Articles | Volume 8, issue 5
https://doi.org/10.5194/gmd-8-1315-2015
https://doi.org/10.5194/gmd-8-1315-2015
Development and technical paper
 | 
05 May 2015
Development and technical paper |  | 05 May 2015

Structure of forecast error covariance in coupled atmosphere–chemistry data assimilation

S. K. Park, S. Lim, and M. Zupanski

Related authors

Estimating hourly ground-level aerosols using GEMS aerosol optical depth: A machine learning approach
Sungmin O, Ji Won Yoon, and Seon Ki Park
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-142,https://doi.org/10.5194/amt-2024-142, 2024
Revised manuscript accepted for AMT
Short summary
Evaluation of Dust Emission and Land Surface Schemes in Predicting a Mega Asian Dust Storm over South Korea Using WRF-Chem (v4.3.3)
Ji Won Yoon, Seungyeon Lee, Ebony Lee, and Seon Ki Park
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-114,https://doi.org/10.5194/gmd-2024-114, 2024
Revised manuscript accepted for GMD
Short summary
Optimized Stochastic Representation of Soil States Model Uncertainty of WRF (v4.2) in the Ensemble Data Assimilation System
Sujeong Lim, Seon Ki Park, and Claudio Cassardo
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-28,https://doi.org/10.5194/gmd-2023-28, 2023
Revised manuscript not accepted
Short summary
Optimization of snow-related parameters in the Noah land surface model (v3.4.1) using a micro-genetic algorithm (v1.7a)
Sujeong Lim, Hyeon-Ju Gim, Ebony Lee, Seungyeon Lee, Won Young Lee, Yong Hee Lee, Claudio Cassardo, and Seon Ki Park
Geosci. Model Dev., 15, 8541–8559, https://doi.org/10.5194/gmd-15-8541-2022,https://doi.org/10.5194/gmd-15-8541-2022, 2022
Short summary
Review article: Parameterizations of snow-related physical processes in land surface models
Won Young Lee, Hyeon-Ju Gim, and Seon Ki Park
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-319,https://doi.org/10.5194/tc-2021-319, 2021
Manuscript not accepted for further review
Short summary

Related subject area

Atmospheric sciences
Accurate space-based NOx emission estimates with the flux divergence approach require fine-scale model information on local oxidation chemistry and profile shapes
Felipe Cifuentes, Henk Eskes, Enrico Dammers, Charlotte Bryan, and Folkert Boersma
Geosci. Model Dev., 18, 621–649, https://doi.org/10.5194/gmd-18-621-2025,https://doi.org/10.5194/gmd-18-621-2025, 2025
Short summary
Exploring a high-level programming model for the NWP domain using ECMWF microphysics schemes
Stefano Ubbiali, Christian Kühnlein, Christoph Schär, Linda Schlemmer, Thomas C. Schulthess, Michael Staneker, and Heini Wernli
Geosci. Model Dev., 18, 529–546, https://doi.org/10.5194/gmd-18-529-2025,https://doi.org/10.5194/gmd-18-529-2025, 2025
Short summary
Quantifying uncertainties in satellite NO2 superobservations for data assimilation and model evaluation
Pieter Rijsdijk, Henk Eskes, Arlene Dingemans, K. Folkert Boersma, Takashi Sekiya, Kazuyuki Miyazaki, and Sander Houweling
Geosci. Model Dev., 18, 483–509, https://doi.org/10.5194/gmd-18-483-2025,https://doi.org/10.5194/gmd-18-483-2025, 2025
Short summary
ML-AMPSIT: Machine Learning-based Automated Multi-method Parameter Sensitivity and Importance analysis Tool
Dario Di Santo, Cenlin He, Fei Chen, and Lorenzo Giovannini
Geosci. Model Dev., 18, 433–459, https://doi.org/10.5194/gmd-18-433-2025,https://doi.org/10.5194/gmd-18-433-2025, 2025
Short summary
Coupling the urban canopy model TEB (SURFEXv9.0) with the radiation model SPARTACUS-Urbanv0.6.1 for more realistic urban radiative exchange calculation
Robert Schoetter, Robin James Hogan, Cyril Caliot, and Valéry Masson
Geosci. Model Dev., 18, 405–431, https://doi.org/10.5194/gmd-18-405-2025,https://doi.org/10.5194/gmd-18-405-2025, 2025
Short summary

Cited articles

Buehner, M.: Ensemble-derived stationary and flow-dependent background-error covariances, Q. J. R. Meteorol. Soc., 131, 1013–1043, 2005.
Buehner, M., Houtekamer, P. L., Charette, C., Mitchell, H. L., and He, B.: Intercomparison of variational data assimilation and the ensemble kalman filter for global deterministic NWP. Part I: Description and single-observation experiments, Mon. Weather Rev., 138, 1567–1586, 2010.
Constantinescu, E. M., Chai, T., Sandu, A., and Carmichael, G. R.: Autoregressive models of background errors for chemical data assimilation, J. Geophys. Res., 112, D12309, https://doi.org/10.1029/2006JD008103, 2007.
Eibern, H. and Schmidt, H.: A four-dimensional variational chemistry data assimilation scheme for Eulerian chemistry transport modeling, J. Geophys. Res., 104, 18583–18598, 1999.
Evensen, G.: The ensemble Kalman filter: theoretical formulation and practical implementation, Ocean Dynam., 53, 343–367, 2003.
Download
Short summary
The structure of an ensemble-based coupled atmosphere-chemistry forecast error covariance is examined using the WRF-Chem, a coupled atmosphere-chemistry model. It is found that the coupled error covariance has important cross-variable components that allow a physically meaningful adjustment of all control variables. Additional benefit of the coupled error covariance is that a cross-component impact is allowed; e.g., atmospheric observations can exert impact on chemistry analysis, and vice versa.
Share