Articles | Volume 8, issue 7
https://doi.org/10.5194/gmd-8-1943-2015
https://doi.org/10.5194/gmd-8-1943-2015
Development and technical paper
 | 
02 Jul 2015
Development and technical paper |  | 02 Jul 2015

Pan-spectral observing system simulation experiments of shortwave reflectance and long-wave radiance for climate model evaluation

D. R. Feldman, W. D. Collins, and J. L. Paige

Related authors

Angular sampling of a monochromatic, wide-field-of-view camera to augment next-generation Earth radiation budget satellite observations
Jake J. Gristey, K. Sebastian Schmidt, Hong Chen, Daniel R. Feldman, Bruce C. Kindel, Joshua Mauss, Mathew van den Heever, Maria Z. Hakuba, and Peter Pilewskie
Atmos. Meas. Tech., 16, 3609–3630, https://doi.org/10.5194/amt-16-3609-2023,https://doi.org/10.5194/amt-16-3609-2023, 2023
Short summary
Sensitivities of subgrid-scale physics schemes, meteorological forcing, and topographic radiation in atmosphere-through-bedrock integrated process models: a case study in the Upper Colorado River basin
Zexuan Xu, Erica R. Siirila-Woodburn, Alan M. Rhoades, and Daniel Feldman
Hydrol. Earth Syst. Sci., 27, 1771–1789, https://doi.org/10.5194/hess-27-1771-2023,https://doi.org/10.5194/hess-27-1771-2023, 2023
Short summary
Determining the daytime Earth radiative flux from National Institute of Standards and Technology Advanced Radiometer (NISTAR) measurements
Wenying Su, Patrick Minnis, Lusheng Liang, David P. Duda, Konstantin Khlopenkov, Mandana M. Thieman, Yinan Yu, Allan Smith, Steven Lorentz, Daniel Feldman, and Francisco P. J. Valero
Atmos. Meas. Tech., 13, 429–443, https://doi.org/10.5194/amt-13-429-2020,https://doi.org/10.5194/amt-13-429-2020, 2020
Short summary
Quantitative comparison of the variability in observed and simulated shortwave reflectance
Y. L. Roberts, P. Pilewskie, B. C. Kindel, D. R. Feldman, and W. D. Collins
Atmos. Chem. Phys., 13, 3133–3147, https://doi.org/10.5194/acp-13-3133-2013,https://doi.org/10.5194/acp-13-3133-2013, 2013

Related subject area

Climate and Earth system modeling
An improved representation of aerosol in the ECMWF IFS-COMPO 49R1 through the integration of EQSAM4Climv12 – a first attempt at simulating aerosol acidity
Samuel Rémy, Swen Metzger, Vincent Huijnen, Jason E. Williams, and Johannes Flemming
Geosci. Model Dev., 17, 7539–7567, https://doi.org/10.5194/gmd-17-7539-2024,https://doi.org/10.5194/gmd-17-7539-2024, 2024
Short summary
At-scale Model Output Statistics in mountain environments (AtsMOS v1.0)
Maximillian Van Wyk de Vries, Tom Matthews, L. Baker Perry, Nirakar Thapa, and Rob Wilby
Geosci. Model Dev., 17, 7629–7643, https://doi.org/10.5194/gmd-17-7629-2024,https://doi.org/10.5194/gmd-17-7629-2024, 2024
Short summary
Impact of ocean vertical-mixing parameterization on Arctic sea ice and upper-ocean properties using the NEMO-SI3 model
Sofia Allende, Anne Marie Treguier, Camille Lique, Clément de Boyer Montégut, François Massonnet, Thierry Fichefet, and Antoine Barthélemy
Geosci. Model Dev., 17, 7445–7466, https://doi.org/10.5194/gmd-17-7445-2024,https://doi.org/10.5194/gmd-17-7445-2024, 2024
Short summary
Bridging the gap: a new module for human water use in the Community Earth System Model version 2.2.1
Sabin I. Taranu, David M. Lawrence, Yoshihide Wada, Ting Tang, Erik Kluzek, Sam Rabin, Yi Yao, Steven J. De Hertog, Inne Vanderkelen, and Wim Thiery
Geosci. Model Dev., 17, 7365–7399, https://doi.org/10.5194/gmd-17-7365-2024,https://doi.org/10.5194/gmd-17-7365-2024, 2024
Short summary
A new lightning scheme in the Canadian Atmospheric Model (CanAM5.1): implementation, evaluation, and projections of lightning and fire in future climates
Cynthia Whaley, Montana Etten-Bohm, Courtney Schumacher, Ayodeji Akingunola, Vivek Arora, Jason Cole, Michael Lazare, David Plummer, Knut von Salzen, and Barbara Winter
Geosci. Model Dev., 17, 7141–7155, https://doi.org/10.5194/gmd-17-7141-2024,https://doi.org/10.5194/gmd-17-7141-2024, 2024
Short summary

Cited articles

Andrews, T., Gregory, J. M., Webb, M. J., and Taylor, K. E.: Forcing, feedbacks and climate sensitivity in CMIP5 coupled atmosphere-ocean climate models, Geophys. Res. Lett,, 39, L09712, https://doi.org/10.1029/2012GL051607, 2012.
Armour, K. C., Bitz, C. M., and Roe, G. H.: Time-Varying Climate Sensitivity from Regional Feedbacks, J. Climate, 26, 4518–4534, https://doi.org/10.1175/jcli-d-12-00544.1, 2013.
Arnold Jr., C. P. and Dey, C. H.: Observing-systems simulation experiments: Past, present, and future, B. Am. Meteorol. Soc., 67, 687–695, 1986.
Aumann, H. H., Chahine, M. T., Gautier, C., Goldberg, M. D., Kalnay, E., McMillin, L. M., Revercomb, H., Rosenkranz, P., Smith, W., Staelin, D., Strow, L., and Susskind, J.: AIRS/AMSU/HSB on the Aqua mission: Design, science objectives, data products, and processing systems, IEEE T. Geosci. Remote, 41, 253–264, 2003.
Berk, A., Anderson, G. P., Acharya, P. K., Bernstein, L. S., Muratov, L., Lee, J., Fox, M., Adler-Golden, S. M., Chetwynd, J. M., Hoke, M. L., Lockwood, R. B., Gardner, J. A., Cooley, T. W., Borel, C. C., and Lewis, P. E.: MODTRAN 5: a reformulated atmospheric band model with auxiliary species and practical multiple scattering options: update, in: Defense and Security, 662–667, International Society for Optics and Photonics, https://doi.org/10.1117/12.578758, 2005.
Download
Short summary
This work describes a new type of observational simulator for directly comparing measurements and models that takes advantage of all of the information in spectrally resolved top-of-atmosphere data. It describes how to model how the spectrum of the Earth, both in the shortwave and the long wave, changes in response to climate forcings, and provides a path towards inline observational simulation for the upcoming Coupled Model Intercomparison Project – Phase 6.