Model description paper
24 Apr 2015
Model description paper
| 24 Apr 2015
Normal-mode function representation of global 3-D data sets: open-access software for the atmospheric research community
N. Žagar et al.
Related authors
Iana Strigunova, Richard Blender, Frank Lunkeit, and Nedjeljka Žagar
Weather Clim. Dynam., 3, 1399–1414, https://doi.org/10.5194/wcd-3-1399-2022, https://doi.org/10.5194/wcd-3-1399-2022, 2022
Short summary
Short summary
We show that the Eurasian heat waves (HWs) have signatures in the global circulation. We present changes in the probability density functions (PDFs) of energy anomalies in the zonal-mean state and in the Rossby waves at different zonal scales in relation to the changes in intramonthly variability. The skewness of the PDF of planetary-scale Rossby waves is shown to increase during HWs, while their intramonthly variability is reduced, a process referred to as blocking.
Matic Pikovnik, Žiga Zaplotnik, Lina Boljka, and Nedjeljka Žagar
Weather Clim. Dynam., 3, 625–644, https://doi.org/10.5194/wcd-3-625-2022, https://doi.org/10.5194/wcd-3-625-2022, 2022
Short summary
Short summary
Potential future changes in the Hadley cells (HCs), either to their strength or their meridional extent, will profoundly impact the global distribution of precipitation. Therefore, to objectively evaluate and inter-compare past and future changes in the overall HC strength between different studies, a unified metric is required. The study proposes two new metrics, which alleviate the spatial inhomogeneities of the HC strength trend.
Nedjeljka Žagar and Thomas Schäfer
Adv. Geosci., 53, 65–72, https://doi.org/10.5194/adgeo-53-65-2020, https://doi.org/10.5194/adgeo-53-65-2020, 2020
Short summary
Short summary
The paper reflects on the results of a survey carried out within the COST TN1301 Sci-Generation network among the holders of ERC starting grants originating from countries of Central and Eastern Europe. It is discussed how the the statistics of ERC starting grants is a mirror of host countries' and host institutions' ability to attract and keep the most talented young researchers.
Andreas Dörnbrack, Sonja Gisinger, Natalie Kaifler, Tanja Christina Portele, Martina Bramberger, Markus Rapp, Michael Gerding, Jens Söder, Nedjeljka Žagar, and Damjan Jelić
Atmos. Chem. Phys., 18, 12915–12931, https://doi.org/10.5194/acp-18-12915-2018, https://doi.org/10.5194/acp-18-12915-2018, 2018
Short summary
Short summary
A deep upper-air sounding stimulated the current investigation of internal gravity waves excited during a minor sudden stratospheric warming (SSW) in the Arctic winter 2015/16. The analysis of the radiosonde profile revealed large kinetic and potential energies in the upper stratosphere without any simultaneous enhancement of upper tropospheric and lower stratospheric values. In combination with high-resolution meteorological analyses we identified an elevated source of gravity wave excitation.
Marten Blaauw and Nedjeljka Žagar
Atmos. Chem. Phys., 18, 8313–8330, https://doi.org/10.5194/acp-18-8313-2018, https://doi.org/10.5194/acp-18-8313-2018, 2018
Short summary
Short summary
The equatorial Kelvin wave (KW) is the most studied wave feature of the tropical atmosphere, yet not well quantified. Our study simultaneously analyses wind and temperature fields of KWs from ECMWF analyses without any prior data filtering. We provide the KW energy spectrum and its seasonal variability for three KW frequency ranges. We developed a webpage to show the spatial structure of KWs propagating in time through the ECMWF data, http://modes.fmf.uni-lj.si, updated on a daily basis.
R. Žabkar, L. Honzak, G. Skok, R. Forkel, J. Rakovec, A. Ceglar, and N. Žagar
Geosci. Model Dev., 8, 2119–2137, https://doi.org/10.5194/gmd-8-2119-2015, https://doi.org/10.5194/gmd-8-2119-2015, 2015
V. Blažica, N. Gustafsson, and N. Žagar
Geosci. Model Dev., 8, 87–97, https://doi.org/10.5194/gmd-8-87-2015, https://doi.org/10.5194/gmd-8-87-2015, 2015
Short summary
Short summary
The paper deals with the comparison of the common periodization methods used to obtain spectral fields of limited-area models for numerical weather prediction. The focus is on the impact the methods have on the spectra of the fields. The results show that detrending and DCT have little impact on the spectra, as does the Boyd method for extension zone. For the ALADIN and HIRLAM methods, the impact depends on the width of the extension zone - the wider the zone, the larger impact on the spectra.
C. Cardinali, N. Žagar, G. Radnoti, and R. Buizza
Nonlin. Processes Geophys., 21, 971–985, https://doi.org/10.5194/npg-21-971-2014, https://doi.org/10.5194/npg-21-971-2014, 2014
Haris Rahadianto, Hirokazu Tatano, Masato Iguchi, Hiroshi L. Tanaka, Tetsuya Takemi, and Sudip Roy
Earth Syst. Sci. Data, 14, 5309–5332, https://doi.org/10.5194/essd-14-5309-2022, https://doi.org/10.5194/essd-14-5309-2022, 2022
Short summary
Short summary
We simulated the Taisho (1914) eruption of Sakurajima volcano under various weather conditions to show how a similar eruption would affect contemporary Japan in a worst-case scenario. We provide the dataset of projected airborne ash concentration and deposit over all of Japan to support risk assessment and planning for disaster management. Our work extends previous analyses of local risks to cover distal locations in Japan where a large population could be exposed to devastating impacts.
Iana Strigunova, Richard Blender, Frank Lunkeit, and Nedjeljka Žagar
Weather Clim. Dynam., 3, 1399–1414, https://doi.org/10.5194/wcd-3-1399-2022, https://doi.org/10.5194/wcd-3-1399-2022, 2022
Short summary
Short summary
We show that the Eurasian heat waves (HWs) have signatures in the global circulation. We present changes in the probability density functions (PDFs) of energy anomalies in the zonal-mean state and in the Rossby waves at different zonal scales in relation to the changes in intramonthly variability. The skewness of the PDF of planetary-scale Rossby waves is shown to increase during HWs, while their intramonthly variability is reduced, a process referred to as blocking.
Matic Pikovnik, Žiga Zaplotnik, Lina Boljka, and Nedjeljka Žagar
Weather Clim. Dynam., 3, 625–644, https://doi.org/10.5194/wcd-3-625-2022, https://doi.org/10.5194/wcd-3-625-2022, 2022
Short summary
Short summary
Potential future changes in the Hadley cells (HCs), either to their strength or their meridional extent, will profoundly impact the global distribution of precipitation. Therefore, to objectively evaluate and inter-compare past and future changes in the overall HC strength between different studies, a unified metric is required. The study proposes two new metrics, which alleviate the spatial inhomogeneities of the HC strength trend.
Nedjeljka Žagar and Thomas Schäfer
Adv. Geosci., 53, 65–72, https://doi.org/10.5194/adgeo-53-65-2020, https://doi.org/10.5194/adgeo-53-65-2020, 2020
Short summary
Short summary
The paper reflects on the results of a survey carried out within the COST TN1301 Sci-Generation network among the holders of ERC starting grants originating from countries of Central and Eastern Europe. It is discussed how the the statistics of ERC starting grants is a mirror of host countries' and host institutions' ability to attract and keep the most talented young researchers.
Andreas Dörnbrack, Sonja Gisinger, Natalie Kaifler, Tanja Christina Portele, Martina Bramberger, Markus Rapp, Michael Gerding, Jens Söder, Nedjeljka Žagar, and Damjan Jelić
Atmos. Chem. Phys., 18, 12915–12931, https://doi.org/10.5194/acp-18-12915-2018, https://doi.org/10.5194/acp-18-12915-2018, 2018
Short summary
Short summary
A deep upper-air sounding stimulated the current investigation of internal gravity waves excited during a minor sudden stratospheric warming (SSW) in the Arctic winter 2015/16. The analysis of the radiosonde profile revealed large kinetic and potential energies in the upper stratosphere without any simultaneous enhancement of upper tropospheric and lower stratospheric values. In combination with high-resolution meteorological analyses we identified an elevated source of gravity wave excitation.
Marten Blaauw and Nedjeljka Žagar
Atmos. Chem. Phys., 18, 8313–8330, https://doi.org/10.5194/acp-18-8313-2018, https://doi.org/10.5194/acp-18-8313-2018, 2018
Short summary
Short summary
The equatorial Kelvin wave (KW) is the most studied wave feature of the tropical atmosphere, yet not well quantified. Our study simultaneously analyses wind and temperature fields of KWs from ECMWF analyses without any prior data filtering. We provide the KW energy spectrum and its seasonal variability for three KW frequency ranges. We developed a webpage to show the spatial structure of KWs propagating in time through the ECMWF data, http://modes.fmf.uni-lj.si, updated on a daily basis.
Giorgia Verri, Nadia Pinardi, David Gochis, Joseph Tribbia, Antonio Navarra, Giovanni Coppini, and Tomislava Vukicevic
Nat. Hazards Earth Syst. Sci., 17, 1741–1761, https://doi.org/10.5194/nhess-17-1741-2017, https://doi.org/10.5194/nhess-17-1741-2017, 2017
Hisashi Yashiro, Koji Terasaki, Takemasa Miyoshi, and Hirofumi Tomita
Geosci. Model Dev., 9, 2293–2300, https://doi.org/10.5194/gmd-9-2293-2016, https://doi.org/10.5194/gmd-9-2293-2016, 2016
Short summary
Short summary
We propose the design and implementation of an ensemble data assimilation framework for weather prediction at a high resolution and with a large ensemble size. We consider the deployment of this framework on the data throughput of file I/O and multi-node communication. With regard to high-performance computing systems, where data throughput performance increases at a slower rate than computational performance, our new framework promises drastic reduction of total execution time.
A. H. Baker, D. M. Hammerling, M. N. Levy, H. Xu, J. M. Dennis, B. E. Eaton, J. Edwards, C. Hannay, S. A. Mickelson, R. B. Neale, D. Nychka, J. Shollenberger, J. Tribbia, M. Vertenstein, and D. Williamson
Geosci. Model Dev., 8, 2829–2840, https://doi.org/10.5194/gmd-8-2829-2015, https://doi.org/10.5194/gmd-8-2829-2015, 2015
Short summary
Short summary
Climate simulation codes are especially complex, and their ongoing state of development requires frequent software quality assurance to both
preserve code quality and instil model confidence. To formalize and simplify this previously subjective and expensive process, we
have developed a new tool for evaluating climate consistency.
The tool has proven its utility in detecting errors in software and hardware
environments and providing rapid feedback to model developers.
R. Žabkar, L. Honzak, G. Skok, R. Forkel, J. Rakovec, A. Ceglar, and N. Žagar
Geosci. Model Dev., 8, 2119–2137, https://doi.org/10.5194/gmd-8-2119-2015, https://doi.org/10.5194/gmd-8-2119-2015, 2015
V. Blažica, N. Gustafsson, and N. Žagar
Geosci. Model Dev., 8, 87–97, https://doi.org/10.5194/gmd-8-87-2015, https://doi.org/10.5194/gmd-8-87-2015, 2015
Short summary
Short summary
The paper deals with the comparison of the common periodization methods used to obtain spectral fields of limited-area models for numerical weather prediction. The focus is on the impact the methods have on the spectra of the fields. The results show that detrending and DCT have little impact on the spectra, as does the Boyd method for extension zone. For the ALADIN and HIRLAM methods, the impact depends on the width of the extension zone - the wider the zone, the larger impact on the spectra.
C. Cardinali, N. Žagar, G. Radnoti, and R. Buizza
Nonlin. Processes Geophys., 21, 971–985, https://doi.org/10.5194/npg-21-971-2014, https://doi.org/10.5194/npg-21-971-2014, 2014
Related subject area
Atmospheric sciences
Improved advection, resolution, performance, and community access in the new generation (version 13) of the high-performance GEOS-Chem global atmospheric chemistry model (GCHP)
Lightning assimilation in the WRF model (Version 4.1.1): technique updates and assessment of the applications from regional to hemispheric scales
Optimization of snow-related parameters in the Noah land surface model (v3.4.1) using a micro-genetic algorithm (v1.7a)
Development of an LSTM broadcasting deep-learning framework for regional air pollution forecast improvement
A local particle filter and its Gaussian mixture extension implemented with minor modifications to the LETKF
A comprehensive evaluation of the use of Lagrangian particle dispersion models for inverse modeling of greenhouse gas emissions
Importance of different parameterization changes for the updated dust cycle modeling in the Community Atmosphere Model (version 6.1)
Evaluation of the NAQFC driven by the NOAA Global Forecast System (version 16): comparison with the WRF-CMAQ during the summer 2019 FIREX-AQ campaign
Data assimilation for the Model for Prediction Across Scales – Atmosphere with the Joint Effort for Data assimilation Integration (JEDI-MPAS 1.0.0): EnVar implementation and evaluation
Development of a regional feature selection-based machine learning system (RFSML v1.0) for air pollution forecasting over China
A lumped species approach for the simulation of secondary organic aerosol production from intermediate-volatility organic compounds (IVOCs): application to road transport in PMCAMx-iv (v1.0)
TrackMatcher – a tool for finding intercepts in tracks of geographical positions
Recovery of sparse urban greenhouse gas emissions
Tropospheric transport and unresolved convection: numerical experiments with CLaMS 2.0/MESSy
MUNICH v2.0: a street-network model coupled with SSH-aerosol (v1.2) for multi-pollutant modelling
A preliminary evaluation of FY-4A visible radiance data assimilation by the WRF (ARW v4.1.1)/DART (Manhattan release v9.8.0)-RTTOV (v12.3) system for a tropical storm case
Repeatable high-resolution statistical downscaling through deep learning
Atmospherically Relevant Chemistry and Aerosol box model – ARCA box (version 1.2)
MultilayerPy (v1.0): a Python-based framework for building, running and optimising kinetic multi-layer models of aerosols and films
Introduction of the DISAMAR radiative transfer model: determining instrument specifications and analysing methods for atmospheric retrieval (version 4.1.5)
Assessment of the data assimilation framework for the Rapid Refresh Forecast System v0.1 and impacts on forecasts of a convective storm case study
Downscaling atmospheric chemistry simulations with physically consistent deep learning
A machine learning methodology for the generation of a parameterization of the hydroxyl radical
Large-eddy simulations with ClimateMachine v0.2.0: a new open-source code for atmospheric simulations on GPUs and CPUs
Hybrid ensemble-variational data assimilation in ABC-DA within a tropical framework
OpenIFS/AC: atmospheric chemistry and aerosol in OpenIFS 43r3
Simulations of aerosol pH in China using WRF-Chem (v4.0): sensitivities of aerosol pH and its temporal variations during haze episodes
A daily highest air temperature estimation method and spatial–temporal changes analysis of high temperature in China from 1979 to 2018
TransClim (v1.0): a chemistry–climate response model for assessing the effect of mitigation strategies for road traffic on ozone
A description of the first open-source community release of MISTRA-v9.0: a 0D/1D atmospheric boundary layer chemistry model
Integrated Methane Inversion (IMI 1.0): a user-friendly, cloud-based facility for inferring high-resolution methane emissions from TROPOMI satellite observations
Computationally efficient methods for large-scale atmospheric inverse modeling
Improving the joint estimation of CO2 and surface carbon fluxes using a constrained ensemble Kalman filter in COLA (v1.0)
Evaluation of high-resolution predictions of fine particulate matter and its composition in an urban area using PMCAMx-v2.0
RAP-Net: Region Attention Predictive Network for precipitation nowcasting
Effects of point source emission heights in WRF–STILT: a step towards exploiting nocturnal observations in models
uDALES 1.0: a large-eddy simulation model for urban environments
Development and evaluation of the Aerosol Forecast Member in the National Center for Environment Prediction (NCEP)'s Global Ensemble Forecast System (GEFS-Aerosols v1)
Assimilation of GPM-retrieved ocean surface meteorology data for two snowstorm events during ICE-POP 2018
A multi-pollutant and multi-sectorial approach to screening the consistency of emission inventories
Evaluation of a forest parameterization to improve boundary layer flow simulations over complex terrain. A case study using WRF-LES V4.0.1
Transporting CRM Variance in a Multiscale Modelling Framework
Stratospheric Nudging And Predictable Surface Impacts (SNAPSI): a protocol for investigating the role of stratospheric polar vortex disturbances in subseasonal to seasonal forecasts
The Mission Support System (MSS v7.0.0) and its use in planning for the SouthTRAC aircraft campaign
Variational inverse modeling within the Community Inversion Framework v1.1 to assimilate δ13C(CH4) and CH4: a case study with model LMDz-SACS
The Comprehensive Automobile Research System (CARS) – a Python-based automobile emissions inventory model
Validation of turbulent heat transfer models against eddy covariance flux measurements over a seasonally ice-covered lake
Regional evaluation of the performance of the global CAMS chemical modeling system over the United States (IFS cycle 47r1)
Order of magnitude wall time improvement of variational methane inversions by physical parallelization: a demonstration using TM5-4DVAR
Simulated microphysical properties of winter storms from bulk-type microphysics schemes and their evaluation in the Weather Research and Forecasting (v4.1.3) model during the ICE-POP 2018 field campaign
Randall V. Martin, Sebastian D. Eastham, Liam Bindle, Elizabeth W. Lundgren, Thomas L. Clune, Christoph A. Keller, William Downs, Dandan Zhang, Robert A. Lucchesi, Melissa P. Sulprizio, Robert M. Yantosca, Yanshun Li, Lucas Estrada, William M. Putman, Benjamin M. Auer, Atanas L. Trayanov, Steven Pawson, and Daniel J. Jacob
Geosci. Model Dev., 15, 8731–8748, https://doi.org/10.5194/gmd-15-8731-2022, https://doi.org/10.5194/gmd-15-8731-2022, 2022
Short summary
Short summary
Atmospheric chemistry models must be able to operate both online as components of Earth system models and offline as standalone models. The widely used GEOS-Chem model operates both online and offline, but the classic offline version is not suitable for massively parallel simulations. We describe a new generation of the offline high-performance GEOS-Chem (GCHP) that enables high-resolution simulations on thousands of cores, including on the cloud, with improved access, performance, and accuracy.
Daiwen Kang, Nicholas K. Heath, Robert C. Gilliam, Tanya L. Spero, and Jonathan E. Pleim
Geosci. Model Dev., 15, 8561–8579, https://doi.org/10.5194/gmd-15-8561-2022, https://doi.org/10.5194/gmd-15-8561-2022, 2022
Short summary
Short summary
A lightning assimilation (LTA) technique implemented in the WRF model's Kain–Fritsch (KF) convective scheme is updated and applied to simulations from regional to hemispheric scales using observed lightning flashes from ground-based lightning detection networks. Different user-toggled options associated with the KF scheme on simulations with and without LTA are assessed. The model's performance is improved significantly by LTA, but it is sensitive to various factors.
Sujeong Lim, Hyeon-Ju Gim, Ebony Lee, Seungyeon Lee, Won Young Lee, Yong Hee Lee, Claudio Cassardo, and Seon Ki Park
Geosci. Model Dev., 15, 8541–8559, https://doi.org/10.5194/gmd-15-8541-2022, https://doi.org/10.5194/gmd-15-8541-2022, 2022
Short summary
Short summary
The land surface model (LSM) contains various uncertain parameters, which are obtained by the empirical relations reflecting the specific local region and can be a source of uncertainty. To seek the optimal parameter values in the snow-related processes of the Noah LSM over South Korea, we have implemented an optimization algorithm, a micro-genetic algorithm using the observations. As a result, the optimized snow parameters improve snowfall prediction.
Haochen Sun, Jimmy C. H. Fung, Yiang Chen, Zhenning Li, Dehao Yuan, Wanying Chen, and Xingcheng Lu
Geosci. Model Dev., 15, 8439–8452, https://doi.org/10.5194/gmd-15-8439-2022, https://doi.org/10.5194/gmd-15-8439-2022, 2022
Short summary
Short summary
This study developed a novel deep-learning layer, the broadcasting layer, to build an end-to-end LSTM-based deep-learning model for regional air pollution forecast. By combining the ground observation, WRF-CMAQ simulation, and the broadcasting LSTM deep-learning model, forecast accuracy has been significantly improved when compared to other methods. The broadcasting layer and its variants can also be applied in other research areas to supersede the traditional numerical interpolation methods.
Shunji Kotsuki, Takemasa Miyoshi, Keiichi Kondo, and Roland Potthast
Geosci. Model Dev., 15, 8325–8348, https://doi.org/10.5194/gmd-15-8325-2022, https://doi.org/10.5194/gmd-15-8325-2022, 2022
Short summary
Short summary
Data assimilation plays an important part in numerical weather prediction (NWP) in terms of combining forecasted states and observations. While data assimilation methods in NWP usually assume the Gaussian error distribution, some variables in the atmosphere, such as precipitation, are known to have non-Gaussian error statistics. This study extended a widely used ensemble data assimilation algorithm to enable the assimilation of more non-Gaussian observations.
Martin Vojta, Andreas Plach, Rona L. Thompson, and Andreas Stohl
Geosci. Model Dev., 15, 8295–8323, https://doi.org/10.5194/gmd-15-8295-2022, https://doi.org/10.5194/gmd-15-8295-2022, 2022
Short summary
Short summary
In light of recent global warming, we aim to improve methods for modeling greenhouse gas emissions in order to support the successful implementation of the Paris Agreement. In this study, we investigate certain aspects of a Bayesian inversion method that uses computer simulations and atmospheric observations to improve estimates of greenhouse gas emissions. We explore method limitations, discuss problems, and suggest improvements.
Longlei Li, Natalie M. Mahowald, Jasper F. Kok, Xiaohong Liu, Mingxuan Wu, Danny M. Leung, Douglas S. Hamilton, Louisa K. Emmons, Yue Huang, Neil Sexton, Jun Meng, and Jessica Wan
Geosci. Model Dev., 15, 8181–8219, https://doi.org/10.5194/gmd-15-8181-2022, https://doi.org/10.5194/gmd-15-8181-2022, 2022
Short summary
Short summary
This study advances mineral dust parameterizations in the Community Atmospheric Model (CAM; version 6.1). Efforts include 1) incorporating a more physically based dust emission scheme; 2) updating the dry deposition scheme; and 3) revising the gravitational settling velocity to account for dust asphericity. Substantial improvements achieved with these updates can help accurately quantify dust–climate interactions using CAM, such as the dust-radiation and dust–cloud interactions.
Youhua Tang, Patrick C. Campbell, Pius Lee, Rick Saylor, Fanglin Yang, Barry Baker, Daniel Tong, Ariel Stein, Jianping Huang, Ho-Chun Huang, Li Pan, Jeff McQueen, Ivanka Stajner, Jose Tirado-Delgado, Youngsun Jung, Melissa Yang, Ilann Bourgeois, Jeff Peischl, Tom Ryerson, Donald Blake, Joshua Schwarz, Jose-Luis Jimenez, James Crawford, Glenn Diskin, Richard Moore, Johnathan Hair, Greg Huey, Andrew Rollins, Jack Dibb, and Xiaoyang Zhang
Geosci. Model Dev., 15, 7977–7999, https://doi.org/10.5194/gmd-15-7977-2022, https://doi.org/10.5194/gmd-15-7977-2022, 2022
Short summary
Short summary
This paper compares two meteorological datasets for driving a regional air quality model: a regional meteorological model using WRF (WRF-CMAQ) and direct interpolation from an operational global model (GFS-CMAQ). In the comparison with surface measurements and aircraft data in summer 2019, these two methods show mixed performance depending on the corresponding meteorological settings. Direct interpolation is found to be a viable method to drive air quality models.
Zhiquan Liu, Chris Snyder, Jonathan J. Guerrette, Byoung-Joo Jung, Junmei Ban, Steven Vahl, Yali Wu, Yannick Trémolet, Thomas Auligné, Benjamin Ménétrier, Anna Shlyaeva, Stephen Herbener, Emily Liu, Daniel Holdaway, and Benjamin T. Johnson
Geosci. Model Dev., 15, 7859–7878, https://doi.org/10.5194/gmd-15-7859-2022, https://doi.org/10.5194/gmd-15-7859-2022, 2022
Short summary
Short summary
JEDI-MPAS 1.0.0, a new data assimilation (DA) system for the MPAS model, was publicly released for community use. This article describes JEDI-MPAS's implementation of the ensemble–variational DA technique and demonstrates its robustness and credible performance by incrementally adding three types of microwave radiances (clear-sky AMSU-A, all-sky AMSU-A, clear-sky MHS) to a non-radiance DA experiment. We intend to periodically release new and improved versions of JEDI-MPAS in upcoming years.
Li Fang, Jianbing Jin, Arjo Segers, Hai Xiang Lin, Mijie Pang, Cong Xiao, Tuo Deng, and Hong Liao
Geosci. Model Dev., 15, 7791–7807, https://doi.org/10.5194/gmd-15-7791-2022, https://doi.org/10.5194/gmd-15-7791-2022, 2022
Short summary
Short summary
This study proposes a regional feature selection-based machine learning system to predict short-term air quality in China. The system has a tool that can figure out the importance of input data for better prediction. It provides large-scale air quality prediction that exhibits improved interpretability, fewer training costs, and higher accuracy compared with a standard machine learning system. It can act as an early warning for citizens and reduce exposure to PM2.5 and other air pollutants.
Stella E. I. Manavi and Spyros N. Pandis
Geosci. Model Dev., 15, 7731–7749, https://doi.org/10.5194/gmd-15-7731-2022, https://doi.org/10.5194/gmd-15-7731-2022, 2022
Short summary
Short summary
The paper describes the first step towards the development of a simulation framework for the chemistry and secondary organic aerosol production of intermediate-volatility organic compounds (IVOCs). These compounds can be a significant source of organic particulate matter. Our approach treats IVOCs as lumped compounds that retain their chemical characteristics. Estimated IVOC emissions from road transport were a factor of 8 higher than emissions used in previous applications.
Peter Bräuer and Matthias Tesche
Geosci. Model Dev., 15, 7557–7572, https://doi.org/10.5194/gmd-15-7557-2022, https://doi.org/10.5194/gmd-15-7557-2022, 2022
Short summary
Short summary
This paper presents a tool for (i) finding temporally and spatially resolved intersections between two- or three-dimensional geographical tracks (trajectories) and (ii) extracting of data in the vicinity of intersections to achieve the optimal combination of various data sets.
Benjamin Zanger, Jia Chen, Man Sun, and Florian Dietrich
Geosci. Model Dev., 15, 7533–7556, https://doi.org/10.5194/gmd-15-7533-2022, https://doi.org/10.5194/gmd-15-7533-2022, 2022
Short summary
Short summary
Gaussian priors (GPs) used in least squares inversion do not reflect the true distributions of greenhouse gas emissions well. A method that does not rely on GPs is sparse reconstruction (SR). We show that necessary conditions for SR are satisfied for cities and that the application of a wavelet transform can further enhance sparsity. We apply the theory of compressed sensing to SR. Our results show that SR needs fewer measurements and is superior for assessing unknown emitters compared to GPs.
Paul Konopka, Mengchu Tao, Marc von Hobe, Lars Hoffmann, Corinna Kloss, Fabrizio Ravegnani, C. Michael Volk, Valentin Lauther, Andreas Zahn, Peter Hoor, and Felix Ploeger
Geosci. Model Dev., 15, 7471–7487, https://doi.org/10.5194/gmd-15-7471-2022, https://doi.org/10.5194/gmd-15-7471-2022, 2022
Short summary
Short summary
Pure trajectory-based transport models driven by meteorology derived from reanalysis products (ERA5) take into account only the resolved, advective part of transport. That means neither mixing processes nor unresolved subgrid-scale advective processes like convection are included. The Chemical Lagrangian Model of the Stratosphere (CLaMS) includes these processes. We show that isentropic mixing dominates unresolved transport. The second most important transport process is unresolved convection.
Youngseob Kim, Lya Lugon, Alice Maison, Thibaud Sarica, Yelva Roustan, Myrto Valari, Yang Zhang, Michel André, and Karine Sartelet
Geosci. Model Dev., 15, 7371–7396, https://doi.org/10.5194/gmd-15-7371-2022, https://doi.org/10.5194/gmd-15-7371-2022, 2022
Short summary
Short summary
This paper presents the latest version of the street-network model MUNICH, v2.0. The description of MUNICH v1.0, which models gas-phase pollutants in a street network, was published in GMD in 2018. Since then, major modifications have been made to MUNICH. The comprehensive aerosol model SSH-aerosol is now coupled to MUNICH to simulate primary and secondary aerosol concentrations. New parameterisations have also been introduced. Test cases are defined to illustrate the new model functionalities.
Yongbo Zhou, Yubao Liu, Zhaoyang Huo, and Yang Li
Geosci. Model Dev., 15, 7397–7420, https://doi.org/10.5194/gmd-15-7397-2022, https://doi.org/10.5194/gmd-15-7397-2022, 2022
Short summary
Short summary
The study evaluates the performance of the Data Assimilation Research Testbed (DART), equipped with the recently added forward operator Radiative Transfer for TOVS (RTTOV), in assimilating FY-4A visible images into the Weather Research and Forecasting (WRF) model. The ability of the WRF-DART/RTTOV system to improve the forecasting skills for a tropical storm over East Asia and the Western Pacific is demonstrated in an Observing System Simulation Experiment framework.
Dánnell Quesada-Chacón, Klemens Barfus, and Christian Bernhofer
Geosci. Model Dev., 15, 7353–7370, https://doi.org/10.5194/gmd-15-7353-2022, https://doi.org/10.5194/gmd-15-7353-2022, 2022
Short summary
Short summary
We improved the performance of past perfect prognosis statistical downscaling methods while achieving full model repeatability with GPU-calculated deep learning models using the TensorFlow, climate4R, and VALUE frameworks. We employed the ERA5 reanalysis as predictors and ReKIS (eastern Ore Mountains, Germany, 1 km resolution) as precipitation predictand, while incorporating modern deep learning architectures. The achieved repeatability is key to accomplish further milestones with deep learning.
Petri Clusius, Carlton Xavier, Lukas Pichelstorfer, Putian Zhou, Tinja Olenius, Pontus Roldin, and Michael Boy
Geosci. Model Dev., 15, 7257–7286, https://doi.org/10.5194/gmd-15-7257-2022, https://doi.org/10.5194/gmd-15-7257-2022, 2022
Short summary
Short summary
Atmospheric chemistry and aerosol processes form a dynamic and sensitively balanced system, and solving problems regarding air quality or climate requires detailed modelling and coupling of the processes. The models involved are often very complex to use. We have addressed this problem with the new ARCA box model. It puts much of the current knowledge of the nano- and microscale aerosol dynamics and chemistry into usable software and has the potential to become a valuable tool in the community.
Adam Milsom, Amy Lees, Adam M. Squires, and Christian Pfrang
Geosci. Model Dev., 15, 7139–7151, https://doi.org/10.5194/gmd-15-7139-2022, https://doi.org/10.5194/gmd-15-7139-2022, 2022
Short summary
Short summary
MultilayerPy is a Python-based framework facilitating the creation, running and optimisation of state-of-the-art kinetic multi-layer models of aerosol and film processes. Models can be fit to data with local and global optimisation algorithms along with a statistical sampling algorithm, which quantifies the uncertainty in optimised model parameters. This “modelling study in a box” enables more reproducible and reliable results, with model code and outputs produced in a human-readable way.
Johan F. de Haan, Ping Wang, Maarten Sneep, J. Pepijn Veefkind, and Piet Stammes
Geosci. Model Dev., 15, 7031–7050, https://doi.org/10.5194/gmd-15-7031-2022, https://doi.org/10.5194/gmd-15-7031-2022, 2022
Short summary
Short summary
We present an overview of the DISAMAR radiative transfer code, highlighting the novel semi-analytical derivatives for the doubling–adding formulae and the new DISMAS technique for weak absorbers. DISAMAR includes forward simulations and retrievals for satellite spectral measurements from 270 to 2400 nm to determine instrument specifications for passive remote sensing. It has been used in various Sentinel-4/5P/5 projects and in the TROPOMI aerosol layer height and ozone profile products.
Ivette H. Banos, Will D. Mayfield, Guoqing Ge, Luiz F. Sapucci, Jacob R. Carley, and Louisa Nance
Geosci. Model Dev., 15, 6891–6917, https://doi.org/10.5194/gmd-15-6891-2022, https://doi.org/10.5194/gmd-15-6891-2022, 2022
Short summary
Short summary
A prototype data assimilation system for NOAA’s next-generation rapidly updated, convection-allowing forecast system, or Rapid Refresh Forecast System (RRFS) v0.1, is tested and evaluated. The impact of using data assimilation with a convective storm case study is examined. Although the convection in RRFS tends to be overestimated in intensity and underestimated in extent, the use of data assimilation proves to be crucial to improve short-term forecasts of storms and precipitation.
Andrew Geiss, Sam J. Silva, and Joseph C. Hardin
Geosci. Model Dev., 15, 6677–6694, https://doi.org/10.5194/gmd-15-6677-2022, https://doi.org/10.5194/gmd-15-6677-2022, 2022
Short summary
Short summary
This work demonstrates the use of modern machine learning techniques to enhance the resolution of atmospheric chemistry simulations. We evaluate the schemes for an 8 x 10 increase in resolution and find that they perform substantially better than conventional methods. Methods are introduced to target machine learning methods towards this type of problem, most notably by ensuring they do not break known physical constraints.
Daniel C. Anderson, Melanie B. Follette-Cook, Sarah A. Strode, Julie M. Nicely, Junhua Liu, Peter D. Ivatt, and Bryan N. Duncan
Geosci. Model Dev., 15, 6341–6358, https://doi.org/10.5194/gmd-15-6341-2022, https://doi.org/10.5194/gmd-15-6341-2022, 2022
Short summary
Short summary
The hydroxyl radical (OH) is the most important chemical in the atmosphere for removing certain pollutants, including methane, the second-most-important greenhouse gas. We present a methodology to create an easily modifiable parameterization that can calculate OH concentrations in a computationally efficient way. The parameterization, which predicts OH within 5 %, can be integrated into larger climate models to allow for calculation of the interactions between OH, methane, and other chemicals.
Akshay Sridhar, Yassine Tissaoui, Simone Marras, Zhaoyi Shen, Charles Kawczynski, Simon Byrne, Kiran Pamnany, Maciej Waruszewski, Thomas H. Gibson, Jeremy E. Kozdon, Valentin Churavy, Lucas C. Wilcox, Francis X. Giraldo, and Tapio Schneider
Geosci. Model Dev., 15, 6259–6284, https://doi.org/10.5194/gmd-15-6259-2022, https://doi.org/10.5194/gmd-15-6259-2022, 2022
Short summary
Short summary
ClimateMachine is a new open-source Julia-language atmospheric modeling code. We describe its limited-area configuration and the model equations, and we demonstrate applicability through benchmark problems, including atmospheric flow in the shallow cumulus regime. We show that the discontinuous Galerkin numerics and model equations allow global conservation of key variables (up to sources and sinks). We assess CPU strong scaling and GPU weak scaling to show its suitability for large simulations.
Joshua Chun Kwang Lee, Javier Amezcua, and Ross Noel Bannister
Geosci. Model Dev., 15, 6197–6219, https://doi.org/10.5194/gmd-15-6197-2022, https://doi.org/10.5194/gmd-15-6197-2022, 2022
Short summary
Short summary
In this article, we implement a novel data assimilation method for the ABC–DA system which combines traditional data assimilation approaches in a hybrid approach. We document the technical development and test the hybrid approach in idealised experiments within a tropical framework of the ABC–DA system. Our findings indicate that the hybrid approach outperforms individual traditional approaches. Its potential benefits have been highlighted and should be explored further within this framework.
Vincent Huijnen, Philippe Le Sager, Marcus O. Köhler, Glenn Carver, Samuel Rémy, Johannes Flemming, Simon Chabrillat, Quentin Errera, and Twan van Noije
Geosci. Model Dev., 15, 6221–6241, https://doi.org/10.5194/gmd-15-6221-2022, https://doi.org/10.5194/gmd-15-6221-2022, 2022
Short summary
Short summary
We report on the first implementation of atmospheric chemistry and aerosol as part of the OpenIFS model, based on the CAMS global model. We give an overview of the model and evaluate two reference model configurations, with and without the stratospheric chemistry extension, against a variety of observational datasets. This OpenIFS version with atmospheric composition components is open to the scientific user community under a standard OpenIFS license.
Xueyin Ruan, Chun Zhao, Rahul A. Zaveri, Pengzhen He, Xinming Wang, Jingyuan Shao, and Lei Geng
Geosci. Model Dev., 15, 6143–6164, https://doi.org/10.5194/gmd-15-6143-2022, https://doi.org/10.5194/gmd-15-6143-2022, 2022
Short summary
Short summary
Accurate prediction of aerosol pH in chemical transport models is essential to aerosol modeling. This study examines the performance of the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) on aerosol pH predictions and the sensitivities to emissions of nonvolatile cations and NH3, aerosol-phase state assumption, and heterogeneous sulfate production. Temporal evolution of aerosol pH during haze cycles in Beijing and the driving factors are also presented and discussed.
Ping Wang, Kebiao Mao, Fei Meng, Zhihao Qin, Shu Fang, and Sayed M. Bateni
Geosci. Model Dev., 15, 6059–6083, https://doi.org/10.5194/gmd-15-6059-2022, https://doi.org/10.5194/gmd-15-6059-2022, 2022
Short summary
Short summary
In order to obtain the key parameters of high-temperature spatial–temporal variation analysis, this study proposed a daily highest air temperature (Tmax) estimation frame to build a Tmax dataset in China from 1979 to 2018. We found that the annual and seasonal mean Tmax in most areas of China showed an increasing trend. The abnormal temperature changes mainly occurred in El Nin~o years or La Nin~a years. IOBW had a stronger influence on China's warming events than other factors.
Vanessa Simone Rieger and Volker Grewe
Geosci. Model Dev., 15, 5883–5903, https://doi.org/10.5194/gmd-15-5883-2022, https://doi.org/10.5194/gmd-15-5883-2022, 2022
Short summary
Short summary
Road traffic emissions of nitrogen oxides, volatile organic compounds and carbon monoxide produce ozone in the troposphere and thus influence Earth's climate. To assess the ozone response to a broad range of mitigation strategies for road traffic, we developed a new chemistry–climate response model called TransClim. It is based on lookup tables containing climate–response relations and thus is able to quickly determine the climate response of a mitigation option.
Josué Bock, Jan Kaiser, Max Thomas, Andreas Bott, and Roland von Glasow
Geosci. Model Dev., 15, 5807–5828, https://doi.org/10.5194/gmd-15-5807-2022, https://doi.org/10.5194/gmd-15-5807-2022, 2022
Short summary
Short summary
MISTRA-v9.0 is an atmospheric boundary layer chemistry model. The model includes a detailed particle description with regards to the microphysics, gas–particle interactions, and liquid phase chemistry within particles. Version 9.0 is the first release of MISTRA as an open-source community model. This paper presents a thorough description of the model characteristics and components. We show some examples of simulations reproducing previous studies with MISTRA with good consistency.
Daniel J. Varon, Daniel J. Jacob, Melissa Sulprizio, Lucas A. Estrada, William B. Downs, Lu Shen, Sarah E. Hancock, Hannah Nesser, Zhen Qu, Elise Penn, Zichong Chen, Xiao Lu, Alba Lorente, Ashutosh Tewari, and Cynthia A. Randles
Geosci. Model Dev., 15, 5787–5805, https://doi.org/10.5194/gmd-15-5787-2022, https://doi.org/10.5194/gmd-15-5787-2022, 2022
Short summary
Short summary
Reducing atmospheric methane emissions is critical to slow near-term climate change. Globally surveying satellite instruments like the TROPOspheric Monitoring Instrument (TROPOMI) have unique capabilities for monitoring atmospheric methane around the world. Here we present a user-friendly cloud-computing tool that enables researchers and stakeholders to quantify methane emissions across user-selected regions of interest using TROPOMI satellite observations.
Taewon Cho, Julianne Chung, Scot M. Miller, and Arvind K. Saibaba
Geosci. Model Dev., 15, 5547–5565, https://doi.org/10.5194/gmd-15-5547-2022, https://doi.org/10.5194/gmd-15-5547-2022, 2022
Short summary
Short summary
Atmospheric inverse modeling describes the process of estimating greenhouse gas fluxes or air pollution emissions at the Earth's surface using observations of these gases collected in the atmosphere. The launch of new satellites, the expansion of surface observation networks, and a desire for more detailed maps of surface fluxes have yielded numerous computational and statistical challenges. This article describes computationally efficient methods for large-scale atmospheric inverse modeling.
Zhiqiang Liu, Ning Zeng, Yun Liu, Eugenia Kalnay, Ghassem Asrar, Bo Wu, Qixiang Cai, Di Liu, and Pengfei Han
Geosci. Model Dev., 15, 5511–5528, https://doi.org/10.5194/gmd-15-5511-2022, https://doi.org/10.5194/gmd-15-5511-2022, 2022
Short summary
Short summary
We described the application of a constrained ensemble Kalman filter (CEnKF) in a joint CO2 and surface carbon fluxes estimation study. By assimilating the pseudo-surface and OCO-2 observations, the annual global flux estimation is significantly biased without mass conservation. With the additional CEnKF process, the CO2 mass is strictly constrained, and the estimation of annual fluxes is significantly improved.
Brian T. Dinkelacker, Pablo Garcia Rivera, Ioannis Kioutsioukis, Peter J. Adams, and Spyros N. Pandis
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-145, https://doi.org/10.5194/gmd-2022-145, 2022
Revised manuscript accepted for GMD
Short summary
Short summary
The performance of a chemical transport model in reproducing PM2.5 concentrations and composition was evaluated at the finest scale using measurements from regulatory sites as well as a network of low-cost monitors. Total PM2.5 mass is reproduced well by the model during the winter when compared to regulatory measurements, but in the summer PM2.5 is underpredicted mainly due to difficulties in reproducing the regional secondary organic aerosol levels.
Zheng Zhang, Chuyao Luo, Shanshan Feng, Rui Ye, Yunming Ye, and Xutao Li
Geosci. Model Dev., 15, 5407–5419, https://doi.org/10.5194/gmd-15-5407-2022, https://doi.org/10.5194/gmd-15-5407-2022, 2022
Short summary
Short summary
In this paper, we develop a model to predict radar echo sequences and apply it in the precipitation nowcasting field. Different from existing models, we propose two new attention modules. By introducing them, the performance of RAP-Net outperforms other models, especially in those regions with moderate and heavy rainfall. Considering that these regions cause more threats to human activities, the research in our work is significant for preventing natural disasters caused by heavy rainfall.
Fabian Maier, Christoph Gerbig, Ingeborg Levin, Ingrid Super, Julia Marshall, and Samuel Hammer
Geosci. Model Dev., 15, 5391–5406, https://doi.org/10.5194/gmd-15-5391-2022, https://doi.org/10.5194/gmd-15-5391-2022, 2022
Short summary
Short summary
We show that the default representation of point source emissions in WRF–STILT leads to large overestimations when modelling fossil fuel CO2 concentrations for a 30 m high observation site during stable atmospheric conditions. We therefore introduce a novel point source modelling approach in WRF-STILT that takes into account their effective emission heights and results in a much better agreement with observations.
Ivo Suter, Tom Grylls, Birgit S. Sützl, Sam O. Owens, Chris E. Wilson, and Maarten van Reeuwijk
Geosci. Model Dev., 15, 5309–5335, https://doi.org/10.5194/gmd-15-5309-2022, https://doi.org/10.5194/gmd-15-5309-2022, 2022
Short summary
Short summary
Cities are increasingly moving to the fore of climate and air quality research due to their central role in the population’s health and well-being, while suitable models remain scarce. This article describes the development of a new urban LES model, which allows examining the effects of various processes, infrastructure and vegetation on the local climate and air quality. Possible applications are demonstrated and a comparison to an experiment is shown.
Li Zhang, Raffaele Montuoro, Stuart A. McKeen, Barry Baker, Partha S. Bhattacharjee, Georg A. Grell, Judy Henderson, Li Pan, Gregory J. Frost, Jeff McQueen, Rick Saylor, Haiqin Li, Ravan Ahmadov, Jun Wang, Ivanka Stajner, Shobha Kondragunta, Xiaoyang Zhang, and Fangjun Li
Geosci. Model Dev., 15, 5337–5369, https://doi.org/10.5194/gmd-15-5337-2022, https://doi.org/10.5194/gmd-15-5337-2022, 2022
Short summary
Short summary
The NOAA’s air quality predictions contribute to protecting lives and health in the US, which requires sustainable development and improvement of forecast systems. GEFS-Aerosols v1 has been developed in a collaboration between the NOAA research laboratories for operational forecast since September 2020 in the NCEP. The predictions demonstrate substantial improvements for both composition and variability of aerosol distributions over those from the former operational system.
Xuanli Li, Jason B. Roberts, Jayanthi Srikishen, Jonathan L. Case, Walter A. Petersen, Gyuwon Lee, and Christopher R. Hain
Geosci. Model Dev., 15, 5287–5308, https://doi.org/10.5194/gmd-15-5287-2022, https://doi.org/10.5194/gmd-15-5287-2022, 2022
Short summary
Short summary
This research assimilated the Global Precipitation Measurement (GPM) satellite-retrieved ocean surface meteorology data into the Weather Research and Forecasting (WRF) model with the Gridpoint Statistical Interpolation (GSI) system. This was for two snowstorms during the International Collaborative Experiments for PyeongChang 2018 Olympic and Paralympic Winter Games' (ICE-POP 2018) field experiments. The results indicated a positive impact of the data for short-term forecasts for heavy snowfall.
Philippe Thunis, Alain Clappier, Enrico Pisoni, Bertrand Bessagnet, Jeroen Kuenen, Marc Guevara, and Susana Lopez-Aparicio
Geosci. Model Dev., 15, 5271–5286, https://doi.org/10.5194/gmd-15-5271-2022, https://doi.org/10.5194/gmd-15-5271-2022, 2022
Short summary
Short summary
In this work, we propose a screening method to improve the quality of emission inventories, which are responsible for large uncertainties in air-quality modeling. The first step of screening consists of keeping only emission contributions that are relevant enough. In a second step, the method identifies large differences that provide evidence of methodological divergence or errors. We used the approach to compare two versions of the CAMS-REG European-scale inventory over 150 European cities.
Julian Quimbayo-Duarte, Johannes Wagner, Norman Wildmann, Thomas Gerz, and Juerg Schmidli
Geosci. Model Dev., 15, 5195–5209, https://doi.org/10.5194/gmd-15-5195-2022, https://doi.org/10.5194/gmd-15-5195-2022, 2022
Short summary
Short summary
The ultimate objective of this model evaluation is to improve boundary layer flow representation over complex terrain. The numerical model is tested against observations retrieved during the Perdigão 2017 field campaign (moderate complex terrain). We observed that the inclusion of a forest parameterization in the numerical model significantly improves the representation of the wind field in the atmospheric boundary layer.
Walter Hannah and Kyle Pressel
EGUsphere, https://doi.org/10.5194/egusphere-2022-397, https://doi.org/10.5194/egusphere-2022-397, 2022
Short summary
Short summary
A multiscale modelling framework couples two models of the atmosphere that each cover different scale ranges. Traditionally, fluctuations in the small-scale model are not transported by the flow on the large-scale model grid, but this is hypothesized to be responsible for a persistent, unphysical checkerboard pattern. A method is presented to facilitate the transport of these small-scale fluctuations, analogous to how small-scale clouds and turbulence are transported in the real atmosphere.
Peter Hitchcock, Amy Butler, Andrew Charlton-Perez, Chaim I. Garfinkel, Tim Stockdale, James Anstey, Dann Mitchell, Daniela I. V. Domeisen, Tongwen Wu, Yixiong Lu, Daniele Mastrangelo, Piero Malguzzi, Hai Lin, Ryan Muncaster, Bill Merryfield, Michael Sigmond, Baoqiang Xiang, Liwei Jia, Yu-Kyung Hyun, Jiyoung Oh, Damien Specq, Isla R. Simpson, Jadwiga H. Richter, Cory Barton, Jeff Knight, Eun-Pa Lim, and Harry Hendon
Geosci. Model Dev., 15, 5073–5092, https://doi.org/10.5194/gmd-15-5073-2022, https://doi.org/10.5194/gmd-15-5073-2022, 2022
Short summary
Short summary
This paper describes an experimental protocol focused on sudden stratospheric warmings to be carried out by subseasonal forecast modeling centers. These will allow for inter-model comparisons of these major disruptions to the stratospheric polar vortex and their impacts on the near-surface flow. The protocol will lead to new insights into the contribution of the stratosphere to subseasonal forecast skill and new approaches to the dynamical attribution of extreme events.
Reimar Bauer, Jens-Uwe Grooß, Jörn Ungermann, May Bär, Markus Geldenhuys, and Lars Hoffmann
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-155, https://doi.org/10.5194/gmd-2022-155, 2022
Revised manuscript accepted for GMD
Short summary
Short summary
The Mission Support System (MSS) is an open source software package that has been used for planning flight tracks of scientific aircraft in multiple measurements campaigns during the last decade. Here, we describe the MSS software and its use during the SouthTRAC measurement campaign in 2019. As example for how the MSS software is used in conjunction with many data sets, we describe the planning of a single flight probing orographic gravity waves propagating up into the lower mesosphere.
Joël Thanwerdas, Marielle Saunois, Antoine Berchet, Isabelle Pison, Bruce H. Vaughn, Sylvia Englund Michel, and Philippe Bousquet
Geosci. Model Dev., 15, 4831–4851, https://doi.org/10.5194/gmd-15-4831-2022, https://doi.org/10.5194/gmd-15-4831-2022, 2022
Short summary
Short summary
Estimating CH4 sources by exploiting observations within an inverse modeling framework is a powerful approach. Here, a new system designed to assimilate δ13C(CH4) observations together with CH4 observations is presented. By optimizing both the emissions and associated source signatures of multiple emission categories, this new system can efficiently differentiate the co-located emission categories and provide estimates of CH4 sources that are consistent with isotopic data.
Bok H. Baek, Rizzieri Pedruzzi, Minwoo Park, Chi-Tsan Wang, Younha Kim, Chul-Han Song, and Jung-Hun Woo
Geosci. Model Dev., 15, 4757–4781, https://doi.org/10.5194/gmd-15-4757-2022, https://doi.org/10.5194/gmd-15-4757-2022, 2022
Short summary
Short summary
The Comprehensive Automobile Research System (CARS) is an open-source Python-based automobile emissions inventory model designed to efficiently estimate high-quality emissions. The CARS is designed to utilize the local vehicle activity database, such as vehicle travel distance, road-link-level network information, and vehicle-specific average speed by road type, to generate a temporally and spatially enhanced inventory for policymakers, stakeholders, and the air quality modeling community.
Joonatan Ala-Könni, Kukka-Maaria Kohonen, Matti Leppäranta, and Ivan Mammarella
Geosci. Model Dev., 15, 4739–4755, https://doi.org/10.5194/gmd-15-4739-2022, https://doi.org/10.5194/gmd-15-4739-2022, 2022
Short summary
Short summary
Properties of seasonally ice-covered lakes are not currently sufficiently included in global climate models. To fill this gap, this study evaluates three models that could be used to quantify the amount of heat that moves from and into the lake by the air above it and through evaporation of the ice cover. The results show that the complex nature of the surrounding environment as well as difficulties in accurately measuring the surface temperature of ice introduce errors to these models.
Jason E. Williams, Vincent Huijnen, Idir Bouarar, Mehdi Meziane, Timo Schreurs, Sophie Pelletier, Virginie Marécal, Beatrice Josse, and Johannes Flemming
Geosci. Model Dev., 15, 4657–4687, https://doi.org/10.5194/gmd-15-4657-2022, https://doi.org/10.5194/gmd-15-4657-2022, 2022
Short summary
Short summary
The global CAMS air quality model is used for providing tropospheric ozone information to end users. This paper updates the chemical mechanism employed (CBA) and compares it against two other mechanisms (MOCAGE, MOZART) and a multi-decadal dataset based on a previous version of CBA. We perform extensive validation for the US using multiple surface and aircraft datasets, providing an assessment of biases and the extent of correlation across different seasons during 2014.
Sudhanshu Pandey, Sander Houweling, and Arjo Segers
Geosci. Model Dev., 15, 4555–4567, https://doi.org/10.5194/gmd-15-4555-2022, https://doi.org/10.5194/gmd-15-4555-2022, 2022
Short summary
Short summary
Inversions are used to calculate methane emissions using atmospheric mole-fraction measurements. Multidecadal inversions are needed to extract information from the long measurement records of methane. However, multidecadal inversion computations can take months to finish. Here, we demonstrate an order of magnitude improvement in wall clock time for an iterative multidecadal inversion by physical parallelization of chemical transport model.
Jeong-Su Ko, Kyo-Sun Sunny Lim, Kwonil Kim, Gyuwon Lee, Gregory Thompson, and Alexis Berne
Geosci. Model Dev., 15, 4529–4553, https://doi.org/10.5194/gmd-15-4529-2022, https://doi.org/10.5194/gmd-15-4529-2022, 2022
Short summary
Short summary
This study evaluates the performance of the four microphysics parameterizations, the WDM6, WDM7, Thompson, and Morrison schemes, in simulating snowfall events during the ICE-POP 2018 field campaign. Eight snowfall events are selected and classified into three categories (cold-low, warm-low, and air–sea interaction cases). The evaluation focuses on the simulated hydrometeors, microphysics budgets, wind fields, and precipitation using the measurement data.
Cited articles
Baer, F. and Tribbia, J.: On complete filtering of gravity modes through nonlinear initialization, Mon. Weather Rev., 105, 1536–1539, 1977.
Biello, J. A. and Majda, A. J.: A new multi-scale model for the Madden-Julian Oscillation, J. Atmos. Sci., 62, 1694–1721, 2005.
Blažica, V., Žagar, N., Strajnar, B., and Cedilnik, J.: Rotational and divergent kinetic energy in the mesoscale model ALADIN, Tellus A, 65, 18918, https://doi.org/10.3402/tellusa.v65i0.18918, 2013.
Boer, G. J. and Shepherd, T. G.: Large-scale two-dimensional turbulence in the atmosphere, J. Atmos. Sci., 40, 164–1184, 1983.
Burgess, B. H., Erler, A. R., and Shepherd, T. G.: The troposphere-to-stratosphere transition in kinetic energy spectra and nonlinear spectral fluxes as seen in ECMWF analyses, J. Atmos. Sci., 70, 669–687, 2013.
Chapman, S. and Lindzen, R. S.: Atmospheric Tides: Thermal and Gravitational, Gordon and Breach/Sci. Pub., 200 pp., 1970.
Charney, J. G.: Geostrophic turbulence, J. Atmos. Sci., 28, 1087–1095, 1971.
Cohn, S. E. and Dee, D. P.: An analysis of the vertical structure equation for arbitrary thermal profiles, Q. J. Roy. Meteor. Soc., 115, 143–171, 1989.
Daley, R.: Spectral characteristics of the ECMWF objective analysis system, ECMWF Tech. Rep. No. 40, 117, 1983.
Daley, R.: Atmospheric data analysis, Cambridge University Press, Cambridge, UK, 460 pp., 1991.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597, 2011.
Dikii, L. A.: The terrestrial atmosphere as an oscillating system, (translated by C. M. Wade) Izv. Acad. Sci. USSR, Atmos. Ocean. Phys., 1, 469–489, 1965.
Errico, R. M.: On the removal of gravitational noise in numerical forecasts, J. Meteorol. Soc. Jpn., 75, 219–227, 1997.
Flattery, T. W.: Hough functions., Tech. Rep. 21, Dept. Geophys. Sci., University of Chicago, 175 pp., 1967.
Frehlich, R. and Sharman, R.: The use of structure functions and spectra from numerical model output to determine effective model resolution, Mon. Weather Rev., 136, 1537–1553, 2008.
Geisler, J. E. and Stevens, D. E.: On the vertical structure of damped steady circulation in the tropics, Q. J. Roy. Meteor. Soc., 108, 87–93, 1982.
Gill, A. E.: Some simple solution for heat-induced tropical circulation, Q. J. Roy. Meteor. Soc., 106, 447–462, 1980.
Hartman, D. L.: The atmospheric general circulation and its variability, J. Meteorol. Soc. Jpn., 85B, 123–143, 2007.
Hayashi, J.: Space-time spectral analysis and its applications to atmospheric waves, J. Meteorol. Soc. Jpn., 60, 156–171, 1981.
Heckley, W. A. and Gill, A. E.: Some simple analytical solutions to the problem of forced equatorial long waves, Q. J. Roy. Meteor. Soc., 110, 203–217, 1984.
Hildebrand, F. B.: Methods of Applied Mathematics, Prentice-Hall, Inc., 1958.
Hough, S. S.: On the application of harmonic analysis to the dynamical theory of the tides – Part II, On the general integration of Laplace\'s dynamical equations, Philos. Tr. R. Soc. S-A, 191, 139–185, 1898.
Hung, M.-P., Lin, J.-L., Wang, W., Kim, D., Shinoda, T., and Weaver, S. J.: MJO and convectively coupled equatorial waves simulated by CMIP5 climate models, J. Climate, 26, 6185–6214, 2013.
Jacobs, S. J. and Wiin-Nielsen, A.: On the stability of a barotropic basic flow in a stratified atmosphere, J. Atmos. Sci., 23, 682–687, 1966.
Kasahara, A.: Various vertical coordinate systems used for numerical weather prediction, Mon. Weather Rev., 102, 509–522, 1974.
Kasahara, A.: Corrigendum to: Various vertical coordinate systems used for numerical weather prediction, Mon. Weather Rev., 103, 664, 1975.
Kasahara, A.: Normal modes of ultralong waves in the atmosphere, Mon. Weather Rev., 104, 669–690, 1976.
Kasahara, A.: Further studies on a spectral model of the global barotropic primitve equations with Hough harmonic expansions, J. Atmos. Sci., 35, 2043–2051, 1978.
Kasahara, A.: Effect of zonal flows on the free oscillations of a barotropic atmosphere, J. Atmos. Sci., 37, 917–929, 1980.
Kasahara, A.: Corrigendum to: Effect of zonal flows on the free oscillations of a barotropic atmosphere, J. Atmos. Sci., 38, 2284–2285, 1981.
Kasahara, A.: The linear response of a stratified global atmosphere to a tropical thermal forcing, J. Atmos. Sci., 41, 2217–2237, 1984.
Kasahara, A. and Puri, K.: Spectral representation of three-dimensional global data by expansion in normal mode functions, Mon. Weather Rev., 109, 37–51, 1981.
Kasahara, A. and Shigehisa, Y.: Orthogonal Vertical Normal Modes of a Vertically Staggered Discretized Atmospheric Model, Mon. Weather Rev., 111, 1724–1735, 1983.
Kasahara, A. and Tanaka, H.: Application of vertical normal mode expansion to problems of baroclinic instability, J. Atmos. Sci., 46, 489–510, 1989.
Kim, J. E. and Alexander, M. J.: Tropical precipitation variability and convectively coupled equatorial waves on submonthly time-scales in reanalyses and TRMM, J. Climate, 26, 3013–3030, 2013.
Kleist, D. T., Parrish, D. F., Derber, J. C., Treadon, R., Errico, R. M., and Yang, R.: Improving incremental balance in the GSI 3DVAR analysis system, Mon. Weather Rev., 137, 1046–1060, 2009.
Lamb, H.: Hydrodynamics, Dover Pub., 738 pp., 1932.
Le Dimet, F.-X. and Talagrand, O.: Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects, Tellus A, 38, 97–110, 1986.
Lilly, D. K.: Lectures in sub-synoptic scales of motion and two-dimensional turbulence, in: Dynamic Meteorology, edited by: Morel, P., 353–418, Springer Netherlands, 1973.
Lin, J.-L., Kiladis, G., Mapes, B. E., Weickmann, K. M., Sperber, K. R., Lin, W., Wheeler, M. C., Schubert, S. D., Genio, A. D., Donner, L. J., Emori, S., Gueremy, J.-F., Hourdin, F., Rasch, P. J., Roeckner, E., and Scinocca, J. F.: Tropical intraseasonal variability in 14 IPCC AR4 climate models. Part I: Convective signals, J. Climate, 19, 2665–2690, 2006.
Longuet-Higgins, M. S.: The eigenfunctions of Laplace\'s tidal equations over a sphere, Philos. Tr. R. Soc. S-A, 262, 511–607, 1968.
Lorenz, E. N.: Available potential energy and the maintenance of the general circulation, Tellus, 7, 157–167, 1955.
Lorenz, E. N.: Energy and numerical weather prediction, Tellus, 12, 364–373, 1960.
Lynch, P. and Huang, X.-Y.: Initialization of the HIRLAM model using a digital filter, Mon. Weather Rev., 120, 1019–1034, 1992.
Machenhauer, B.: On the dynamics of gravity oscillations in a shallow water model, with applications to normal mode initialization, Beitr. Phys. Atmos., 50, 253–271, 1977.
Madden, R. A.: Large-scale, free Rossby waves in the atmosphere – an update, Tellus A, 59, 571–590, 2007.
Majda, A. J., Khouider, B., Kiladis, G., Straub, K., and Shefter, M.: A model for convectively coupled tropical waves: nonlinearity, rotation, and comparison with observations, J. Atmos. Sci., 61, 2188–2205, 2004.
Margules, M.: Air motions in a rotating spheroidal shell, Max Margules wrote three papers, "Luftbewegungen in einer rotierenden Sphäroidschale bei zonaler Druckverteilung", Sitz.-Ber. kaiserl. Akad. Wissensch. Wien, Math.-Nat. Cl., Abt. IIa, 101, 597–626, 1892, "Luftbewegungen in einer rotierenden Sphäroidschale (II. Theil)", Ibid., 102, 11–56, 1893, and "Luftbewegungen in einer rotierenden Sphäroidschale (III. Theil)", Ibid., 102, 1369–1421, 1893. These three articles were translated by B. Haurwitz as an NCAR technical report "Air motions in a rotating spheroidal shell", NCAR/TN-156+STR, National Center for Atmospheric Research, Boulder, CO, 1892.
Marques, C. A. F. and Castanheira, J. M.: A detailed normal-mode energetics of the general circulation of the atmosphere, J. Atmos. Sci., 69, 2718–2732, 2012.
Matsuno, T.: Quasi-geostrophic motions in the equatorial area, J. Meteorol. Soc. Jpn., 44, 25–42, 1966.
Nastrom, G. D. and Gage, K. S.: A climatology of aircraft wavenumber spectra observed by commercial aircraft, J. Atmos. Sci., 42, 950–960, 1985.
Phillips, N. A.: A coordinate system having some special advantages for numerical forecasting, J. Meteor., 14, 184–185, 1957.
Phillips, N. A.: Dispersion processes in large-scale weather prediction, Sixth IMO Lecture, World Meteorological Organization, No. 700, 1990.
Platzman, G. W.: Two-dimensional free oscillations in natural basins, J. Phys. Oceanogr., 2, 117–138, 1972.
Platzman, G. W.: Comments on the origin of the energy product, B. Am. Meteorol. Soc., 73, 1847–1851, 1992.
Shigehisa, Y.: Normal modes of the shallow water equations for zonal wavenumber zero, J. Meteorol. Soc. Jpn., 61, 479–493, 1983.
Shutts, G. J. and Vosper, S. B.: Stratospheric gravity waves revealed in NWP model forecasts, Q. J. Roy. Meteor. Soc., 137, 303–317, 2011.
Siebert, M.: Atmospheric tides, Adv. Geophys., 7, 105–187, 1961.
Simons, T. J.: A three-dimensional spectral prediction equation, Atmos. Sci. Paper No. 127, Dept. Atmos. Sci., Colorado State Univ., 27 pp. 1968.
Staniforth, A., Beland, M., and Coté, J.: An analysis of the vertical structure equation in sigma coordinates, Atmos. Ocean, 23, 323–358, 1985.
Swarztrauber, P. N. and Kasahara, A.: The vector harmonic analysis of Laplace tidal equations, SIAM J. Stat. Comput., 6, 464–491, 1985.
Tanaka, H.: Global energetics analysis by expansion into three-dimensional normal-mode functions during the FGGE winter, J. Meteorol. Soc. Jpn., 63, 180–200, 1985.
Tanaka, H. and Kimura, K.: Normal-Mode Energetics Analysis and the Intercomparison for the Recent ECMWF, NMC, and JMA Global Analyses, J. Meteorol. Soc. Jpn., 74, 525–538, 1996.
Tanaka, H. and Kung, E.: Normal-mode expansion of the general circulation during the FGGE year, J. Atmos. Sci., 45, 3723–3736, 1988.
Tanaka, H. and Terasaki, K.: Blocking formation by an accumulation of barotropic energy exceeding the rossby wave saturation level at the spherical Rhines scale, J. Meteorol. Soc. Jpn., 84, 319–332, 2006.
Taylor, G. I.: The oscillations of the atmosphere, Proc. R. Soc. Lon. Ser.-A, 156, 318–326, 1936.
Terasaki, K. and Tanaka, H.: An analysis of the 3-D atmospheric energy spectra and interactions using analytical vertical structure functions and two reanalyses, J. Meteorol. Soc. Jpn., 85, 785–796, 2007.
Tung, K. K. and Orlando, W. W.: The k-3 and k-5/3 energy spectrum of atmospheric turbulence: quasigeostrophic two-level simulation, J. Atmos. Sci., 60, 824–835, 2003.
Wergen, W.: The diabatic ECMWF normal mode initialization scheme, Beitr. Phys. Atmos., 61, 274–302, 1988.
Wheeler, M. and Kiladis, G. N.: Convectively coupled equatorial waves: analysis of clouds and temperature in the wavenumber-frequency domain, J. Atmos. Sci., 56, 374–399, 1999.
Williamson, D. L. and Dickinson, R. E.: Free oscillations of the NCAR global circulation model, Mon. Weather Rev., 104, 1372–1391, 1976.
Yang, G.-Y., Hoskins, B. J., and Slingo, J.: Convectively coupled equatorial waves: A new methodology for identifying wave structures in observational data, J. Atmos. Sci., 60, 1637–1654, 2003.
Žagar, N., Tribbia, J., Anderson, J. L., and Raeder, K.: Uncertainties of estimates of inertio-gravity energy in the atmosphere. Part I: Intercomparison of four analysis datasets, Mon. Weather Rev., 137, 3837–3857, 2009a.
Žagar, N., Tribbia, J., Anderson, J. L., and Raeder, K.: Uncertainties of estimates of inertio-gravity energy in the atmosphere. Part II: Large-scale equatorial waves, Mon. Weather Rev., 137, 3858–3873, 2009b.
Žagar, N., Tribbia, J., Anderson, J. L., and Raeder, K.: Corrigendum to: Uncertainties of estimates of inertio-gravity energy in the atmosphere, Mon. Weather Rev., 138, 2476–2477, 2009c.
Žagar, N., Tribbia, J., Anderson, J. L., and Raeder, K.: Balance of the background-error variances in the ensemble assimilation system DART/CAM, Mon. Weather Rev., 139, 2061–2079, 2011.
Žagar, N., Terasaki, K., and Tanaka, H.: Impact of the vertical discretization of analysis data on the estimates of atmospheric inertio-gravity energy, Mon. Weather Rev., 140, 2297–2307, 2012.
Žagar, N., Isaksen, L., Tan, D., and Tribbia, J.: Balance and flow-dependency of background-error variances in the ECMWF 4-D-Var ensemble, Q. J. Roy. Meteor. Soc., 139, 1229–1238, https://doi.org/10.1002/qj.2033, 2013.
Short summary
The article presents MODES, a new software for the analysis of properties of balanced and inertio-gravity circulations across many scales in (re)analyses, weather forecasts and climate models. The software and real-time results based on ECMWF model can be found at http://meteo.fmf.uni-lj.si/MODES. Evaluation of models' ability to reproduce the unbalanced tropical circulation is expected to provide new insights on model performance that is helpful to diagnose deficiencies and define improvements.
The article presents MODES, a new software for the analysis of properties of balanced and...