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Abstract. This article presents new software for the analysis

of global dynamical fields in (re)analyses, weather forecasts

and climate models. A new diagnostic tool, developed within

the MODES project, allows one to diagnose properties of

balanced and inertio-gravity (IG) circulations across many

scales. In particular, the IG spectrum, which has only re-

cently become observable, can be studied simultaneously in

the mass and wind fields while considering the whole model

depth in contrast to the majority of studies.

The paper includes the theory of normal-mode function

(NMF) expansion, technical details of the Fortran 90 code,

examples of namelists which control the software execution

and outputs of the software application on the ERA Interim

reanalysis data set. The applied libraries and default compiler

are from the open-source domain. A limited understanding

of Fortran suffices for the successful implementation of the

software.

The presented application of the software to the ERA In-

terim data set reveals several aspects of the large-scale cir-

culation after it has been partitioned into the linearly bal-

anced and IG components. The global energy distribution is

dominated by the balanced energy while the IG modes con-

tribute around 10 % of the total wave energy. However, on

sub-synoptic scales, IG energy dominates and it is associated

with the main features of tropical variability on all scales.

The presented energy distribution and features of the zonally

averaged and equatorial circulation provide a reference for

the validation of climate models.

1 Introduction

Spherical harmonics have been used extensively for repre-

senting many geophysical quantities over the globe. They

are useful for the decomposition of global circulation data

because they are eigensolutions of the global barotropic vor-

ticity equation involving the Laplace operator on the sphere.

Furthermore, spherical harmonics are used as basis functions

for the numerical discretization of dynamical terms of the

global prognostic equations for numerical weather predic-

tion (NWP) in some of the major global NWP models (e.g.

ECMWF). A scale-dependent distribution of atmospheric ki-

netic energy at a given horizontal level is readily produced

from spherical harmonics as a function of the global wave

number (e.g. Boer and Shepherd, 1983).

It is however often more desirable to represent flow pat-

terns not only of the horizontal velocity components but also

of the associated mass-field variables as functions of longi-

tude, latitude and height. Our picture of the atmosphere is

that of a vibrating system with many modes of oscillations,

like a musical instrument. Hence, it is desirable to have some

vector functions to represent simultaneously both the wind

field and the mass field corresponding to the various modes.

Such modes are provided by the eigensolutions of the prim-

itive equations linearized around a simple reference state of

rest, and they are known as normal modes.

It is the objective of this article to present the development

and application of a software package that applies 3-D vec-

tor harmonic functions based on the natural modes of oscil-

lations for representing global circulation patterns in terms

of a single expansion series. The development of 3-D vec-
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tor functions is based on the theoretical work by Kasahara

and Puri (1981). They derived a set of three-dimensional or-

thogonal normal-mode functions (NMFs) and applied it to

hemispheric data from the National Center for Environmen-

tal Prediction (NCEP). The orthogonal expansion basis was

derived for the vertical σ coordinate which is naturally suited

for the representation of data on the Earth.

The derivation of NMFs by Kasahara and Puri (1981) was

not utilized until Žagar et al. (2009a) applied the method

to the comparison of levels of inertio-gravity (IG) energy in

modern analysis data sets on model levels. Several other re-

cent papers applied the method to the diagnosis of data as-

similation systems, especially their balance properties and

the scale-dependent properties of short-range forecast errors

(Žagar et al., 2011, 2012, 2013).

A more extensive work based on the application of NMFs

has been carried out in the pressure system. Tanaka (1985)

and Tanaka and Kung (1988) derived a 3-D normal-mode

scheme for the pressure vertical coordinate. The method was

applied to a number of research topics ranging from baro-

clinicity (Kasahara and Tanaka, 1989) and blocking (Tanaka

and Terasaki, 2006) to global energetics and energy conver-

sion studies (Tanaka and Kimura, 1996; Marques and Cas-

tanheira, 2012). In the case of the pressure system, global

circulation is represented by winds and geopotential on 10–

20 standard-pressure levels.

The most important application of normal modes in NWP

research has been the initialization of operational fore-

cast models, known as non-linear normal-mode initialization

(NNMI) (Baer and Tribbia, 1977; Machenhauer, 1977; Wer-

gen, 1988; Errico, 1997). With the advance of modern data

assimilation methodologies such as 4-D-Var (e.g. Le Dimet

and Talagrand, 1986) and the application of digital filtering

for initialization (e.g. Lynch and Huang, 1992) the use of

NNMI has been greatly reduced. One of more recent appli-

cations of NNMI is within the NCEP global NWP system

(Kleist et al., 2009). We also note that the sets of normal

modes derived for the initialization of NWP models were,

in general, not 3-D orthogonal, though orthogonal model

normal modes can be constructed (Kasahara and Shigehisa,

1983).

The global horizontal structures of normal modes, known

as Hough functions, have been used to analyze atmospheric

variability (Madden, 2007, and references therein). Some

fundamental properties of the large-scale tropical circula-

tion in both the atmosphere and the ocean have been de-

scribed in terms of normal modes on the equatorial-β plane

(e.g. Gill, 1980). The equatorial Kelvin, the mixed Rossby-

gravity (MRG), the equatorially trapped IG and Rossby

modes which are characterized by small phase speeds have

been associated with the most energetic modes of tropical

variability. This has been verified by direct observations, by

derived quantities and in weather and climate models. Wave

properties have been diagnosed by using mass-field infor-

mation such as outgoing long-wave radiation (e.g. Wheeler

and Kiladis, 1999), brightness temperature (e.g. Yang et al.,

2003), precipitation (e.g. Kim and Alexander, 2013) and cli-

mate models (e.g. Lin et al., 2006). In contrast to these stud-

ies based on spectral–temporal filtering, the representation

of global data in terms of normal modes represents tempera-

ture field and wind field simultaneously in terms of balanced

(quasi-rotational) and unbalanced (eastward-propagating IG

– EIG and westward-propagating IG – WIG) motions of dif-

ferent vertical and horizontal scales.

A separation of non-linear atmospheric motions into the

high-frequency IG and low-frequency balanced motions is

possible only if the simplification of linearized equations

around some specific resting background state is introduced.

Furthermore, the vertical part of solutions can be obtained

analytically only for some special cases such as the isother-

mal atmosphere (Daley, 1991, Chapter 6) or a constant sta-

bility profile (e.g. Terasaki and Tanaka, 2007). For realistic

temperature and stability profiles, solutions need to be ob-

tained numerically and numerical procedures for the solution

of the vertical structure of global normal modes have been

considered in several papers (e.g. Kasahara and Puri, 1981;

Kasahara, 1984; Staniforth et al., 1985).

The 3-D orthogonality of normal modes allowed Kasahara

and Puri (1981) to estimate the contribution of IG modes to

the total wave (zonal wave number > 0) energy. They found

that the percentage of total wave energy associated with the

IG modes was small. This result was in agreement with

quasi-geostrophic scaling and the poor quality of the tropical

analyses in late 1970s. It agreed also with a study by Daley

(1983) that estimated an average percentage of ageostrophic

motions in early analyses of ECMWF to be about 10 % im-

plying that about 1 % of atmospheric wave energy was asso-

ciated with unbalanced flows. Thirty years later, data assim-

ilation methodology and an unprecedented number of high-

quality atmospheric observations provide us with a different

picture of the global circulation. In particular, reanalysis data

sets (e.g. Dee et al., 2011) are used to validate atmospheric

variability represented by climate models to justify their sim-

ulation of climate scenarios for the future.

In relation to a more reliable representation of physical

processes in later analyses, especially convection, and the as-

sociated divergent circulation, Žagar et al. (2009a) reported

that the level of IG energy is about 10 % of the total wave

energy; in other words, in current analysis data sets about

one-third of global wave circulation is associated with un-

balanced modes. Realistic climate models validated against

(re)analyses should be characterized by a similar amount of

unbalanced energy and its scale distribution. The application

of 3-D normal modes presented in this paper provides a pic-

ture of the unbalanced component of the global circulation in

the latest reanalyses of the ECMWF, the ERA Interim data

set (Dee et al., 2011).

The following presents details of the software for NMF

analysis and describes the sequence of steps applied to gen-

erate a picture of the unbalanced component of global circu-
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lation. The application of the software is controlled through

Fortran namelists which are provided in the Appendix. It is

shown that a moderate user effort suffices for the application

of the software to other global data sets. In particular, we

discuss the choice of several namelist parameters and outline

the future directions of the software development. The most

important direction is the comparison of energy distributions

in reanalyses and climate simulations of the present-day cli-

mate followed by the comparison of the simulated present-

day unbalanced circulation and its projections. Most of the

unbalanced large-scale planetary and synoptic-scale circula-

tion is found in the tropics. However, the tropics is the region

with the largest uncertainties in both short-range forecasts

(e.g. Žagar et al., 2013) and in climate models (e.g. Lin et al.,

2006). Evaluation of models’ ability to reproduce the unbal-

anced tropical circulation can be expected to provide new

insights on model performance that is helpful to diagnose

model deficiencies and define improvements.

The paper is structured as follows: the next section

presents the theory of normal modes as an updated extended

summary of the article by Kasahara and Puri (1981), here-

after denoted KP1981. Section 3 provides a step-by-step de-

scription of various components of the normal-mode soft-

ware. In Sect. 4 we present outputs of the normal-mode diag-

nostics of ERA Interim by using a few standard diagnostics.

Summary and conclusions are provided in Sect. 5. Several

appendices contain examples of namelists which are edited

by a user to run the software.

2 Derivation of 3-D normal-mode functions

The derivation of 3-D normal modes presented in this section

follows KP1981, although the notation is somewhat differ-

ent. The reader is also referred to several other cited papers

for any missing details.

2.1 Model of the atmosphere

As a model of the atmosphere, we deal with the traditional

hydrostatic baroclinic primitive equation system on a sphere,

customarily adopted for NWP (Kasahara, 1974, 1975). The

model describes the time evolution of eastward and north-

ward velocity components (u′,v′) and geopotential height as

functions of longitude λ latitude ϕ vertical coordinate σ and

time t . The σ coordinate is defined by

σ =
p

ps

, (1)

where p and ps denote the pressure and surface pressure,

respectively (Phillips, 1957).

Although the atmospheric model is non-linear, we are in-

terested in small-amplitude motions around the basic state

of an atmosphere at rest. Therefore, we can deal with a lin-

earized adiabatic and inviscid version of the model. Solutions

of such a system with appropriate boundary conditions are

referred to as normal modes (Lamb, 1932). It should be noted

that we are dealing with free oscillations instead of forced os-

cillations such as atmospheric tides (Chapman and Lindzen,

1970).

A new geopotential variable introduced by KP1981 ac-

counts for the fact that the surface pressure ps varies and it is

defined as

P =8+RT0 ln(ps) , (2)

where 8= gz. Here, z denotes the height corresponding

to the hydrostatic pressure and g the Earth’s gravity. Also,

T0(σ ) denotes the globally averaged temperature at a given

σ level and R the gas constant of air. It is convenient to in-

troduce a modified geopotential height h′ = P/g in the sub-

sequent development.

The system of linearized equations describing oscillations

(u′,v′,h′) superimposed on a basic state of rest with temper-

ature T0 as a function of σ takes the following form:

∂u′

∂t
− 2�v′ sin(ϕ)=−

g

a cos(ϕ)

∂h′

∂λ
, (3)

∂v′

∂t
+ 2�u′ sin(ϕ)=−

g

a

∂h′

∂ϕ
, (4)

∂

∂t

[
∂

∂σ

(
gσ

R00

∂h′

∂σ

)]
−∇ ·V ′ = 0 . (5)

Here, a is the Earth’s radius and � is the Earth’s rotation

rate. Equation (5) is obtained as a combination of the conti-

nuity and thermodynamic equations after the change of vari-

able and by using the suitable boundary conditions. For de-

tails see KP1981. The boundary conditions for the system of

Eqs. (3)–(5) are

g
∂h′

dσ
= finite at σ = 0 , (6)

g
∂h′

dσ
+
g00

T0

h′ = 0 at σ = 1 . (7)

The static stability parameter 00 is defined as

00 =
κT0

σ
−

dT0

dσ
, (8)

and it is a function of the globally averaged temperature on

σ levels, T0, its vertical gradient and σ .

As inferred from the work of Taylor (1936), the 3-D lin-

earized model (3)–(5) can be solved by the method of sepa-

ration of the variables. It means that the vector of 3-D model

variables [u′,v′,h′]T as functions of (λ,ϕ,σ ) and time t is

represented as the product of 2-D motions and the vertical

structure function G(σ):[
u′,v′,h′

]T
(λ,ϕ,σ, t)= [u,v,h]T(λ,ϕ, t)×G(σ) . (9)

Two systems of equations governing three-dimensional

motions are connected by particular values of a separation
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parameter D which is called the equivalent height follow-

ing Taylor (1936). It turns out that the governing system

of the two-dimensional functions is identical in form with

the global shallow-water equations having the water depth

of equivalent height, D. This system is also known as the

Laplace tidal equations without forcing.

2.2 Vertical structure equation

We first discuss the vertical structure functions G(σ) gov-

erned by the vertical structure equation (VSE). Solutions

of the VSE were first investigated by physicists in connec-

tion with the theory of atmospheric tides under various ba-

sic state temperature profiles and upper boundary conditions.

For the tidal problems, however, solutions of VSE are calcu-

lated under specified tide generating mechanisms with a pre-

scribed value of equivalent height corresponding to a given

wave frequency. In contrast, for normal-mode problems, so-

lutions of the VSE are sought for free oscillations (no forc-

ing and dissipation) that determine the values of equivalent

height and corresponding vertical functional profiles. During

the late 1960s Jacobs and Wiin-Nielsen (1966) and Simons

(1968), for example, investigated solutions of the VSE in

pressure coordinates based on quasi-geostrophic modelling.

Since then many investigators have examined various as-

pects of the VSE and its solutions. We shall summarize them

briefly in the following.

The vertical structure function G(σ) is a solution of the

VSE written in the dimensionless form as

d

dσ

(
σ

S

dG

dσ

)
+
H∗

D
G= 0 , (10)

where S(σ)= R00/(gH∗). Here, H∗ is a scaling constant

with the dimension of height, H∗ = 8 km, and R and g are

the gas constants of air and gravity, respectively. We assume

that S>0 for stable stratification. A typical profile of S is

shown in Fig. 2c in the next section. The equivalent height is

denoted by D.

Solutions of the VSE are sought under the boundary con-

ditions that no mass transport takes place through the Earth’s

surface and the model top. They are represented by

dG

dσ
+ rG= 0 where r =

00

T0

at the bottom σ = 1 , (11)

σ
dG

dσ
= 0 at the model topσ = σT . (12)

Together with homogeneous boundary conditions (11)–

(12), the VSE (10) constitutes a Sturm–Liouville problem

(Hildebrand, 1958) and its properties are well known. For

example, solutions of Eq. (10) exist only for a set of positive

values of equivalent heightD as the eigenvalues, and the cor-

responding solutions, called the eigenfunctions, are orthogo-

nal in the sense that

1∫
σT

Gi(σ )Gj (σ )dσ = δij , (13)

where δij = 1 if i = j and zero otherwise.

In an atmosphere with a realistic temperature profile, there

is always one discrete solution of Eq. (10). This is called the

external or Lamb mode, with the value of D being approx-

imately 10 km. Its corresponding structure function has the

largest vertical scale with no zero-crossing point in the verti-

cal. Thus, this mode represents a vertically averaged motion

and it is often referred to as the barotropic mode. In addition

to this external mode, there is a continuous or discrete spec-

trum of internal modes. These depend on the upper bound-

ary conditions with varying values of D all smaller than that

of the external mode. The structure functions correspond-

ing to the internal modes have various zero-crossing points

on the vertical axis. In the next section, examples of verti-

cal structure functions (VSFs) for ERA Interim data sets are

discussed in detail. Characteristics of the spectrum of VSE

solutions have been investigated extensively. For example,

Cohn and Dee (1989) showed that the nature of the mode

spectrum depends only on the behaviour of the coefficients

of VSE near the top of model atmosphere.

With the objective to construct the 3-D NMFs to represent

global atmospheric motions, we must account for both inter-

nal modes and external modes. Moreover, we need to choose

the boundary conditions that yield a discrete spectrum of in-

ternal modes by using the same top boundary conditions as

conditions adopted by the NWP and climate models which

are being analyzed. Thus, we can represent the spectrum of

D in the following order,

D1 >D2 >D3 > .. . > Dm > 0 , (14)

where the integer subscript m can be chosen as large as one

wishes to calculate depending on the solution method. The

maximal number of vertical modes that can be resolved (i.e.

maximal value of m) is determined by the available vertical

resolution (i.e. the number of vertical grid points). In other

words, when applied to NWP and climate models, the appro-

priate set of vertical structure functions is determined by the

corresponding boundary conditions and the models’ vertical

resolution.

The case wherem= 1 corresponds to the external mode. It

is associated to the largest equivalent heightD1 and its eigen-

function G1 has no zero-crossing point in its profile. The re-

maining cases, m≥ 2, are referred to as the internal modes

and the Gs have (m− 1) zero-crossing (nodal) points. Ver-

tical structure functions for several modes computed for the

ERA Interim vertical coordinate are shown in Fig. 4. Details

of their numerical calculation are presented in Sect. 3.

The structure functions Gm(σ ), which are normalized and

orthogonal, are said to be complete in the sense that a well-
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behaved function f (σ) can be represented by a series:

f (σ)=

∞∑
m=1

CmGm(σ ) , (σT < σ < 1) , (15)

where the coefficients Cm can be obtained from the inverse

transform

Cm =

1∫
σT

f (σ)Gm(σ )dσ (16)

with the aid of the orthogonality condition (13). In reality we

use a finite number of modes to represent f (σ).

2.3 Horizontal structure equations

After the 3-D model is decomposed into the product of a 2-D

system and the VSE as seen in Eq. (9), we then have m sys-

tems of horizontal structure equations (HSEs) corresponding

tom equivalent heightsDm which are the eigenvalues of VSE

(10). The HSEs are identical to linearized global shallow-

water equations with the depth Dm. These are sometimes re-

ferred to as the barotropic primitive equations. In the follow-

ing presentation, we drop the subscript m for simplicity, but

actually we are dealing with m systems of HSEs describing

oscillations around a background state.

To write down the HSEs, we make the dependent variables

(u,v,h) and time t dimensionless as follows:

ũ=
u
√
gD

, ṽ =
v
√
gD

, h̃=
h

D
, t̃ = 2�t . (17)

Therefore, the HSEs are written as follows:

∂

∂t
W +LW = 0 , (18)

where W denotes the vector dependent variable

W = (̃u, ṽ, h̃)T (19)

and L is the linear differential matrix operator

L=

∣∣∣∣∣∣∣
0 −sin(ϕ)

γ
cos(ϕ)

∂
∂λ

sin(ϕ) 0 γ ∂
∂ϕ

γ
cos(ϕ)

∂
∂λ

γ
cos(ϕ)

∂
∂ϕ
[cos(ϕ)()] 0

∣∣∣∣∣∣∣ , (20)

in which γ is a dimensionless parameter defined as the ratio

of shallow-water gravity wave speed and twice the rotation

speed of Earth:

γ =

√
gD

2a�
. (21)

Since Eq. (18) is a linear system with respect to time, the

solution W can be expressed in terms of harmonics in time

as

W (λ,ϕ, t̃)=H k
n (λ,ϕ)e

−iνkn t̃ , (22)

where H k
n (λ,ϕ) represents the horizontal structure functions

with zonal wave number k and meridional index n. The cor-

responding dimensionless frequency νkn also depends on k

and n.

Now, we define the global inner product as

〈Wp,W
∗
r 〉 =

1

2π

2π∫
0

1∫
−1

(̃
upũ
∗
r + ṽpṽ

∗
r + h̃ph̃

∗
r

)
dµdλ, (23)

where µ= sin(ϕ) and the asterisk (∗) denotes the complex

conjugate. Subscript p refers to a particular mode corre-

sponding to a zonal wave number kp and a meridional index

np. Subscript r indicates another mode.

Then, the linear operator (20) has the following property:

〈Wp,LW ∗r 〉+ 〈LWp,W
∗
r 〉 = 0 . (24)

This can be verified by forming relevant inner products,

integrating them globally, and using Green’s theorem. For

details see Platzman (1972).

By substituting Eq. (22) into Eq. (18), we find that Hp is

the eigenfunction of L such that

LHp = iνpHp , and likewise LH ∗r =−iν
∗
rH
∗
r . (25)

Therefore, by using Eqs. (22) and (25) we can ascertain

from Eq. (24) that(
νp − ν

∗
r

)
〈Hp,H

∗
r 〉 = 0 . (26)

Now we discuss some very important properties of the

eigenvalues and eigenfunctions of Eq. (20). Let us consider

the following two cases of Eq. (26):

1. The case of p = r . Because 〈Hp,H
∗
r 〉 becomes propor-

tional to the total energy of the normal-mode solution of

the linearized system that must not vanish, we require

that νp = ν
∗
r . Therefore, the νp must be real and we can

drop the asterisk from the notation of eigenfrequency.

2. The case of p 6= r . Because νp 6= νr , we must have

〈Hp,H
∗
r 〉 = 0, meaning that Hp corresponding to νp

must be orthogonal to the H r associated with νr which

is different from νp.

Since the magnitude of Hp is arbitrary, we use Eq. (23) to

define the following normalization of H r :

〈Hp,H
∗
r 〉 = δpr , (27)

where the right-hand side is unity if p = r , and zero other-

wise.

Separation of variables and the periodic boundary condi-

tions in the longitudinal direction lead to the solution of H k
n

for discrete values of k in the form

H k
n (λ,ϕ)=2k

n(ϕ)e
ikλ , (28)
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where the meridional dependence is described by the vector

function 2k
n,

2k
n(ϕ)=

∣∣∣∣∣∣
U kn (ϕ)

−iV kn (ϕ)

Zkn(ϕ)

∣∣∣∣∣∣ , (29)

which has three components: zonal velocity U , meridional

velocity V , and geopotential height Z, all having zonal wave

number k and meridional index n. The factor i, (i =
√
−1)

in front of V is introduced to account for the phase shift of

π/2 of V with respect to U and Z.

By substituting Eq. (28) with Eq. (29) into Eq. (27), we

find

1∫
−1

2p ·2
∗
r dµ=

1∫
−1

(
UpUr +VpVr +ZpZr

)
dµ

= δpr . (30)

This is the orthogonality condition for 2p associated with

frequency νp.

Various aspects of the eigensolutions of HSEs, includ-

ing the methods of solution, their asymptotic charac-

ters, and tables of their eigenvalues (wave frequencies)

and the eigenfunctions (meridional profiles) are discussed

by Margules (1892), Hough (1898), Dikii (1965), Flat-

tery (1967), Longuet-Higgins (1968), Kasahara (1976) and

Phillips (1990). Because Hough (1898) was the first to solve

the normal-mode problem by means of spherical harmonics,

the eigensolutions H k
n as defined by Eq. (28) are now re-

ferred to as Hough functions (Siebert, 1961) or Hough har-

monics.

The general algorithm for solving system (18) as used by

Kasahara (1976) involves the replacement of the wind com-

ponents by velocity potential and stream function variables

by using the Helmholtz theorem and the assumption that new

non-dimensional dependent variables are proportional to har-

monic functions in longitude with zonal wave number and in

time with the dimensionless frequency. The meridionally de-

pendent variables are expressed in terms of series of the as-

sociated Legendre polynomials of order n and rank k. The re-

sulting equations for the three expansion coefficients as func-

tions of k and n contain two independent systems. In one

case, the velocity potential and the geopotential height are

symmetric with respect to the Equator whereas the stream

function is antisymmetric. In another case, velocity poten-

tial and height are antisymmetric with respect to the Equa-

tor and the stream function is symmetric. In each case, the

frequency is obtained as the eigenvalue of the matrix prob-

lem. Two dispersion relationships describe the frequency of

two kinds of solutions, the so-called first kind and the sec-

ond kind of Hough solutions. So-called solutions of the first

kind describe high-frequency WIG and EIG waves. Solu-

tions of the second kind describe low-frequency, westward-

propagating, predominantly rotational waves of the Rossby–

Haurwitz type. We denote the two kinds of solutions IG and

ROT for IG and Rossby–Haurwitz type of motions, respec-

tively.

For the zonal wave number k = 0 the second kind of waves

are degenerate. This creates a difficulty in representing the

zonally averaged circulations. However, it is possible to de-

rive the set of orthogonal functions for those modes as dis-

cussed by Kasahara (1978) and Shigehisa (1983). The soft-

ware package that calculates the wave frequencies and as-

sociated Hough functions including their meridional deriva-

tives by specifying the equivalent height and wave number

was developed by Swarztrauber and Kasahara (1985) and it

is a part of the present NMF software package.

Figure 1 shows the frequency behaviour of the two classes

of solutions for four equivalent depths: 10, 1 km, 100, and

10 m. Eastward-propagating solutions are shown for positive

wave numbers while negative wave numbers correspond to

the westward-propagating waves. Discrete values of frequen-

cies are shown by symbols for the range of integer value of

the zonal wave number from zero to 30. Frequencies for EIG

and WIG waves are shown for the same range of zonal wave

numbers. The lowest meridional modes (n= 0) of EIG solu-

tions and balanced solutions are known as the Kelvin wave

(KW) and the MRG wave, respectively. Their properties have

been investigated by Matsuno (1966) for the equatorial-β

plane. Frequencies of the MRG wave and the KW fill a part

of the frequency gap between the IG and balanced modes

(other than MRG). ForD = 10 km, a frequency gap between

the IG and ROT waves is largest. As the equivalent depth re-

duces, the frequency gap becomes smaller while the frequen-

cies of the MRG and KW modes become more distinct from

other frequencies. In particular, the frequencies for MRG

waves at large scales become closer to that of WIG modes

than to other ROT modes. In contrast, frequencies of KW at

large scales become more separated from other EIG modes.

Indeed, the observed properties of both MRG and KW in the

tropical atmosphere had been associated with small equiva-

lent depths of the order of 10 m (e.g. Wheeler and Kiladis,

1999).

Properties of equatorial MRG and KWs as well as of other

eigensolutions of linearized shallow-water equations on the

equatorial-β plane have been usually discussed with respect

to the basic state of rest. The same applies to HSE (18), i.e.

frequencies of wave solutions associated with Eq. (18) and

shown in Fig. 1 for several mean fluid depths do not include

the effect of zonal flows.

When the mean zonal flow is taken into account, the fre-

quencies of wave solutions of the linearized global shallow-

water equations become different from the wave frequen-

cies associated with the linearization around the state of rest.

Kasahara (1980) showed that in this case the frequency spec-

trum can become continuous, except for a few of the lowest

balanced modes. Furthermore, solutions to such system can

become unstable due to barotropic instability. On the other
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Figure 1. Frequencies of spherical normal modes for different equivalent depths. (a) D=10 km, (b) D=1 km, (c) D=100 m and (d) D=10
m. Frequencies are normalized by 2Ω factor and shown in logarithmic scale. Frequencies of the easterly and westerly inertia-gravity modes
(EIG and WIG, respectively) are shown for the meridional modes n equal 0, 1, 3, 6, 9, 14, 19, 24, 29, 34, 39, 49, 59 and 69. For the balanced
modes (ROT), shown are meridional modes n = 0, 1, 3, 5, 7, 9, 14, 19, 24, 29, 34, 39, 49, 59 and 69. Frequencies of the Kelvin modes
(n = 0 EIG) and mixed Rossby-gravity modes (n = 0 ROT) are shown by magenta-coloured symbols. Frequencies of ROT modes n > 1
are denoted by gray circles and interconnected by dashed black lines. For the EIG and WIG modes frequencies are shown by blue and red
symbols, respectively. Negative frequencies correspond to negative values of zonal wavenumbers. Frequencies for k = 0 are zero for all ROT
modes, for the MRG mode, for the Kelvin mode and for the n = 0 WIG mode and therefore do not appear in the figures. For n > 0 and
k = 0, frequencies of the WIG modes have opposite sign and equal values as frequencies of the EIG modes. For k > 1, frequencies of the
WIG modes have larger absolute values than frequencies of the EIG modes for the same n.

Figure 1. Frequencies of spherical normal modes for different equivalent depths. (a) D = 10 km, (b) D = 1 km, (c) D = 100 m and (d)

D = 10 m. Frequencies are normalized by 2� factor and shown in a logarithmic scale. Frequencies of the easterly and westerly inertia-

gravity modes (EIG and WIG, respectively) are shown for the meridional modes n= 0, 1, 3, 6, 9, 14, 19, 24, 29, 34, 39, 49, 59 and 69. For

the balanced modes (ROT), meridional modes are shown for n= 0, 1, 3, 5, 7, 9, 14, 19, 24, 29, 34, 39, 49, 59 and 69. Frequencies of the

Kelvin modes (n= 0 EIG) and MRG modes (n= 0 ROT) are shown by magenta-coloured symbols. Frequencies of ROT modes n > 1 are

denoted by grey circles and interconnected by dashed black lines. The EIG and WIG mode frequencies are shown by blue and red symbols,

respectively. Negative frequencies correspond to negative values of zonal wave numbers. Frequencies for k = 0 are zero for all ROT modes,

for the MRG mode, for the Kelvin mode and for the n= 0 WIG mode. For n > 0 and k = 0, frequencies of the WIG modes have opposite

signs and equal values as the EIG mode frequencies. For k > 1, frequencies of the WIG modes have larger absolute values than frequencies

of the EIG modes for the same n.

hand, the structure of associated Hough functions does not

change significantly if the linearization is performed around

the non-zero mean zonal flow (see corrigendum to Kasahara,

1980). This implies that it is suitable to use the 3-D normal

modes constructed with reference to the basic state at rest as

a universal set of the spectral expansion functions to repre-

sent global atmospheric data.

2.4 Expansion of discrete global data onto NMF

An input data vector X for the projection is built by the zonal

and meridional winds (u,v) and modified geopotential height

h= P/g defined on the horizontal regular Gaussian grid and

vertical sigma levels at time step t , with the time subscript

dropped.

X (λ,ϕ,σ )= (u,v,h)T (31)

Equation (2) is applied to compute geopotential P .

The projection is performed on the pre-computed vertical

structure functions,G(σ), the meridionally dependent part of

the horizontal Hough vector functions, 2k
n(ϕ), and the har-

monic waves in the longitudinal direction. The procedure de-

rived in the previous section is applied in the steps summa-

rized as follows. The input data on j th σ level are first repre-

sented by a series of the vertical structure functions Gm(j).

For a single data point
(
λ,ϕ,σj

)
the expansion is∣∣∣∣∣∣

u
(
λ,ϕ,σj

)
v
(
λ,ϕ,σj

)
h
(
λ,ϕ,σj

)
∣∣∣∣∣∣=

M∑
m=1

SmXm (λ,ϕ)Gm(j). (32)

The scaling matrix Sm in Eq. (32), which makes the vector

Xm (λ,ϕ) for the input to the HSE dimensionless, is defined

in accordance with Eq. (17) as √gDm 0 0

0
√
gDm 0

0 0 Dm

 .
The integer subscript m spans from the external vertical

mode m= 1 to the total number of vertical modes M . Dis-

crete functions,Gm(j), are derived using the finite difference
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solution method for the σ vertical coordinate in KP1981 and

they satisfy

J∑
j=1

Gm(j)Gm′(j)= δmm′ . (33)

Here, J is the number of vertical levels. The vector Xm

is calculated by the reverse transform of Eq. (32) through

the multiplication of Eq. (32) by Gm′(j) and summation of

the result from j = 1 to J with the use of the orthogonality

condition (33). The result becomes

Xm (λ,ϕ)=
(̃
um, ṽm, h̃m

)T
= S−1

m

J∑
j=1

(u,v,h)j
TGm(j) . (34)

Definition of the vector Xm in Eq. (34) makes use of the

notation defined in Eq. (17). Equations (32) and (34) are the

vertical transform pair.

The dimensionless horizontal coefficient vector Xm (λ,ϕ)

for a given vertical mode m can now be projected onto the

Hough harmonics H k
n as

Xm (λ,ϕ)=

R∑
n=1

K∑
k=−K

χkn (m)H
k
n (λ,ϕ;m) , (35)

where the maximal number of zonal waves is denoted by K ,

including zero for the mean zonal state. For every given ver-

tical mode m, the Hough harmonics are characterized by the

two indices for the combined meridional mode n and the

zonal wave number k. The subscript n for the meridional

mode indicates all combined meridional normal modes in-

cluding rotational (ROT) NR, EIG NE, and WIG NW modes.

Thus, R =NR+NE+NW. The global orthogonality condi-

tion for the Hough functions is Eq. (27).

The scalar complex coefficient χkn (m) can be obtained

from Eq. (35) by multiplying Eq. (35) by
[
H k
n

]∗
, the com-

plex conjugate of H k
n, and integrating the resultant equation

with respect to λ from 0 to 2π , and with respect to ϕ from

−π/2 to+π/2, and using the orthonormality condition (27).

The result is

χkn (m)=
1

2π

2π∫
0

1∫
−1

Xm (λ,ϕ) ·
[
H k
n

]∗
dµdλ . (36)

Equations (35) and (36) are the horizontal transform pair.

2.5 Energy product

One of the advantages of expanding the fields of atmo-

spheric motions by the NMFs is that the global total en-

ergy can be derived from a particular type of scalar prod-

uct, called the energy product. A history on the origin of the

energy product is discussed by Platzman (1992). Here, the

energy product is calculated from the complex coefficients

obtained by Eq. (36). The partition of total energy into the

kinetic and available potential energies becomes straightfor-

ward. Likewise, the energy spectrum with respect to longitu-

dinal, meridional and vertical scales as well as wave species

can be calculated easily. A detailed derivation of the global

energy equation in normal-mode space from the linearized

atmospheric model represented by Eqs. (3)–(5) has been pre-

sented in KP1981.

The conservation equation of global total energy in the

system in the modal space is given by

∂

∂t

2π∫
0

1∫
−1

M∑
m=1

(Km+Pm)dµdλ= 0 , (37)

where

Km =
1

2

(
u2
m+ v

2
m

)
(38)

and

Pm =
1

2

g

Dm
h2
m . (39)

Here, Km and Pm denote the specific kinetic energy and

potential energy, respectively, of the mth vertical mode. The

energy Pm is more appropriately referred to as an approxima-

tion to available potential energy. This represents a portion of

the total potential energy which may be available for conver-

sion into kinetic energy (Lorenz, 1955, 1960). From Eq. (34)

it is clear that the components um, vm and hm are defined as

(um,vm,hm)
T
=

J∑
j=1

(u,v,h)j
TGm(j) . (40)

The global energy product of the mth vertical mode is de-

fined by the following scalar product Im,

Im =
1

2
gDm

R∑
n=1

K∑
k=−K

χkn (m)
[
χkn (m)

]∗
, (41)

where
[
χkn
]∗

is the complex conjugate form of Eq. (36) and

it is given by

[
χk
′

n′ (m)
]∗
=

1

2π

2π∫
0

1∫
−1

Xm(λ,φ) ·H
k′

n′dµdλ . (42)

Note that in Eq. (41) the energy product is summed with

respect to the meridional mode index from n= 1 to R and

zonal wave number k =−K to K as done in Eq. (35).

Applying the expression for Xm(λ,φ) from Eq. (34) and

the orthogonality condition

R∑
n=1

K∑
k=−K

1

2π

2π∫
0

1∫
−1

H k
n ·

[
H k′

n′

]∗
dµdλ= δkk′δnn′ , (43)
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the scalar product Im defined by Eq. (41) becomes

Im =
1

2
gDm

2π∫
0

1∫
−1

(
ũ2
m+ ṽ

2
m+ h̃

2
m

)
dλdµ (44)

=

2π∫
0

1∫
−1

(Km+Pm)dµdλ . (45)

Thus, to obtain the global total energy I the summation

of the scalar product Im with respect to the vertical mode is

required as

I =
1

2

M∑
m=1

gDm

R∑
n=1

K∑
k=−K

(
Re
[
χkn

]2

+ Im
[
χkn

]2
)
. (46)

Also note that similar to Eq. (41) we can express the global

energy of the kth zonal wave number as Ik ,

Ik =
1

2

M∑
m=1

gDm

R∑
n=1

χkn (m)
[
χkn (m)

]∗
, (47)

and the global energy contained in the nth meridional mode

as In,

In =
1

2

M∑
m=1

gDm

K∑
k=−K

χkn (m)
[
χkn (m)

]∗
. (48)

3 Formulation of the NMF software

The software consists of a new code written mainly in Fortran

90 which needs to be combined with several basic libraries

available in the public domain. The external libraries needed

for the software implementation are the libraries for han-

dling the input data in GRIB (GRIdded Binary) and NetCDF

(Network Common Data Form) formats and the LAPACK

(Linear Algebra PACKage) and ALFPACK (Associated Leg-

endre Functions PACKage) libraries for solving the eigen-

value problem. While a version of the LAPACK (version 3.4)

and a somewhat modified ALFPACK source code are pro-

vided with the package, the NetCDF and GRIB-API (GRIB-

Application Program Interface) libraries need to be installed

by the user. The ALFPACK package, which is used for the

computation of the associated Legendre functions of the first

kind, originates from NCAR (Swarztrauber and Kasahara,

1985).

Once the above libraries are correctly installed and their

paths provided in the Mkinclude file located in the main di-

rectory NMF_MODES, the execution of make command pro-

duces five binaries which compute

– the Gaussian grid and weights;

– the vertical structure functions;

– the horizontal structure functions;

– projection of 3-D global data;

– filtering of selected modes back to physical space.

The first three steps need to be applied at the beginning of

any project work related to a particular global data set as they

provide a set of eigenmodes for the projection. The main job,

that of the 3-D projection, can be carried out for any number

of input files which are recognized by their date flags. The

same approach is applied in the case of modal filtering which

reads an input file with the Hough coefficients χkn (m) and

provides their physical-space equivalent for a user-defined

subset of values (k,n,m).

All auxiliary input files are direct-access binary files ex-

cept the input file with the vertical coordinate definition

which is kept in text format. Such files for the ECMWF

system are available online, e.g. from http://old.ecmwf.int/

products/data/technical/model_levels (as on 9 August 2014),

and can be directly copied to the input file. All outputs files,

vertical structure functions, horizontal structure functions

and output files of 3-D projection with the Hough expansion

coefficients have the direct-access binary format. Outputs of

the filtering can be saved as direct-access binary format or

text files. It is planned in future work to replace the binary

format with the NetCDF format for all input and output files.

Compilation is straightforward and it has been success-

fully applied on Linux systems and Mac OS as well as the

large IBM and CRAY computers of ECMWF. The applied

Fortran compiler is by default gfortran. Other compilers, the

Intel Fortran and the IBM Fortran have also been used and no

problems specific to different compilers were found. Small

and big endian computers have also been used.

3.1 Computation of the Gaussian grid parameters

The computation of the Gaussian grid on which the 3-D

normal-mode projection is carried out is easily performed by

specifying only two input values in the namelists gaussian.

One is the number of the Gaussian grid points between the

poles and the second is the name of the output file which con-

tains locations of the Gaussian latitudes and their weights.

The namelists is stored in the input file gauss.cnf. An exam-

ple is available in Appendix A. The subsequent computations

of the meridional profiles of Hough functions, the projection

and the modal filtering use this file.

Input data for the projection needs to be provided on a

regular Gaussian grid. The software performs no horizontal

data interpolation. The regular Gaussian grid is available for

extraction directly from the ECMWF data archiving system

MARS. Data sets on non-Gaussian grids should be interpo-

lated to the Gaussian grid by the user. This can be done by

using standard operators such as the NetCDF operator (NCO)

(http://nco.sourceforge.net) and climate data operator (CDO)

(https://code.zmaw.de/projects/cdo) or a language like NCL

(http://www.ncl.ucar.edu).
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3.2 Computation of the vertical structure functions

The described procedure for the NMF representation as-

sumes that the input data are defined on vertical σ levels or

that they can be vertically interpolated to σ levels. If the in-

put data are not on σ levels, the definition of the σ coordinate

needs to be provided. It is used as input to the VSE (10) and

later as input information for the interpolation from the lev-

els of input data to σ levels. The software currently manages

input data on σ and on hybrid levels and the latter are in-

terpolated to the predefined sigma levels by the software. If

the vertical coordinate is not sigma or the hybrid sigma pres-

sure, there is no option available in the software to process

the data. The user must define a σ coordinate for his/her in-

put data. For example, the sigma coordinate for the standard-

pressure level data can easily be computed as σ = p/ps and

the vertical interpolation of input data needs to be performed

from pressure to σ levels. The software has mainly been ap-

plied to the ECMWF data, which are defined on hybrid verti-

cal levels. Subroutines for their interpolation to correspond-

ing σ levels are well tested and included in the software.

In addition to the σ coordinate, the stability profile de-

fined by Eq. (8) is another required input to the program

for the computation of the vertical structure functions. For

the hybrid coordinate of the ECMWF model and several cli-

mate models (e.g. NCAR climate model, EC-Earth) values of

σ are readily obtained from the available values of average

full and half-level pressures. In order to compute the stabil-

ity profile, globally averaged temperature T0 on each σ level

needs to be specified. The profile of T0 presented in Fig. 2a is

computed from ERA Interim reanalyses for the year of 2000

but it varies little if a multi-year period is used. The same

applies for the stability profile computed by Eq. (8) from

dT0/dσ and the σ levels. The profile of 00 for ERA Interim

is presented in Fig. 2b. It can be seen that the values of 00

are positive and they vary little throughout the troposphere;

however, in the upper stratosphere and the mesosphere 00

increases significantly so that overall it can vary several or-

ders of magnitude between the surface and 0.1 hPa. As a re-

sult, the stability parameter S which is computed for use in

Eq. (10) has a profile with values rapidly increasing in the

upper stratosphere (Fig. 2c).

Appendix B shows parameters in the input namelist vs-

fcalc_cnf needed for the computation of vertical structure

functions. The input file with namelists is vsfcalc.cnf. In ad-

dition to the two binary input files, a user specifies the names

of two output files which will contain the vertical structure

functions and equivalent depths. In principle, the number of

vertical modes, which correspond to the number of vertical

structure functions saved in the output file, is the same as

the number of vertical sigma levels. However, one may not

want to use all vertical structure functions in the projection

due to small equivalent depths associated with higher verti-

cal modes. As seen in Fig. 3 showing vertical structure func-

tions for ERA Interim, equivalent depths range from about
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Figure 2. Globally-averaged vertical profiles of (a) temperature, (b) stability Γ0 and (c) normalized stability parameter S on model levels
which is input to the vertical structure equation (10). Profiles are based on ERA Interim model-level data for year 2000. Labels on y-axis are
average pressures of the model levels. Values of stability at various levels in (b) are scaled by different factors for clarity reasons. Under 200
hPa stability is not scaled.

Figure 2. Globally averaged vertical profiles of (a) temperature T0,

(b) stability 00 and (c) normalized stability parameter S on model

levels. The stability profile is input to the vertical structure equa-

tion (10). Profiles are based on ERA Interim model-level data for

year 2000. Labels on y axis are average pressures of the model lev-

els. Values of stability at various levels in (b) are scaled by different

factors for clarity reasons. Under 200 hPa stability is not scaled.

D = 10 km down to centimetres or even millimetres. There

is a rapid drop in values of equivalent depth after the lead-

ing five vertical modes. In the case of ERA Interim presented

in Fig. 3, there are four equivalent depths greater than 1 km,

11 equivalent depths between 1 km and 100 m while further

18 equivalent depths have values greater than 10 m. Between

10 and 1 m there are 14 depths and the remaining 13 values

of equivalent depth are between 1 m and 4 mm. These values

define M values of the constant γ (Eq. 21) for M systems of

the HSEs (18). As illustrated in the next section, the merid-

ional extent of the horizontal structure functions is associated

with the magnitude of D. The Hough functions correspond-

ing to equivalent depths of the order of 10 m are meridionally

bounded to the tropics.

Correspondingly, small equivalent depths have been ex-

tensively used to characterize various equatorial waves. This

relies on the theory of tropical wave solutions derived for the

equatorial-β plane (Matsuno, 1966). Instead of the Hough

functions characterizing the spherical wave solutions, lin-

ear wave solutions for the shallow-water equations on the

equatorial-β plane with the prescribed value of D are given

in terms of the parabolic cylinder functions. The linear the-

ory of tropical waves has been successfully employed to rep-

resent some of the most dominant variability of the tropical

atmosphere (e.g. Gill, 1980; Heckley and Gill, 1984; Biello

and Majda, 2005). The spectral–temporal filtering of trop-

ical data has been used to derive the shallow-water phase

speeds of equatorial waves coupled to convection; the es-

timated range of equivalent depths varies between 10 and

100 m (e.g. Hayashi, 1981; Wheeler and Kiladis, 1999).
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Figure 3. Values of the equivalent depths obtained as solution of
the vertical structure equation for ERA Interim modelling system.
(a) 60 model levels and (b) 21 model levels closest to the standard
21 pressure levels. A part of equivalent depths in (a) is also shown
multiplied by factor 100 (modes 21-50) and by factor 10000 (modes
51 to 60). A part of aquivalent depths in (b) is similarly multiplied
by factor 10 (modes 11-16) and by f actor 100 (modes 16 to 21).

Figure 3. Values of the equivalent depths D obtained as solution

of the vertical structure equation for ERA Interim modelling sys-

tem: (a) 60 model levels and (b) the 21 model levels closest to the

standard 21 pressure levels. A part of equivalent depths in (a) is also

shown multiplied by factor 100 (modes 21–50) and by factor 10 000

(modes 51 to 60). A part of equivalent depths in (b) is similarly mul-

tiplied by factor 10 (modes 11–16) and by factor 100 (modes 16 to

21).

As discussed in previous papers, the equivalent depth for

the first vertical mode (m= 1) depends only on the surface

temperature, which is a global constant, and the model ver-

tical depth (Cohn and Dee, 1989). The equivalent depths for

m> 1 are relatively insensitive to the value of the surface

boundary condition, but they are sensitive to the stability and

the depth of the top model layers (Staniforth et al., 1985).

In the case of ERA Interim, there are on average 12 levels

beneath 850 hPa, 10 levels from 850 to 500 hPa and 13 lev-

els between 500 and 100 hPa. The remaining 25 levels are

in the stratosphere (21 levels under 1 hPa) and mesosphere

(4 levels above 1 hPa). If instead of 60 hybrid models levels

we select only the 21 levels closest to the standard-pressure

levels, the corresponding equivalent depths are different for

higher vertical modes as can be seen in Fig. 3b.

The shapes of vertical structure functions for the ERA In-

terim 60-level system are shown in Fig. 4a and b for the first

seven vertical modes (Fig. 4a) and for selected higher modes

(Fig. 4b). The solutions for first seven vertical modes are also

shown for the case of 21 levels (Fig. 4c) defined by values of

average pressure closest to the standard pressure. This figure

can be compared with other figures from literature includ-

ing plots from KP1981 and Žagar et al. (2009a). Each ver-

tical mode m is associated with m− 1 zero crossings in the

vertical profile. Therefore, the mode m= 1, which does not

change sign, has traditionally been commonly referred to as

the barotropic mode. Lower modes have larger amplitudes

in the troposphere and the stratosphere, whereas the relevant

structure of Gm functions moves downward towards the sur-

face as the value of m increases (Fig. 4b). We note that the

second mode has its single zero crossing at around 30 hPa

and that the leading seven modes have no zero crossings un-

der 300 hPa. Traditionally, these modes have been referred

to as the first baroclinic mode, the second baroclinic mode,

etc., on in the discussion of tropospheric circulation. How-

ever, such terms are not suitable in the present case of mod-

els with model top levels high above the tropopause. Since

several vertical modes correspond to the traditional picture

of the first baroclinic mode, using any one of them provides

an incomplete picture of the circulation associated with the

first baroclinic mode. Instead, we need to sum a number of

vertical modes in order to discuss representative circulations

in physical space.

3.3 Computation of the horizontal structure functions

A separate program computes the meridional structure of

Hough harmonics, i.e. vectors U k
n(φ), V k

n(φ) and Zkn(φ) for

a range of values k and n for each equivalent depth. Ap-

pendix C shows parameters which need to be specified in

the input file houghcalc.cnf via several namelists. Two input

namelists, meridional_grid and vsf_cnf, are previously de-

fined. In the namelist vsf_cnf, the user specifies the number of

vertical modes (i.e. equivalent depths) for which the horizon-

tal structure functions are computed. The range of horizon-

tal modal indices is specified in the houghcalc_cnf namelist

by the initial (szw) and final (ezw) values of the zonal wave

number and by the number of meridional modes (parameter

www.geosci-model-dev.net/8/1169/2015/ Geosci. Model Dev., 8, 1169–1195, 2015
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Figure 4. Vertical structure functions for (a) first seven vertical modes and (b) modes 10, 15, 20, 30, 40 50 and 60, derived for 60 model
levels of ERA Interim. (c) As (a) but for the case of 21 model levels closest to the standard 21 pressure levels.

Figure 4. Vertical structure functions for (a) the first seven vertical modes and (b) modes 10, 15, 20, 30, 40 50 and 60, derived using the 60

model levels of ERA Interim; (c) same as (a) but for the 21 model levels closest to the standard 21 pressure levels.

maxl). Currently, the same value of meridional modes maxl

applies to all three motion types, EIG, WIG and ROT modes,

so that the total number of meridional modes isR = 3×maxl.

The namelist output defines the name of the output files with

Hough meridional profiles and how the outputs are stored

(binary or text format). Further explanations are provided in

Appendix C.

The size of output binary files can be relatively large if

a large zonal and meridional truncation is requested. For ex-

ample, for the presented ERA Interim data set, we have used

200 zonal wave numbers and 70 meridional modes for each

of the IG and balanced modes. With a single file per zonal

wave number, there are as many files with meridional struc-

ture of Hough function as zonal wave numbers. The com-

putation of horizontal structure functions is also the most

memory intensive computation. However, once these files are

computed, they can be used repeatedly for projection pur-

poses and they are read only once at the beginning of projec-

tion and filtering.

The meridional profiles of the Hough functions corre-

sponding to the Kelvin mode and to the n= 1 balanced mode

are shown in Fig. 5 for two zonal wave numbers and for

two vertical modes. The displayed vertical modes m= 1 and

m= 10 have equivalent depths of ca. 10 km and 220 m, re-

spectively. We can see that an increased value of the vertical

mode index, i.e. a reduced value of equivalent depth is as-

sociated with a stronger equatorial trapping of the horizontal

structure functions. Similar equatorial trapping of horizon-

tal structure functions occurs when the zonal wave number

increases for the same equivalent depth. In Fig. 5 the solu-

tion for (k,m)=(1,10) appears equatorially trapped nearly as

much as the solution for (k,m)=(31,1). For the barotropic

mode, the horizontal structure of all modes is global. This

tells us that the Hough functions associated with small equiv-

alent depths are strongly bounded to the Equator and hence

not useful for the projection of data in the extra-tropical re-

gions. Furthermore, these numerically obtained small equiv-

alent depths are associated with vertical structure functions

that are representative only of the lower troposphere and the

boundary layer. Therefore, even if one can solve the VSE for

all vertical modes, the number of vertical modes we keep in

the computation of the horizontal structure functions (param-

eter num_vmode in namelist vsf_cnf in Appendix C) should

in principle be smaller than the number of model levels. For

the results presented in the next section for ERA Interim, we

kept 43 vertical modes with equivalent depths greater than

1 m. While it is not wrong to keep all vertical modes, we

found that not using vertical modes with equivalent depth

smaller then 1 m is a good option in the case of models with

many vertical levels such as the ECMWF model.

3.4 Projection of 3-D data on normal-mode functions

Namelists for the meridional grid and vertical structure func-

tions defined in previous subsections are also used in the

input file normal.cnf for the projection that is given in Ap-

pendix D. In addition, namelist hough_cnf specifies input

files with the meridional Hough functions while the remain-

ing namelists provide information about the input data. The

user can choose to save the globally averaged vertical tem-

perature profile T0 and surface pressure field. These can be

used for a posteriori interpolation from sigma levels back to

the hybrid (or other) model levels or for the computation

of temperature perturbations from the geopotential pertur-

bations. Namelist input_data describes the data format and

the vertical grid. The data valid for a single time step can

be contained in several files which together must contain
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Figure 5. Meridional structure of the Hough harmonics for (top)

Kelvin mode and (bottom) n= 1 balanced mode. The four pan-

els for each mode correspond to various combinations of the zonal

wave number k and vertical modem, as defined in each panels’ title.

fields of temperature, wind components and specific humid-

ity on model levels as well as surface pressure and orogra-

phy. Horizontally, all fields must be on the regular Gaussian

grid. Specific humidity is used in the computation of model-

level geopotential. An option to use the software without hu-

midity data will soon become available in the package. The

projection software works in the following way. First, the in-

put files with the meridional grid, vertical structure functions

and horizontal structure functions are read. This is followed

by the reading of the input data. The modified geopotential

variable is computed on the input model levels that are sub-

sequently interpolated vertically to the predefined sigma lev-

els if needed. This provides the input vector X defined by

Eq. (31). The vertical projection (34) is carried out first fol-

lowed by the horizontal projection (36). The resulting Hough

coefficients are saved in the output file with a prefix defined

by the variable coef3DNMF_fname which is appended by the

date as specified in the namelist time. Currently, the output

file is a direct-access binary file but in the near future we

plan to make all outputs NetCDF format files. The data read-

ing and the projection step are carried out in the loop over

time which is defined in the namelist time. The variable dt

defines a regular time step between subsequent files. Outputs

of the projection of 30 years of ERA Interim data (once per

day at 12:00 UTC) are presented in the next section.

3.5 Filtering of modes to physical space

The inverse projection or filtering of modes back to physical

space is defined by Eqs. (35) and (32) for the inverse horizon-

tal and vertical projections, respectively. Not all modes need

to be inverted back to physical space. For example, it may

be of interest to separate the balanced and IG components of

circulation. Tropical modes are of special interest as many

studies deal with the characteristics of the Kelvin mode and

MRG mode throughout the tropical atmosphere. The NMF

software can filter any mode or a set of modes back to phys-

ical space.

Appendix E contains an example of input file nor-

mal_inverse.cnf for the filtering of a selected range of

(k,n,m) modal indices. In addition to several namelists

shared with the file normal.cnf, two namelists, nor-

mal_cnf_inverse and filter_cnf are needed specifically for the

filtering purpose. The former is similar to normal_cnf as it

defines the input and output file names and formats. The lat-

ter defines the range of the zonal, meridional and vertical

modes which are to be filtered. The meridional filtering range

is defined separately for the EIG, WIG and balanced modes.

If the filtering range is specified in terms of the zonal wave

numbers or vertical modes, the range of associated merid-

ional modes to be filtered out can be specified by the user.

Projection of all modes back to physical space is achieved by

choosing the index value of the starting mode to filter (e.g.

eig_n_s) greater than the truncation value for the same mode

(i.e. eig_n_s>maxl). In the next section we shall discuss out-

puts of filtering of the balanced and IG circulation.

4 Modal analysis of ERA Interim: climatological

properties

We now present some average properties for the ERA In-

terim (Dee et al., 2011) 30 year period 1980–2009. Daily in-

put data valid at 12:00 UTC were specified on a 512× 256

horizontal grid and 60 vertical levels. Projected fields con-

taining χkn (m) coefficients were saved to files using the pa-

rameters provided in Appendix D. The presented climato-

logical properties are obtained in several ways. The global

energy distributions presented in Figs. 6–8 were obtained by

averaging energy in a single zonal wave number and merid-

ional mode as defined by Eqs. (47) and (48), respectively.

Zonal averages, cross-equatorial flow and horizontal circu-

lation on selected levels were produced by averaging coeffi-

cients χkn (m) over the 30 year period for each mode followed

by the inverse projection to physical space based on filtering

criteria. Appendix E provides an example of a namelist for

filtering the IG circulation.

4.1 Scale-dependent energy distribution

Figure 6 shows the average energy distribution as a function

of the zonal wave number as defined by Eq. (47). The spectra

www.geosci-model-dev.net/8/1169/2015/ Geosci. Model Dev., 8, 1169–1195, 2015



1182 N. Žagar et al.: Normal-mode function representation: software description and applications

N. Žagar et al.: Normal-mode function representation: software description and applications 25

1 2 3 5 7 10 15 25 50 100 180

10
-2

10
0

10
2

10
4

zonal wave number

E
ne

rg
y 

(J
/k

g)

 

 
a)

-1

-3
-5/3

Total energy
Balanced energy (ROT)
Inertio-gravity energy (IG)

1 2 3 5 7 10 15 25 50 100 180
10

-2

10
-1

10
0

10
1

10
2

zonal wave number

E
ne

rg
y 

(J
/k

g)

 

 
b)

IG
Easterly IG (EIG)
Westerly IG (WIG)

1 2 3 5 7 10 15 25 50 100 180

10
-4

10
-2

10
0

10
2

zonal wave number

E
ne

rg
y 

(J
/k

g)

 

 
c)

-5/3

ROT n=0
ROT n=1
ROT n=3
ROT n=5
ROT n=11

Figure 6. Atmospheric energy spectra. (a) Energy distribution
in balanced (red line) and inertio-gravity (blue line) motions and
their sum (total wave energy, in black) as a function of the zonal
wavenumber. (b) As (a) but IG (black), EIG (red) and WIG
(blue). (c) As (a) but balanced spectra for meridional modes n =
0,1,3,5,11. Spectra are obtained by averaging 30 years of outputs
from ERA Interim, 12 UTC analysis. Summation is performed over
(a,b) all (m,n) and (c) all m and the mean state (k = 0) is not in-
cluded. Short dashed lines (black) correspond to the spectra with
slopes −3, −1 and −5/3 as written next to the lines.

Figure 6. Atmospheric energy spectra. (a) Energy distribution in

balanced (red line) and inertio-gravity (blue line) motions and their

sum (total wave energy, in black) as a function of the zonal wave

number; (b) same as (a) but IG (black), EIG (red) and WIG (blue);

(c) same as (a) but balanced spectra for meridional modes n= 0,

1, 3, 5, 11. Spectra are obtained by averaging 30 years of outputs

from ERA Interim, 12:00 UTC analysis. Summation is performed

over (a, b) all (m,n) and (c) all m and the mean state (k = 0) is not

included. Short dashed lines (black) correspond to the spectra with

slopes −3, −1 and −5/3 as written next to the lines.
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Figure 7. Ratio of balanced (red line) and inertio-gravity (blue line)

energy and total energy in each zonal wave number. Averaging is

performed for the 30-year period and for all (m,n).
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Figure 8. Distribution of total, balanced and inertio-gravity wave

energy in meridional modes. Summation is performed over all

(m,k). The mean state (k = 0) is not included.

are shown up to the maximal truncation used for the projec-

tion: zonal wave number 200, which corresponds to a grid

spacing about 100 km at the Equator and about 70 km in mid-

latitudes. One can see that the total energy spectra follows the

−3 law all the way from the synoptic scales (k > 5) down to

the smallest analyzed scale. As in Žagar et al. (2009a), we

note a major difference between the balanced and unbalanced

energy spectra; the latter are characterized by a flatter slope,

especially on planetary and synoptic scales. Furthermore, IG

energy is not equally split into EIG and WIG contributions,

as shown in Fig. 6b. On planetary scales, the EIG dominate.

This is largely due to a contribution of KWs as noted in the

previous study (Žagar et al., 2009b, c).

For the planetary wave numbers 1–5, the total (and bal-

anced) energy spectrum is flatter than for synoptic scales; en-
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ergy injected at scales associated with baroclinic instability

inversely cascades to larger scales (Charney, 1971). The en-

ergy scaling law in planetary scales appear closer to −1 than

to the theoretically expected −5/3 law (e.g. Lilly, 1973).

Further details about this part of the spectrum can be dis-

cussed in relation to Fig. 6c which shows the balanced en-

ergy spectra for different meridional modes. The MRG spec-

trum (denoted n= 0 ROT) appears flat at planetary scales,

a feature noticed also in operational ECMWF analyses by

Žagar et al. (2009b). The balanced energy spectra for merid-

ional modes 1–5, which represent the majority of variability

in midlatitudes, have a −5/3 slope as expected by the quasi-

geostrophic turbulence theory (Charney, 1971; Tung and Or-

lando, 2003).

The total energy distribution shows no sign of slope

flattening in sub-synoptic scales in comparison to synop-

tic scales. On the contrary, after a zonal wave number of

around 100 the total energy spectrum becomes somewhat

steeper (Fig. 6a). This lack of variability in sub-synoptic

scales has been noted also in other studies of NWP mod-

els (e.g. Frehlich and Sharman, 2008) including the NMF re-

sults of various analysis systems (Žagar et al., 2009a). One

can also notice in Fig. 6a that the slope of IG energy spec-

tra becomes steeper as the horizontal scale reduces. In sub-

synoptic scales, the IG energy clearly dominates over bal-

anced energy.

A relative contribution of the two energy components is

further presented in Fig. 7. This figure shows that at the zonal

wave numbers 28–30, which correspond to the resolution of

about 700 km at the Equator and to around 500 km in the

midlatitudes, the unbalanced component of energy becomes

greater than the balanced component. Given the global 3-D

nature of our spectra and a lack of previous similar inves-

tigations, it is difficult to discuss the origin of this scale in

ERA Interim data and its realism. A similar scale has been

known from observations as the scale of the major shift in

the slope of energy spectra (derived for both wind and tem-

perature data) from a −3 to −5/3 range (Nastrom and Gage,

1985). However, a similar change of the slope of the total en-

ergy spectra is absent in Fig. 6. Furthermore, energy spectra

derived from models are usually based on single level data

(e.g. Burgess et al., 2013; Blažica et al., 2013) and they show

only kinetic energy; correspondingly, their comparison with

the spectrum in Fig. 6a which represents the vertically inte-

grated total energy is not simple. Blažica et al. (2013) showed

that on mesoscale in midlatitudes the divergent component

of kinetic energy is at least equally as large as the rotational

component and that the slopes of the corresponding spectra

depend on the altitude (see also Burgess et al., 2013). In our

global case with the tropics dominated by divergent circula-

tions, we find that the unbalanced component makes up 80 %

or more of the total energy beyond zonal wave number 100

(about 150 km in midlatitudes) (Fig. 7). On planetary scales,

the contribution of IG wave energy is about 10 % or less of

the total wave energy in these scales. However, as the large-

scale energy contains most of the energy, the overall contri-

bution of unbalanced energy to total energy is somewhat less

than 10 %. In planetary scales alone (zonal wave numbers 1–

5) there is 80 % of total energy; synoptic scales (zonal wave

numbers 6 to 15) contain about 15 % of the global total en-

ergy while sub-synoptic scales (k > 15) contribute about 5 %

of the total global energy in ERA Interim (Fig. 7). Since re-

analyses such as ERA Interim provide the most reliable pic-

ture of the general circulation, the numbers above can be used

to evaluate the energy distribution in climate models.

The meridional energy distribution is presented in Fig. 8.

The dominance of balanced energy over IG energy is clearly

seen for all meridional modes except for the lowest, n= 0.

The reason is that the lowest meridional mode for EIG modes

is the Kelvin mode while the MRG wave is saved as n= 0

balanced mode. The KW is the most energetic unbalanced

mode of the global atmosphere (Žagar et al., 2009b) and

its energy level, especially when shown together with n= 0

WIG mode, exceeds the energy level of the MRG mode. The

balanced energy distribution has a peak in meridional modes

n= 3–7 which have the most significant structure in the mid-

latitudes (not shown). As n increases, the IG energy compo-

nent reduces much more rapidly than the balanced energy

component. This can be expected since as n increases, the

meridional structure of modes become less and less relevant

for the tropics where the IG circulation dominates.

From the physical point of view, it is more complicated

to discuss the energy distribution as a function of vertical

mode. As discussed in the previous section, it is difficult to

discuss a single vertical mode separately except perhaps the

barotropic mode. Nevertheless, the vertical energy distribu-

tion displays characteristics for the balanced and IG modes

that can be physically interpreted. In particular, the verti-

cal distribution of IG energy appears related to tropical con-

vection which generates a majority of tropical IG motions.

Several distinct maxima in energy distribution can be as-

sociated with free-propagating large-scale IG modes, with

deep convection and with convectively coupled waves (fig-

ure not shown). An exact physical interpretation of these en-

ergy maxima in relation to dominant equatorial waves de-

rived from observations can be obtained by filtering these

vertical modes back to physical space and comparing their

properties with independent observations. This is a subject

of a separate paper.

4.2 Average circulation

Figure 9 shows the climatological (1980–2009) zonal winds

in January and July, averaged zonally. The three pairs of pan-

els for each month correspond to the total, balanced and IG

component. The sum of the balanced and IG components

correspond to the total average zonal wind. While Fig. 9a

and d resemble the known properties of the zonally aver-

aged zonal wind from earlier reanalyses and global climate

models (GCMs) (e.g. Hartman, 2007), the splitting of cir-
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Figure 9. Meridional profile of the zonally-averaged (a,d) total, (b,e) balanced and (c,f) unbalanced components of the zonal wind in (a-c)
January and (d-f) July. Westerlies are shaded while easterlies are drawn by blue isolines. Contour interval is 4 m/s for balanced and 2 m/s for
IG speeds.

Figure 9. Meridional profile of the zonally averaged (a, d) total, (b, e) balanced and (c, f) unbalanced components of the zonal wind in (a–c)

January and (d–f) July. Westerlies are shaded while easterlies are drawn by blue isolines. Contour intervals are 4 ms−1 for the balanced and

2 m s−1 for the IG speeds.
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Figure 10. As in Fig. 9 but for the IG component of the zonally-averaged meridional wind. (a) January and (b) July. Contour interval is 0.5
m/s.

Figure 10. As in Fig. 9 but for the IG component of the zonally averaged meridional wind: (a) January and (b) July. Contour interval is

0.5 ms−1.

culation into the balanced and IG components has not been

presented earlier. Figure 9 shows that the IG component is

non-zero in the polar regions of the Southern Hemisphere in

both seasons and in the winter stratosphere. In January, there

are easterlies in the polar region south of 60◦ S up to about

300 hPa and westerlies above. In July, IG easterlies are found

from the surface up to 500 hPa. There is a weak unbalanced

component of the zonal wind near the surface in the trop-

ics and in the upper stratosphere above 30 hPa in the winter

hemisphere. Tropospheric unbalanced easterlies are associ-

ated with the impact of Antarctic orography on circulation

which in model-level data projects onto IG modes as a sta-

tionary signal. In addition, the gradient wind balance must be

a contributing factor to the strength of IG circulation in the

winter stratosphere (polar vortex) and possibly also in the

troposphere around Antarctica. Similarly, a non-zero zonally

averaged meridional wind is found in the upper tropical tro-

posphere and near the surface in the subtropical region in the

winter hemisphere in relation to the flow from the summer

to the winter hemisphere (Fig. 10). Although the climatolog-

ical meridional winds in the extra tropics are weak, they are

present in the boundary layer of the Southern Hemisphere as

well as in the summer tropical stratosphere. Since the zon-

ally averaged meridional wind is completely associated with

the IG circulation, the balanced and total components are not

shown (figures are identical).

A further insight into the meridional wind in the tropics

is provided in Fig. 11. This shows the longitudinal features

of cross-equatorial circulation for balanced and IG compo-

nents. In this figure, several known dynamical properties of

tropical circulation can be associated with the balanced and

IG components. In January, we recognize vertically propa-

gating IG waves in the stratosphere (Fig. 11a and c). The

cross-equatorial flow in the upper troposphere and near the

surface are in opposite directions and mostly associated with

the IG modes. A shift from northerly to southerly winds from

winter to summer is associated with the movement of the

Hadley cell and the inter-tropical convergence zone (ITCZ).

This is especially intense in the Indian Ocean sector due to

the monsoon. Another feature seen in Fig. 11 is the impact

of orography. It is obvious in the lower troposphere due to

the African land massif and in the eastern Pacific due to the

Andes. Such features of the lower tropospheric circulation

are absent when the vertical structure of circulation is an-

alyzed by using data on standard-pressure levels which re-

move the impact of orography by the interpolation. While the

presented complex structure of winds near the surface may

appear less familiar, these are realistic winds as analyzed by

ERA Interim on its hybrid model levels which are almost

the same as sigma levels close to the surface. We do not go

into more detailed research on various features in Figs. 9–11

as their proper study and a more exact quantification of the

IG component is beyond the scope of the present paper. Our

purpose is primarily to illustrate the diagnostic capabilities

of the NMF software.

The horizontal climatological structure of wind field is

shown in several figures for two levels. We display model

level 51 which is located in the lower troposphere close to

900 hPa and at model level 31 located at about 229 hPa as

an example of the upper tropospheric flow. January and July

circulation are compared in Figs. 12–15 for the upper tropo-

sphere (Figs. 12 and 14) and the lower troposphere (Figs. 13

and 15). These figures show that the IG circulation, although

just a part of the total wind, has an important role in pro-

viding a major part of the cross-equatorial flow. It modi-

fies the large-scale balanced flow which is primarily zonal

across most of the tropics except in the eastern Pacific. In

January, the cross-equatorial IG winds over the western Pa-
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Figure 11. Meridional winds along the Equator in (a, b) January and (c, d) July. (a, c) All modes and (b, d) unbalanced modes. Spacing is

every 2 ms−1 with positive values (northerly wind) in shades of magenta and negative values (southerly wind) in the blue shades. Wind are

averaged in the belt between 5 degrees off the Equator (14 Gaussian grid points).

Figure 12. Climatological horizontal winds in January on ERA Interim model level 31 (about 229 hPa) for (a) the total circulation, (b)

balanced circulation and (c) unbalanced circulation. Wind intensity is shown by both colours and length of the wind vectors. Colour bar (in

m s−1) is the same for the total circulation and for the balanced circulation (every 1 ms−1), whereas the unbalanced winds are coloured with

a spacing every 0.5 ms−1.
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Figure 13. As in Fig. 12 but for the model level 51 (about 909 hPa).

Figure 14. As in Fig. 12 but for July.

cific and Indian oceans together with the zonal balanced

winds constitute the total circulation with south-easterly di-

rections (Fig. 12); the opposite applies in July when the IG

component enhances cross-equatorial circulation by adding

the northern component to balanced easterlies over Indone-

sia and Indian oceans (Fig. 14). A dominant feature of the IG

circulation in July is an almost purely divergent flow over the

south-east Asian monsoon region. Another outflow region is

found over South America.

The IG circulation close to 900 hPa is comparable in mag-

nitude to the balanced flow. Climatological meridional winds

in the central and western Pacific and Indian Ocean in ERA

Interim come mainly from the unbalanced flow, especially

in January (Fig. 13). Thus, the ITCZ location is defined by

the IG circulation. The extent to which this result is associ-

ated with the model dynamics and physics, i.e. the first-guess

field in data assimilation in comparison to observations and

the multivariate coupling imposed through the 4-D-Var in the

ERA Interim system, is a complex question beyond the scope

of this paper.

Finally, we show an example from the climatology of the

most studied mode of tropical dynamics, the Kelvin mode.

In Fig. 16 the KW is shown at two levels; besides the upper

troposphere level 31 shown in other figures, we also show

model level 27 closer to the tropical tropopause, where the

KW amplitude is largest in July. The prevalent feature of

KW climatology is the zonal wave number k = 1 structure

with a negative geopotential perturbation in the upper tropo-

sphere over the Indian Ocean and equatorial Africa (easter-

lies) and a positive perturbation over the most of the Pacific

(westerly winds). There is approximately an opposite picture

in the lower troposphere over the Pacific with the strongest

easterlies over the western and central Pacific (not shown).

The climatological KW signal is very weak over the Atlantic

and South America in the upper troposphere. This suggests

that the climatological picture of the tropics as envisaged by

Gill (1980) and implemented in many reduced models of the

tropics (e.g. Majda et al., 2004) applies best to the western

Pacific, where the low-level easterlies in the ERA Interim

are due to the KW response to the heating over Indonesia.

A steady-state response from idealized models including the

www.geosci-model-dev.net/8/1169/2015/ Geosci. Model Dev., 8, 1169–1195, 2015
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Figure 15. As in Fig. 13 but for July.

Figure 16. Climatological Kelvin wave in ERA Interim for July on (a) model level 27, at about 133 hPa and (b) and model level 31, at

about 229 hPa. Isolines for the geopotential height are drawn every 10 m, starting from ±10 m with positive values coloured in magenta and

negative values in blue shades.

long-wave approximation, as is assumed in many theoretical

studies, in tropical basins other than the western and cen-

tral Pacific appears appreciably modified by IG modes other

than the KW and by the MRG mode, in agreement with ex-

pectations from more complex studies (e.g. Kasahara, 1984;

Geisler and Stevens, 1982).

5 Conclusions

We presented the theory of the NMFs, technical details of

the code dealing with their application on global 3-D data

and examples of the software application to the reanalysis

data set ERA Interim. It is argued and illustrated by ex-

amples that the normal-mode procedure, once an important

part of the initialization of NWP models, can be applied

for a range of other topics. In particular, normal modes can

be used to evaluate the unbalanced circulation across many

scales. The current global observing system provides an un-

precedented number of observations, mainly from satellites.

Together with advanced assimilation procedures and high-

resolution global models, high-density observations for the

first time in history can resolve IG waves across many scales

(e.g. Shutts and Vosper, 2011). Furthermore, improved ver-

tical discretization, a higher model top level and complex

parametrizations of moist processes have proven to success-

fully represent vertical wave propagation, especially in the

tropics. Thus, operational analyses display significant simi-

larities regarding the large-scale divergent modes (e.g. Žagar

et al., 2009b). This is encouraging for the evaluation of cli-

mate models using normal modes, an application envisaged

early by Williamson and Dickinson (1976). The evaluation

of present-day and past climates simulated by climate mod-

els through their comparison with analyses and the newest

reanalyses is crucial in relation to climate scenarios. Since

the models are characterized by significant problems in sim-

ulating the tropical inter-seasonal variability (e.g. Lin et al.,

2006; Hung et al., 2013), the evaluation of the global unbal-

anced circulation can lead to a new understanding of models’

deficiencies and provide new ideas for their improvements.

In particular, the spatio-temporal details of the large-scale

equatorial modes such as the KW are identified simultane-

ously in the mass field and wind field. Furthermore, the anal-

ysis is done by considering the entire model depth in con-

trast to the majority of existing studies. Although the NMF

representation is applied independently to instantaneous at-

mospheric states, the time series of Hough projection coef-

ficients for various modes and their physical-space equiva-

lents link together to provide a spatio-temporal picture con-

sistent with the linear wave theory which has been the back-

bone of our understanding of atmospheric dynamics. This
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has been illustrated in Žagar et al. (2009b). A long-term anal-

ysis of the vertical wave propagation in ERA Interim is un-

der preparation. As such, the NMF method for wave iden-

tification is complementary to other methods such as the

spectral–temporal filtering. An important advantage of the

NMF method is information on the variance contained in

each wave number and mode.

The paper has presented technical details of the software

implementation which is considered user friendly. A limited

knowledge of Fortran (or a similar programming language) is

judged sufficient to implement and modify the software. The

software application is controlled through a limited number

of parameters in several namelists. A set of open-source li-

braries for reading the input data and for solving the eigen-

value problem are used as well as the gfortran compiler for

the software compilation.

The presented representation of the ERA Interim data set

in terms of NMFs has revealed climatological features of the

large-scale circulation. We showed that the global energy dis-

tribution is dominated by the balanced energy with the IG

modes making less than 10 % of the total wave energy. How-

ever, beyond zonal wave number 30 (a scale around 700 km),

the level of global IG energy exceeds the level of balanced

energy. Even though the presented energy distribution is not

in agreement with observations as the slope of spectra re-

mains −3 all the way to the smallest resolvable scale, at this

point this result is as good as possible to evaluate the energy

distribution and balance in climate models. Similar reason-

ing applies to other presented features such as the zonally

averaged and equatorial circulation.

The software is available from http://www.fmf.uni-lj.si/

~zagarn/modes.php and support for its implementation is

provided by the MODES team at the University of Ljubl-

jana. The real-time spectra and maps of the balanced and IG

circulation in the operational ECMWF forecast model can be

found at http://meteo.fmf.uni-lj.si/MODES

www.geosci-model-dev.net/8/1169/2015/ Geosci. Model Dev., 8, 1169–1195, 2015
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Appendix A: Input file gauss.cnf for the definition of the

regular Gaussian grid

& gaussian

N = 256,

gauss_fname = “gauss256.data”,

/

N – number of points between the poles

gauss_fname – name of the output binary file with Gaus-

sian points and weights

Appendix B: Input file vsfcalc.cnf for the definition of

the vertical structure functions

& vsfcalc_cnf

stab_fname = “stability_L60.data”,

vgrid_fname = “sigma_levels_L60.data”,

vsf_fname = “vsf_L60.data”,

equiheight_fname = “equivalent_height_L60.data”,

num_vmode = 60,

mp = 60,

hstd = 8000.0d0,

suft = 288.0d0,

given_stability = .true.,

given_vsf = .false.,

ocheck = .true.,

/

stab_fname – input file with values of stability 00 on sigma

levels

vgrid_fname – input file with value of full sigma levels

vsf_fname – output file with vertical structure functions

equiheight_fname – output file with equivalent depths

num_vmode – number of vertical modes for which struc-

ture functions are stored in the output file

mp – number of grid points of the input vertical grid

hstd – scale height

suft – global surface temperature

given_stability – logical switch if the file with vertical

structure functions is provided

ocheck – logical switch if the orthogonality is checked for

the vertical modes

Appendix C: Input file houghcalc.cnf for the definition

of the horizontal structure functions

& houghcalc_cnf

szw = 0,

ezw = 200,

maxl = 70,

my = 256,

freq_fname = “freq.data”,

ks_mode = “K”,

ocheck = .false.,

/

& meridional_grid

ygrid_fname = “gauss256.data”,

/

& vsf_cnf

equiheight_fname = “equivalent_height_L60.data”,

num_vmode = 43,

/

& output

output_gmt = .false.,

ofname_gmt = “hough_gmt”,

ofname_bin = “hough”,

bin_combine = “zonal”,

/

szw – starting zonal wave number to compute meridional

structure of Hough harmonics

ezw – last zonal wave number to compute meridional

structure of Hough harmonics

maxl – total number of meridional modes for each motion

type (e.i. EIG, WIG, ROT), so that meridional modes range

from zero to maxl -1

freq_fname – name of the file with dimensionless frequency

νkn
ks_mode – type of solution for the case of k = 0. Although

it can be either “K” or “S”, the recommended value is “K”

ocheck – a logical variable which in case of being .true.

provides the horizontal orthogonality check (Eq. 27)

equiheight_fname – input filename with values of equiva-

lent depths

num_vmode is a number of vertical modes i.e. a range of

equivalent depths for the computation of meridional Hough

profiles

output_gmt – logical variable which allows to save Hough

profiles also in text format

ofname_gmt – name of outputs file in text format

ofname_bin – name of the output binary file

bin_combine – method to combine output. Default is

“zonal” which means that solutions for all vertical and

meridional modes for a single zonal wave number are com-

bined in a single file

Appendix D: Input file normal.cnf for the projection of

3-D data to NMFs

& normal_cnf

nx = 512,

ny = 256,

nz = 60,

nstep = 1,

coef3DNMF_fname = “Hough_coeff_”,

output_3DNMF = .true.,

saveps = .false.,

savemeant = .false.,

ps_fname = “Ps_”,

meant_fname = “Tmean_”,
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saveasci = .false.,

afname = “Inputa_”,

aformat = “(512E20.4,1x)”,

/

& time

datetype = “yyyymmddhh”,

syear = 1980,

smon = 01,

sday = 01,

shour = 12,

smins = 00,

ssec = 00,

slen = 00,

eyear = 2009,

emon = 12,

eday = 31,

ehour = 12,

emins = 00,

esec = 00,

elen = 00,

dt = 86 400,

/

& input_data

dataformat_input = “grib”,

orig = “ECMWF”,

zgrid_type = “hybrid”

numoffile = 1,

ifile_grib_head(1) = “erai_an_N128_”

ifile_rib_head(2) = ”

/

& hough_cnf

hough_fname = “hough”,

num_zw = 200,

maxl = 70,

my = 256,

/

& meridional_grid

ygrid_fname = “gauss256.data”,

/

& vsf_cnf

vsf_fname = “vsf_L60.data”,

vgrid_fname = “sigma_levels_L60.data”,

equiheight_fname = “equivalent_height_L60.data”,

model_level_fname = “model_levels_L60.dat”,

num_vmode = 43,

zgrid = “Sigma”,

mp = 60,

top = 1.0,

given_vsf = .true.,

/

nx – number of data point in the zonal direction

ny – number of data point in the meridional direction

nz – number of data point in the vertical direction

output_3DNMF – true if outputs of expansion are saved

coef3DNMF_fname – prefix of the output files with Hough

expansion coefficients. The date is added according to the

format specified in namelist time

saveps – true if input surface pressure should be saved

upon reading

ps_fname – prefix of the name of file with input surface

pressure

savemeant – true if globally averaged vertical temperature

profile should be saved

meant_fname – prefix of the name of file with temperature

profile

saveasci – true if input 3-D data on model levels should be

saved upon reading in text format

afname – prefix of the name of file with input data

aformat – format for input 3-D data saving

datetype – format of the time flag of input data. “yyyymmd-

dhh” stands for checking of the data year, month, day, hour

and forecast length

syear, eyear – first and last data year to be analyzed

smon, emon – first and last data month to be analyzed

day, eday – first and last day to be analyzed in relation to

their year and month

shour, smins, ssec, ehour, emins, esec – hours, minutes and

seconds of the data

elen – forecast length. “00” for analyses

dt – time step of subsequent times to be analyzed (in sec-

onds)

dataformat_input – format of the input data file

orig – originating data center

zgrid_type – vertical coordinate

numoffile – number of data files per time step

ifile_grib_head – prefix of the input data file. The rest if the

file name if made of the date

Appendix E: Input file normal_inverse.cnf for modal

filtering

& normal_cnf_inverse

nx = 512,

ny = 256,

nz = 60,

nstep = 1,

coef3DNMF_fname = “Hough_coeff_”,

inverse_fname = “ Inverse_allmodes_”,

inv2hybrid = .false.,

ps_fname = “ Ps_”,

meant_fname = “Tmean_”,

saveasci = .true.,

afname = “AInverse_allmodes_”,

aformat = “(512E12.4,1x)”,

/

& filter_cnf

eig_n_s = 100,

eig_n_e = 70,

wig_n_s = 100,

www.geosci-model-dev.net/8/1169/2015/ Geosci. Model Dev., 8, 1169–1195, 2015



1192 N. Žagar et al.: Normal-mode function representation: software description and applications

wig_n_e = 70,

rot_n_s = 1,

rot_n_e = 70,

kmode_s = 300,

kmode_e = 200,

vmode_s = 301,

vmode_e = 43,

/

& time

...

/

& hough_cnf

...

/

& meridional_grid

...

/

& vsf_cnf

...

/

coef3DNMF_fname – prefix of the input file name with

Hough expansion coefficients to be inverted to physical

space

inverse_fname – prefix of the output file name with zonal

wind, meridional wind and

modified geopotential on sigma levels in physical space

inv2hybrid – true if interpolation from sigma to hybrid

model levels is performed upon filtering

to compute winds and geopotential on hybrid levels

ps_fname – prefix of the input file name of surface pressure

file

meant_fname – prefix of the input name of file with tem-

perature profile

saveasci – true if output of inverse should be saved also in

text format

afname – prefix of the name of output text format

aformat – format for output 3-D data saving

eig_n_s, eig_n_e – first and last EIG mode to be filtered

out.

For each mode filtered out, all zonal wave number and all

vertical modes are taken into account

wig_n_s, wig_n_e – first and last WIG mode to be filtered

out

rot_n_s, rot_n_e – first and last ROT mode to be filtered

out

kmode_s, kmode_e – first and last zonal wave number to

be filtered out.

For each zonal wave number filtered out, all meridional

and vertical modes are taken into account

vmode_s, vmode_e – first and last vertical mode to be fil-

tered out.

For each vertical mode filtered out, all meridional and

zonal modes are taken into account
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