The remaining 90 % of the available obser-

vations were used to fit the variogram models, which were

used in kriging to produce spatial fields of Rj values. Con-

centrations are reconstructed using Eq. (3) with the spatially

interpolated adjustment factors. Additionally, hybrid CTM–

RM optimization is directly applied to withheld observation

sites to assess the performance of the kriging model. Then the

original CMAQ–DDM, directly applied hybrid (CTM–RM),

and spatial hybrid (SH) concentrations are compared to mea-

surements at withheld observation locations to evaluate the

performance of each method in simulating concentrations.

Linear regression was used to assess correlations between

observations and modeled concentrations for each method.

In order to evaluate prediction performance in remote lo-

cations and in locations independent of CSN, CMAQ–DDM

and SH concentrations were compared to observations at

SEARCH and IMPROVE locations. Note that the applica-

tion of the CTM–RM hybrid method, as conducted here,

did not include SEARCH and IMPROVE data, and CTM–

RM/SH results are independent of those observation data.

The SEARCH and IMPROVE comparisons also address the

issue of spatial representativeness of using only CSN data

to produce spatial fields. This study uses available speci-

ated CSN data over the entire USA, thereby providing a very

spatially heterogeneous data set that is representative of key

emissions and meteorology in each USA region. The lack of

rural data available may present uncertainties in the spatial

representativeness of Rj values outside of urban regions.

Also note that 41 species, including total PM, were used

for spatial field construction, but only results for 20 species

are presented for comparison of CSN results and 15 species

for SEARCH and IMPROVE results, as measurements for

some trace metals are seldom above measurement detection

limit. The possibility of added uncertainty in the optimiza-

tion step due to detection limit issues was considered. Opti-

mization was tested with the absence of species with limited

availability, and no significant differences in model perfor-

mance were found. The use of the measurement uncertainty

in the objective function minimizes the role of those mea-

surements on days when they are below the detection limit,

but still accounts for the concentration levels being low. Us-

ing all available measurements in the optimization model is

the preferred approach.

3 Results

3.1 Spatial extension evaluation

CTM–RM and SH adjustment factors at withheld observa-

tion locations were compared using regression to evaluate

the spatial interpolation that was performed using kriging.

For each observation day (9 days), 10 % of available obser-

vations were randomly withheld, resulting in a total of 2,475

Rj data points (75 observations locations× 33 source cat-

egories). Five outlying data pairs (< 0.5 %) were removed

from this regression. Outlying data pairs are determined

by examining the distribution of the directly calculated Rj
values (mean= 0.84, SD= 0.48) and the kriged Rj values

(mean= 0.83, SD= 0.30) at the withheld observation loca-

tions. Data pairs were removed if either value was more than

6 standard deviations from the mean Rj value. The removed

data points (5 points out of 2475) were well outside of this

range. The remaining CTM–RM and SH factors had a Pear-

son correlation coefficient of 0.89, a linear regression slope

of 0.83± 0.02, and an intercept of 0.14± 0.02 (Fig. 2).

Root mean square errors (RMSEs) were calculated for the

adjustment factors by source (Eq. 4)

RMSEj =

√√√√√ N∑
i=1

(
RCTM–RM
j −RSH

j

)2

N
,

j = 1, . . . J sources, N = 75sites. (4)

RMSEs for all sources were less than 0.4, with the excep-

tion of RMSEs for lawn waste burning, prescribed burning,

and wood stoves (Table S1 in the Supplement). This is ex-

pected given the uncertainty in the burn emissions (Table S2).

Sources such as diesel, liquid petroleum gas, non-road natu-

ral gas, and Mexican combustion all had very low RMSEs,

mean Rj values near 1, and median Rj values near 1. This

indicates that there is little to no adjustment to these source

impacts and that kriging captures the Rj values calculated by

the CTM–RM application. Mean and median Rj values are

within 20 % for most sources (Table S1). The overall mean

Rj value at withheld observation locations for all sources

for CTM–RM and SH adjustment factors was 0.84 and 0.83,

respectively, indicating a high bias in CMAQ–DDM over-

all, as expected from the base model performance evaluation

(PM2.5 was biased approximately 40 % high).

Cumulative distributions were examined for CTM–RM

and SH adjustment factors for each source, and adjustment

factors were highly correlated for each source (Fig. S1). Spa-

tial interpolation captured CTM–RM trends for sources dom-

inated by adjustment factors near 0.1, such as dust, lawn

waste burning, prescribed burning, and wood stoves, though

did not capture all of the extremely low adjustments (e.g.,

meat cooking in some locations). Sources that found little

adjustment (Rj = 1) include aircraft, diesel combustion (sta-

tionary sources), fuel oil burning, Mexican combustion, non-

www.geosci-model-dev.net/8/2153/2015/ Geosci. Model Dev., 8, 2153–2165, 2015
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Figure 2. CTM–RM vs. spatial hybrid adjustment factors

for withheld CSN observations. Regression statistics: intercept,

α = 0.14± 0.02; slope, β = 0.84± 0.02; and correlation coeffi-

cient, r = 0.89.

road liquid petroleum gasoline combustion, and sea salt, and

were well captured by the spatial extension, as demonstrated

by nearly identical cumulative distributions. The cumulative

distribution plots exceed 1.0 (x axis) for dust, lawn waste

burning, prescribed burning, and wood stoves. These sources

are highly variable day-to-day, and CMAQ–DDM underes-

timations are possible in cases where the original emissions

missed an actual burn or dust event.

Spatial fields of hybrid adjustment factors are presented

for dust, on-road diesel and gasoline combustion, and wood

stove sources (Fig. 3). Average Rj values over all observa-

tion days are also presented for reference (Fig. S2). Typically,

Rj values were less than 1 for dust and wood stove impacts,

indicating a high bias in those source impacts in the base

CMAQ–DDM simulations. Spatial field values for on-road

diesel and gasoline combustion Rj are generally near one

over most of the USA; however, Rj values for those sources

tend be below one in the southeastern region of the USA.

In general, for an Rj value less than 1, the initial CMAQ–

DDM estimate is reduced to be more consistent with obser-

vations. In turn, for an Rj value greater than 1, the initial

CMAQ–DDM estimate is increased to be more consistent

with observations. An Rj value of 1 indicates that no adjust-

ment to the CMAQ–DDM is necessary to improve consis-

tency with observations. As such, after application of the SH

method, it was found that while many of the source impacts

were adjusted relatively little (i.e., Rj ≈ 1.0), dust-related

and biomass burning-related impacts were often biased high

in the original CMAQ–DDM simulation and therefore con-

siderably reduced.

The distribution of all Rj values was approximately log-

normal, and an analysis was performed to determine whether

log-transformation of Rj values prior to the kriging step was

necessary to reduce bias in source impact and concentration

Figure 3. Spatial fields of kriged adjustment factors (RSH
j

) for dust,

on-road diesel combustion, on-road gasoline combustion, and wood

stove sources for 4 January 2004. Adjustment factors at CSN mon-

itors (denoted by circles) were generated using hybrid (CTM–RM)

source apportionment. Note that each panel has a different scale.

estimates (Fig. S3). In one approach, we log-transform the

Rj values at the monitors before kriging, and then the kriged

values are unlogged before use in reconstruction. In the sec-

ond approach, we do not log-transform before kriging. From

the analysis it was determined that lognormal transformation

of Rj values was not necessary, as no significant difference

was observed in reconstructed concentrations and source im-

pact fields as a result of the transformation.

Additionally for method evaluation, withheld CSN ob-

servations were compared with SH concentrations, which

were calculated using kriged Rj values and Eq. (3) (Ta-

ble S3). The mean concentrations of total PM2.5 for withheld

observation locations were 11.7 (± 8.3), 16.3 (± 11), 8.59

(± 4.7), and 9.2 (± 5.7) µg m−3 for the observations CMAQ–

DDM, CTM–RM, and SH estimations, respectively. Levels

of crustal metals (Al, Si, Ca, and Fe), K, and Cl were biased

very high in the base CMAQ–DDM simulation, oftentimes

an order of magnitude greater than observations. SH concen-

trations of metals were closer to the CSN observations. Error

in simulated (sim) concentrations is calculated using Eq. (5):

Error=
1

N

N∑
i=1

|obsi − simi |

obsi
. (5)

In Eq. (5), i represents observations and N represents the to-

tal number of observations withheld for evaluation. The error

was 295 and 139 % for CMAQ–DDM vs. observations and

SH vs. observations, respectively, for vanadium; and 1340

and 326 % for CMAQ–DDM vs. observations and SH vs. ob-

servations, respectively, for manganese. The large remaining

errors stem from the source profiles leading some elements to

being biased consistently high and others low. Further work

to optimize source profiles can reduce residual errors.
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Performance indicators for some species indicate poorer

correlation, such as the β values for calcium for CMAQ–

DDM (β = 1.22) and SH (β = 0.16) regression comparison

(Table S4). However, all metrics presented must be taken into

account and evaluated holistically. The α values for calcium

indicate an improvement in performance, as the spatial hy-

brid value (α= 0.044) is closer to 0.0 than the CMAQ–DDM

value (α= 0.13). Further, mean concentrations at withheld

observation locations also indicate better performance of the

SH model, where mean calcium concentrations were 0.041

(observed), 0.18 (CMAQ–DDM), and 0.050 (SH) (Table S3).

According to the mean concentrations, the SH method per-

forms best. Throughout the analysis, CMAQ–DDM esti-

mates of trace metal concentrations were orders of magni-

tude too high, while SH results were closer to observations.

While some individual metrics indicate better performance

of CMAQ–DDM, overall performance of the SH method is

most favorable. An important point is that the species where

performance is less good are typically those species that have

a smaller role in determining source impacts. For example,

those species are very trace and/or have high uncertainties in

the measurements or source profiles relative to their observed

concentrations.

The SH method was further evaluated by comparing simu-

lated concentrations to independent data from the SEARCH

and IMPROVE networks (Tables S5 and S6). The mean con-

centrations over observation days were compared, as well as

regression statistics for observations vs. modeled results. For

the SEARCH network (N = 8 monitors), average concentra-

tions of 15 species were compared to observations. Error in

mean concentrations for crustal elements was significantly

decreased (CMAQ–DDM and SH): Al, 2203 to 540 %; Si,

1228 to 271 %; K, 365 to 61 %; Ca, 402 to 61 %; Fe, 260 to

3 %; Cu, 231 to 38 %; and Se, 63 to 25 %. For the IMPROVE

network (N = 38 monitors), errors in mean concentrations

for crustal elements were also significantly decreased: Al,

704 to 24 %; Si, 371 to 24 %; K, 599 to 48 %; Ca, 361 to

36 %; Fe, 334 to 18 %; Cu, 186 to 57 %; and Se, 22 to 11 %.

Linear regression metrics are also presented for SEARCH

and IMPROVE monitors (Tables S7 and S8). Correlations for

all SEARCH and IMPROVE species did not improve; how-

ever, estimation performance for most trace metals and ions

improved.

3.2 Refined source impacts

Refined dust and biomass burning source impacts led to bet-

ter agreement between simulated and observed concentra-

tions of crustal (Al, Ca, Fe, Si) and biomass burning-derived

elements (Cl, K). Original CMAQ–DDM estimates were bi-

ased very high for these species compared to observations.

This is due to the apparently high bias in source impact pro-

file estimates for biomass burning sources, which do not take

into account long-range transport and deposition of biomass

burning-related PM. Results suggest that due to atmospheric

transformation processes, the source impact profiles are in

error for some species, similar to the findings in Balachan-

dran et al. (2013). Observations for some elemental species

(Mg, P, V, Se) were highly influenced by measurement lim-

itations (i.e., at or below detection limit) and showed the

poorest correlation with modeled concentrations. Addition-

ally, conversion of observed carbon species between analyt-

ical methods, from total optical transmittance to total op-

tical reflectance equivalents, introduced potential bias into

concentration comparisons. Other studies have shown that

conversions may overcorrect observations of carbon species

(Balachandran et al., 2013).

Average source contributions to PM2.5 at withheld CSN

observation locations were ranked from largest to smallest

for base CMAQ–DDM, CTM–RM, and SH (Table 1). The

top three sources were wood stoves, dust, and livestock emis-

sions for base CMAQ–DDM simulations, the latter source

capturing the influence of ammonia emissions on the for-

mation of nitrate. The livestock category includes impacts

from agricultural and farming activities. For CTM–RM and

SH results, wood stoves (10th for both) and dust (13th for

CTM–RM, 14th for SH) were ranked much lower than for

CMAQ–DDM. Livestock emissions were ranked 1st for both

the CTM–RM and SH hybrid applications. Source ranking

for open fires was reduced from 10th (CMAQ–DDM) to

20th for both the CTM–RM and SH applications. The fuel

oil source impact ranking increased from 12th for the base

CMAQ–DDM simulation to 6th and 5th for CTM–RM and

SH results, respectively. The order of source contributions at

withheld observation locations for the CTM–RM and SH ap-

plications compared well, though often differed greatly from

the base CMAQ–DDM rankings. The difference in rank-

ings between CTM–RM and SH contributions was, at most,

two positions.

The top three sources of primary PM2.5 for January 2004,

based on source emissions, were dust, wood stoves, and coal

combustion, estimated at 1275, 5301, and 3407 metric tons

per day, respectively (Table S2). However, uncertainties as-

sociated with dust and wood stove emissions are much higher

than most of the other sources, a factor of 10 and 5, respec-

tively (Hanna et al., 1998, 2001; Hu et al., 2014). This uncer-

tainty is driven in part by source variability. The large uncer-

tainty and potential bias is reflected in the large shift in rank-

ings for dust and wood stove source contributions to PM2.5.

Other biomass burning sources such as lawn waste burning

and wildfires have similarly large emissions uncertainties and

likely large temporal variabilities, and their rankings were

also significantly decreased.

Coal combustion includes the secondary formation of sul-

fate and remains in the top three sources for average SH

PM2.5 contributions, as its emissions uncertainties are low

due to the availability of continuous emission monitoring

data. SO2 emissions are large (January 2004 domain to-

tals: 72924.7 metric tons per day), as are NOX emissions

(74619.7 metric tons per day) (Table S9). During the study
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Table 1. Source category abbreviations with average CMAQ–DDM, CTM–RM, and SH (spatial hybrid) source contributions to PM2.5

concentrations for withheld CSN observation locations (N = 75 observations) for January 2004. Note: all averages and standard deviations

are expressed in µg m−3. Average total mass of withheld observations, and corresponding CMAQ–DDM, CTM–RM, and SH estimates were

11.7 (± 8.3), 16.3 (± 11), 8.59± 4.7, and 9.2 (± 5.7) µg m−3, respectively. NR=Non-road, CM=Combustion.

Source categories Abbreviation CMAQ–DDM CTM–RM SH Hybrid

Avg. SD Rank Avg. SD Rank Avg. SD Rank

Agricultural burning AGRIBURN 0.0040 0.003 25 0.0016 0.011 26 0.0012 0.0052 28

Aircraft emissions AIRCRAFT 0.0038 0.013 26 0.0037 0.013 25 0.0038 0.013 25

Biogenic emissions BIOGENIC 0.074 0.22 14 0.069 0.22 11 0.074 0.22 9

Coal CM COALCMB 0.16 0.39 9 0.15 0.38 4 0.15 0.38 3

Diesel CM. DIESELCM 0.00060 0.0017 30 0.0006 0.0017 30 0.0006 0.0017 30

Dust DUST 0.36 0.095 2 0.061 0.22 13 0.048 0.12 14

Fuel oil CM FUELOILC 0.14 0.54 12 0.14 0.62 6 0.14 0.63 5

Livestock emissions LIVEST2 0.31 0.89 3 0.31 0.85 1 0.31 0.88 1

Liquid petroleum gas CM LPGCMB 0.0043 0.013 24 0.0043 0.013 24 0.0043 0.013 24

Lawn waste burning LWASTEBU 0.10 0.032 13 0.018 0.067 21 0.010 0.026 22

Metal processing MEATALPR 0.18 0.16 7 0.12 0.70 7 0.064 0.22 12

Meat cooking MEATCOOK 0.034 0.089 19 0.034 0.10 16 0.032 0.10 17

Mexican CM MEXCMB_M 0.00070 0.0028 29 0.0007 0.0028 29 0.0007 0.0028 29

Mineral processing MINERALP 0.030 0.062 21 0.026 0.075 19 0.024 0.076 19

Natural gas CM NAGASCMB 0.17 0.21 8 0.11 0.36 8 0.078 0.20 8

NR diesel CM NRDIESEL 0.14 0.48 11 0.14 0.73 5 0.14 0.73 4

NR fuel oil CM NRFUELOI 0.010 0.036 23 0.010 0.041 23 0.010 0.039 23

NR gasoline CM NRGASOL 0.063 0.22 16 0.061 0.23 14 0.064 0.23 13

NR liquid petroleum Gas CM NRLPG 0.0014 0.0056 28 0.0014 0.0056 27 0.0014 0.0056 26

NR natural gas CM NRNAGAS 0.0005 0.0014 31 0.0005 0.0014 31 0.0005 0.0014 31

Other NR sources NROTHERS 0.0005 0.0012 32 0.0005 0.0012 32 0.0005 0.0012 32

Open fires OPENFIRE 0.15 0.099 10 0.021 0.11 20 0.017 0.10 20

Onroad diesel CM ORDIESEL 0.070 0.17 15 0.066 0.19 12 0.068 0.19 11

Onroad gasoline CM ORGASOL 0.27 0.60 4 0.20 0.54 2 0.24 0.62 2

Other CM sources OTHERCMB 0.040 0.072 18 0.029 0.14 18 0.026 0.11 18

Other PM sources OTHERS2 0.18 0.22 6 0.10 0.28 9 0.10 0.28 7

Prescribed burning PRESCRBU 0.032 0.054 20 0.031 0.24 17 0.032 0.24 16

Railroad emissions RAILROAD 0.013 0.046 22 0.013 0.046 22 0.013 0.045 21

Sea salt SEA SALT 0.0001 0.0005 33 0.0001 0.0005 33 0.00 0.0 33

Solvent emissions SOLVENT 0.051 0.094 17 0.044 0.14 15 0.040 0.13 15

Wildfires WILDFIRE 0.0018 0.0034 27 0.0012 0.0033 28 0.0013 0.00 27

Wood fuel burning WOOD FUEL 0.22 0.28 5 0.20 1.3 3 0.12 0.90 6

Wood stoves WOOD STOVE 0.62 0.44 1 0.083 0.29 10 0.069 0.28 10

period, coal combustion had the highest contribution to SO2

emissions (35080.3 metric tons per day) and the second high-

est contribution to NOX emissions (14250.1 metric tons per

day) behind mobile sources. The source impacts found here

account for the transformation of these gaseous emissions

from coal combustion.

Secondary formation processes increase the impact of

coal combustion, biogenic and livestock emissions relative

to their initial primary PM contribution. January 2004 pri-

mary PM emissions estimates for biogenic and livestock

were ranked 33rd and 31st, respectively. However, CMAQ–

DDM, CTM–RM, and SH hybrid contributions ranked both

sources significantly higher (biogenic rankings: 14th, 11th,

and 9th, respectively; livestock rankings: 3rd, 1st, and 1st,

respectively). Although primary PM2.5 emissions from these

sources are not large, secondary processes and emissions

from gaseous precursors led to high source contributions (Ta-

ble S9). Biogenic sources emit large quantities of volatile

organic compounds which go on to form secondary organic

aerosols. Livestock emissions of gaseous ammonia react with

sulfate, nitrate, and other acids to form ammonium salts.

Therefore, the SH method captures and refines impacts from

sources that contribute precursors of PM2.5.

3.3 Refined Spatial Fields

Base CMAQ–DDM spatial fields were refined by applying

Rj fields for each source and on each observation day. An

example of the adjustment can be found in Fig. 4, where

the CMAQ–DDM spatial field of dust impacts is adjusted on
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4 January 2004. Sources with high occurrences (∼> 50 %) of

adjustment factors less than 1 include biomass burning, met-

als processing, and natural gas combustion, and refined spa-

tial fields for these sources are presented in the Supplement

(Figs. S5–S7). Biomass burning includes impacts from agri-

cultural burning, lawn waste burning, open fires, prescribed

burning, wildfires, wood fuel burning, and wood stoves. The

SH method significantly decreases impacts from biomass

burning on 4 and 22 January in the eastern USA and for

portions of the west coast (Fig. S5), largely driven by the

observed potassium and organic compound (OC) levels be-

ing lower than simulated levels. On average, CMAQ–DDM

simulated levels were a factor of 3.1 (± 1.1) times higher

than SH values on 4 January, and a factor of 5.2 (± 1.0)

times higher on 22 January. Metal processing impacts were

reduced for areas highly impacted by smelting and metal

works industries including the Ohio River valley and mid-

Atlantic regions (Fig. S6). On average, the CMAQ–DDM

values were 21 (± 21) % higher than SH values on 4 January,

and 25 (± 21) % higher on 22 January for metal process-

ing impacts. Natural gas combustion impacts (area and point

sources only) were reduced for the southeastern USA, the

Ohio River valley region, the Gulf of Mexico states, and parts

of California and Texas (Fig. S7). On average, CMAQ–DDM

levels were 35 (± 14) % higher than SH values on 4 January,

and 72 (± 28) % higher on 22 January for natural gas com-

bustion impacts.

Refined spatial fields of January 2004 averaged source

impacts are presented for eight sources: (c, d) dust, (e, f)

on-road mobile sources, (g, h) coal combustion, (i, j) sea

salt, (k, l) metal-related sources, (m, n) fuel oil combus-

tion, (o, p) biomass burning, and (q, r) agricultural activities

(Fig. 5). Total PM2.5 concentration fields are also included

with overlapped observed concentrations from 28 January (a,

b). The CMAQ–DDM spatial field overestimates concentra-

tions in the Eastern USA, while overlapped concentrations

agree more with spatial hybrid results. Modeled concentra-

tions at monitors in mountainous areas, such as Salt Lake

City, Utah, are underestimated due to local meteorological

conditions (Gillies et al., 2010; Kelly et al., 2013). Winter-

time temperature inversions, which cause stagnation in air

circulation and consequently high air pollution episodes in

industrial valleys, are challenging to capture in models.

Improved spatial field correlation is reflected in monthly

averaged spatial fields (Fig. 5). SH dust impacts are

greatly reduced domain-wide as compared to CMAQ–DDM.

Monthly averaged refinement of biomass burning, where im-

pacts were also greatly reduced, and metal-related source

impact fields are consistent with results previously men-

tioned for 4 and 22 January. Sea salt impacts are localized

to coastal areas as expected, and agricultural activity most

greatly impacts the mid-western USA, an area dominated by

farm lands. Coal and fuel oil combustion impacts are highest

in the eastern USA and western Mexico (fuel oil only) and

Figure 4. Hybrid-kriging adjustment of the dust impacts on PM2.5

on 22 January 2004: (a) original CMAQ–DDM simulation of dust

source impacts; (b) spatial field of hybrid adjustment factors for

dust (RSH
j

); (c) adjusted spatial field of dust source impacts.

were adjusted very little as compared to the original CMAQ–

DDM field.

4 Discussion

The SH method uses observations and modeled concentra-

tions of species to adjust impacts on a source-by-source ba-

sis to provide spatially and temporally detailed source impact

fields. The SH method also captures the impacts of secondary

aerosol formation from precursor emission sources. Hybrid

adjustment factors can be used to estimate the amount of

change in emissions necessary for modeled results to better

reflect observations, as emissions are roughly proportional to

source impacts for primary sources (Hu et al., 2015). Krig-

ing is an effective spatial interpolation method for spatially

extending the CTM–RM model and generating spatial fields

of adjustment factors. Kriging does not introduce significant

error, as the adjusted fields maintain the spatial and tem-

poral variability of the original fields, and this application

led to simulated PM2.5 mass concentrations being closer to

observations. Adjusted spatial fields of source impacts cap-

ture prior knowledge of emissions impacts, meteorology, and
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Figure 5. Average CMAQ–DDM and spatial hybrid source impacts on PM2.5 for observation days in January 2004 for eight source cat-

egories. Total PM2.5 with overlapped PM2.5 observations for 28 January (a, b). Impact of (c, d) soil/crustal material, (e, f) traffic-related

sources, (g, h) coal combustion, (i, j) sea salt aerosol, (k, l) metal-related sources, (m, n) fuel oil combustion, (o, p) biomass burning, and

agricultural activities (q, r).

chemistry. The SH method also improves simulated esti-

mates of crustal and trace metal concentrations.

The SH method is being developed both to develop spa-

tiotemporally accurate source impact fields that are con-

sistent with observations, and also to provide an approach

to increase our understanding of the spatiotemporal char-

acteristics of source impacts in the United States. We find

widespread adjustment to biomass burning and dust impacts

(Rj less than 1). These source impacts are consistent with

observations, emissions estimates, and atmospheric transport

and transformation. The SH method is also novel in that, al-

though some sources may not emit a certain pollutant, there

still may be some interactions with emissions from other

sources leading to those species being part of the source im-

pact. For example, in the case of agricultural fertilizer emis-

sions, although NOx is not directly emitted, the influence

on nitrate concentrations is calculated. Although tradition-

ally not quantified in receptor-oriented source apportionment

methods, taking into account inter-source interactions is im-

portant for determining the primary and secondary impacts

of sources on air quality. This hybrid source- and receptor-

oriented approach takes this into account and can determine

impacts from elusive source interactions. However, this also

shows that the formation of secondary species is often depen-

dent upon multiple sources, and the impact of one source is

dependent upon other sources, leading to ambiguity in source

attribution. The approach here uses the sensitivities at cur-

rent conditions, though also conducts a mass balance on a

species-by-species basis minimizing any overall bias in the

source impact attributions.

Spatial hybrid inputs, methods, and results have inher-

ent uncertainties and challenges that are associated with im-

plementation. Input uncertainties include measurement error

and challenges are posed with temporal availability and spa-

tial representativeness of concentrations. Emissions inputs

for each source are available at different temporal and spa-

tial scales. For instance point source emissions are available

at hourly intervals in some cases, while dust emissions are

highly variable, both spatially and temporally. Area source

emissions are estimated at weekly or monthly intervals and

averaged source fingerprints for the primary components of

the PM2.5 emissions are used, which removes the consider-

ation of locally varying source composition. Physical pro-

cesses in CMAQ–DDM are uncertain as modeling atmo-

spheric behavior is a complex undertaking. Also, first-order

sensitivity approaches may not capture all nonlinearities in

source-receptor relationships. SH results are also subject to

potential systematic bias from the optimization and kriging

steps, though our evaluation suggests those biases are mini-

mal.

5 Conclusion

The spatial hybrid model is an effective approach for reduc-

ing the error in simulated source impact spatial fields through

statistical optimization, instead of re-running CMAQ–DDM

which is more computationally expensive. Despite the sev-

eral points of uncertainty, SH source apportionment can pro-

vide daily, spatially complete source impacts across a large

domain over a long time period. The SH technique does not

necessarily isolate specific atmospheric processes, as it is
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not a chemistry or physics model. It is a model based on

statistics with the assumption that by incorporating obser-

vations (truth) and modeled atmospheric processes (predic-

tion), two results can be statistically combined together to

yield a better approximation of source impacts. Efforts are

continual for reducing uncertainties, increasing the time span

of available results, and evaluating estimations with other

data sources, such as satellite imagery and independent field

measurements. In future studies, the model will be extended

temporally to generate daily, adjusted spatial fields for the

continental USA for multiple years and to develop improved

source profiles for emissions characterization. Results from

SH implementation are beneficial to policy makers, public

health analysts, and other air quality scientists that use spa-

tially and temporally complete source impact data in studies

where outcomes influence human welfare.

The Supplement related to this article is available online

at doi:10.5194/gmd-8-2153-2015-supplement.
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