Articles | Volume 8, issue 5
https://doi.org/10.5194/gmd-8-1315-2015
https://doi.org/10.5194/gmd-8-1315-2015
Development and technical paper
 | 
05 May 2015
Development and technical paper |  | 05 May 2015

Structure of forecast error covariance in coupled atmosphere–chemistry data assimilation

S. K. Park, S. Lim, and M. Zupanski

Related authors

Estimating hourly ground-level aerosols using GEMS aerosol optical depth: A machine learning approach
Sungmin O, Ji Won Yoon, and Seon Ki Park
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-142,https://doi.org/10.5194/amt-2024-142, 2024
Preprint under review for AMT
Short summary
Evaluation of Dust Emission and Land Surface Schemes in Predicting a Mega Asian Dust Storm over South Korea Using WRF-Chem (v4.3.3)
Ji Won Yoon, Seungyeon Lee, Ebony Lee, and Seon Ki Park
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-114,https://doi.org/10.5194/gmd-2024-114, 2024
Preprint under review for GMD
Short summary
Optimized Stochastic Representation of Soil States Model Uncertainty of WRF (v4.2) in the Ensemble Data Assimilation System
Sujeong Lim, Seon Ki Park, and Claudio Cassardo
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-28,https://doi.org/10.5194/gmd-2023-28, 2023
Revised manuscript not accepted
Short summary
Optimization of snow-related parameters in the Noah land surface model (v3.4.1) using a micro-genetic algorithm (v1.7a)
Sujeong Lim, Hyeon-Ju Gim, Ebony Lee, Seungyeon Lee, Won Young Lee, Yong Hee Lee, Claudio Cassardo, and Seon Ki Park
Geosci. Model Dev., 15, 8541–8559, https://doi.org/10.5194/gmd-15-8541-2022,https://doi.org/10.5194/gmd-15-8541-2022, 2022
Short summary
Review article: Parameterizations of snow-related physical processes in land surface models
Won Young Lee, Hyeon-Ju Gim, and Seon Ki Park
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-319,https://doi.org/10.5194/tc-2021-319, 2021
Manuscript not accepted for further review
Short summary

Related subject area

Atmospheric sciences
Development of the MPAS-CMAQ coupled system (V1.0) for multiscale global air quality modeling
David C. Wong, Jeff Willison, Jonathan E. Pleim, Golam Sarwar, James Beidler, Russ Bullock, Jerold A. Herwehe, Rob Gilliam, Daiwen Kang, Christian Hogrefe, George Pouliot, and Hosein Foroutan
Geosci. Model Dev., 17, 7855–7866, https://doi.org/10.5194/gmd-17-7855-2024,https://doi.org/10.5194/gmd-17-7855-2024, 2024
Short summary
Assessment of object-based indices to identify convective organization
Giulio Mandorli and Claudia J. Stubenrauch
Geosci. Model Dev., 17, 7795–7813, https://doi.org/10.5194/gmd-17-7795-2024,https://doi.org/10.5194/gmd-17-7795-2024, 2024
Short summary
The Global Forest Fire Emissions Prediction System version 1.0
Kerry Anderson, Jack Chen, Peter Englefield, Debora Griffin, Paul A. Makar, and Dan Thompson
Geosci. Model Dev., 17, 7713–7749, https://doi.org/10.5194/gmd-17-7713-2024,https://doi.org/10.5194/gmd-17-7713-2024, 2024
Short summary
NEIVAv1.0: Next-generation Emissions InVentory expansion of Akagi et al. (2011) version 1.0
Samiha Binte Shahid, Forrest G. Lacey, Christine Wiedinmyer, Robert J. Yokelson, and Kelley C. Barsanti
Geosci. Model Dev., 17, 7679–7711, https://doi.org/10.5194/gmd-17-7679-2024,https://doi.org/10.5194/gmd-17-7679-2024, 2024
Short summary
FLEXPART version 11: improved accuracy, efficiency, and flexibility
Lucie Bakels, Daria Tatsii, Anne Tipka, Rona Thompson, Marina Dütsch, Michael Blaschek, Petra Seibert, Katharina Baier, Silvia Bucci, Massimo Cassiani, Sabine Eckhardt, Christine Groot Zwaaftink, Stephan Henne, Pirmin Kaufmann, Vincent Lechner, Christian Maurer, Marie D. Mulder, Ignacio Pisso, Andreas Plach, Rakesh Subramanian, Martin Vojta, and Andreas Stohl
Geosci. Model Dev., 17, 7595–7627, https://doi.org/10.5194/gmd-17-7595-2024,https://doi.org/10.5194/gmd-17-7595-2024, 2024
Short summary

Cited articles

Buehner, M.: Ensemble-derived stationary and flow-dependent background-error covariances, Q. J. R. Meteorol. Soc., 131, 1013–1043, 2005.
Buehner, M., Houtekamer, P. L., Charette, C., Mitchell, H. L., and He, B.: Intercomparison of variational data assimilation and the ensemble kalman filter for global deterministic NWP. Part I: Description and single-observation experiments, Mon. Weather Rev., 138, 1567–1586, 2010.
Constantinescu, E. M., Chai, T., Sandu, A., and Carmichael, G. R.: Autoregressive models of background errors for chemical data assimilation, J. Geophys. Res., 112, D12309, https://doi.org/10.1029/2006JD008103, 2007.
Eibern, H. and Schmidt, H.: A four-dimensional variational chemistry data assimilation scheme for Eulerian chemistry transport modeling, J. Geophys. Res., 104, 18583–18598, 1999.
Evensen, G.: The ensemble Kalman filter: theoretical formulation and practical implementation, Ocean Dynam., 53, 343–367, 2003.
Download
Short summary
The structure of an ensemble-based coupled atmosphere-chemistry forecast error covariance is examined using the WRF-Chem, a coupled atmosphere-chemistry model. It is found that the coupled error covariance has important cross-variable components that allow a physically meaningful adjustment of all control variables. Additional benefit of the coupled error covariance is that a cross-component impact is allowed; e.g., atmospheric observations can exert impact on chemistry analysis, and vice versa.