Articles | Volume 7, issue 6
https://doi.org/10.5194/gmd-7-3089-2014
https://doi.org/10.5194/gmd-7-3089-2014
Model description paper
 | 
18 Dec 2014
Model description paper |  | 18 Dec 2014

DYPTOP: a cost-efficient TOPMODEL implementation to simulate sub-grid spatio-temporal dynamics of global wetlands and peatlands

B. D. Stocker, R. Spahni, and F. Joos

Related authors

Unrecognised water limitation is a main source of uncertainty for models of terrestrial photosynthesis
Samantha Biegel, Konrad Schindler, and Benjamin D. Stocker
EGUsphere, https://doi.org/10.5194/egusphere-2025-1617,https://doi.org/10.5194/egusphere-2025-1617, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
rsofun v5.0: A model-data integration framework for simulating ecosystem processes
Josefa Arán Paredes, Koen Hufkens, Mayeul Marcadella, Fabian Bernhard, and Benjamin D. Stocker
EGUsphere, https://doi.org/10.1101/2023.11.24.568574,https://doi.org/10.1101/2023.11.24.568574, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Leaf habit drives leaf nutrient resorption globally alongside nutrient availability and climate
Gabriela Sophia, Silvia Caldararu, Benjamin David Stocker, and Sönke Zaehle
Biogeosciences, 21, 4169–4193, https://doi.org/10.5194/bg-21-4169-2024,https://doi.org/10.5194/bg-21-4169-2024, 2024
Short summary
Ideas and perspectives: Beyond model evaluation – combining experiments and models to advance terrestrial ecosystem science
Silvia Caldararu, Victor Rolo, Benjamin D. Stocker, Teresa E. Gimeno, and Richard Nair
Biogeosciences, 20, 3637–3649, https://doi.org/10.5194/bg-20-3637-2023,https://doi.org/10.5194/bg-20-3637-2023, 2023
Short summary
An effective machine learning approach for predicting ecosystem CO2 assimilation across space and time
Piersilvio De Bartolomeis, Alexandru Meterez, Zixin Shu, and Benjamin David Stocker
EGUsphere, https://doi.org/10.5194/egusphere-2023-1826,https://doi.org/10.5194/egusphere-2023-1826, 2023
Preprint withdrawn
Short summary

Related subject area

Biogeosciences
Process-based modeling of solar-induced chlorophyll fluorescence with VISIT-SIF version 1.0
Tatsuya Miyauchi, Makoto Saito, Hibiki M. Noda, Akihiko Ito, Tomomichi Kato, and Tsuneo Matsunaga
Geosci. Model Dev., 18, 2329–2347, https://doi.org/10.5194/gmd-18-2329-2025,https://doi.org/10.5194/gmd-18-2329-2025, 2025
Short summary
Including the phosphorus cycle into the LPJ-GUESS dynamic global vegetation model (v4.1, r10994) – global patterns and temporal trends of N and P primary production limitation
Mateus Dantas de Paula, Matthew Forrest, David Warlind, João Paulo Darela Filho, Katrin Fleischer, Anja Rammig, and Thomas Hickler
Geosci. Model Dev., 18, 2249–2274, https://doi.org/10.5194/gmd-18-2249-2025,https://doi.org/10.5194/gmd-18-2249-2025, 2025
Short summary
A comprehensive land-surface vegetation model for multi-stream data assimilation, D&B v1.0
Wolfgang Knorr, Matthew Williams, Tea Thum, Thomas Kaminski, Michael Voßbeck, Marko Scholze, Tristan Quaife, T. Luke Smallman, Susan C. Steele-Dunne, Mariette Vreugdenhil, Tim Green, Sönke Zaehle, Mika Aurela, Alexandre Bouvet, Emanuel Bueechi, Wouter Dorigo, Tarek S. El-Madany, Mirco Migliavacca, Marika Honkanen, Yann H. Kerr, Anna Kontu, Juha Lemmetyinen, Hannakaisa Lindqvist, Arnaud Mialon, Tuuli Miinalainen, Gaétan Pique, Amanda Ojasalo, Shaun Quegan, Peter J. Rayner, Pablo Reyes-Muñoz, Nemesio Rodríguez-Fernández, Mike Schwank, Jochem Verrelst, Songyan Zhu, Dirk Schüttemeyer, and Matthias Drusch
Geosci. Model Dev., 18, 2137–2159, https://doi.org/10.5194/gmd-18-2137-2025,https://doi.org/10.5194/gmd-18-2137-2025, 2025
Short summary
Sources of uncertainty in the SPITFIRE global fire model: development of LPJmL-SPITFIRE1.9 and directions for future improvements
Luke Oberhagemann, Maik Billing, Werner von Bloh, Markus Drüke, Matthew Forrest, Simon P. K. Bowring, Jessica Hetzer, Jaime Ribalaygua Batalla, and Kirsten Thonicke
Geosci. Model Dev., 18, 2021–2050, https://doi.org/10.5194/gmd-18-2021-2025,https://doi.org/10.5194/gmd-18-2021-2025, 2025
Short summary
The unicellular NUM v.0.91: a trait-based plankton model evaluated in two contrasting biogeographic provinces
Trine Frisbæk Hansen, Donald Eugene Canfield, Ken Haste Andersen, and Christian Jannik Bjerrum
Geosci. Model Dev., 18, 1895–1916, https://doi.org/10.5194/gmd-18-1895-2025,https://doi.org/10.5194/gmd-18-1895-2025, 2025
Short summary

Cited articles

Beven, K. J. and Kirkby, M. J.: A physically based, variable contributing area model of basin hydrology, Hydrolog. Sci. J., 24, 43–69, 1979.
Bloom, A. A., Palmer, P. I., Fraser, A., Reay, D. S., and Frankenberg, C.: Large-scale controls of methanogenesis inferred from methane and gravity spaceborne data, Science, 327, 322–325, https://doi.org/10.1126/science.1175176, 2010.
Brovkin, V., van Bodegom, P. M., Kleinen, T., Wirth, C., Cornwell, W. K., Cornelissen, J. H. C., and Kattge, J.: Plant-driven variation in decomposition rates improves projections of global litter stock distribution, Biogeosciences, 9, 565–576, https://doi.org/10.5194/bg-9-565-2012, 2012.
Buytaert, W.: Topmodel, available at: http://cran.r-project.org/web/packages/topmodel/index.html (last access: 1 May 2013), 2011.
Download
Short summary
Simulating the spatio-temporal dynamics of inundation is key to understanding the role of wetlands under past and future climate change. Here, we describe and assess the DYPTOP model that predicts the extent of inundation and the global spatial distribution of peatlands. DYPTOP makes use of high-resolution topography information and uses ecosystem water balance and peatland soil C balance criteria to simulate peatland spatial dynamics and carbon accumulation.
Share