Articles | Volume 7, issue 1
https://doi.org/10.5194/gmd-7-283-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/gmd-7-283-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Regional scale ozone data assimilation using an ensemble Kalman filter and the CHIMERE chemical transport model
B. Gaubert
LISA, CNRS/INSU UMR7583, Université Paris-Est Créteil et Université Paris Diderot, Institut Pierre Simon Laplace, 94010 Créteil, France
A. Coman
LISA, CNRS/INSU UMR7583, Université Paris-Est Créteil et Université Paris Diderot, Institut Pierre Simon Laplace, 94010 Créteil, France
G. Foret
LISA, CNRS/INSU UMR7583, Université Paris-Est Créteil et Université Paris Diderot, Institut Pierre Simon Laplace, 94010 Créteil, France
F. Meleux
Institut National de l'Environnement Industriel et des Risques, INERIS, Parc Technologique ALATA-B.P. No. 2, 60550 Verneuil en Halatte, France
A. Ung
Institut National de l'Environnement Industriel et des Risques, INERIS, Parc Technologique ALATA-B.P. No. 2, 60550 Verneuil en Halatte, France
L. Rouil
Institut National de l'Environnement Industriel et des Risques, INERIS, Parc Technologique ALATA-B.P. No. 2, 60550 Verneuil en Halatte, France
A. Ionescu
Centre d'Études et de Recherche en Thermique, Environnement et Systèmes EA 3481, Université Paris-Est Créteil, 94010 Créteil, France
Y. Candau
Centre d'Études et de Recherche en Thermique, Environnement et Systèmes EA 3481, Université Paris-Est Créteil, 94010 Créteil, France
M. Beekmann
LISA, CNRS/INSU UMR7583, Université Paris-Est Créteil et Université Paris Diderot, Institut Pierre Simon Laplace, 94010 Créteil, France
Related authors
Yasin Elshorbany, Jerald R. Ziemke, Sarah Strode, Hervé Petetin, Kazuyuki Miyazaki, Isabelle De Smedt, Kenneth Pickering, Rodrigo J. Seguel, Helen Worden, Tamara Emmerichs, Domenico Taraborrelli, Maria Cazorla, Suvarna Fadnavis, Rebecca R. Buchholz, Benjamin Gaubert, Néstor Y. Rojas, Thiago Nogueira, Thérèse Salameh, and Min Huang
Atmos. Chem. Phys., 24, 12225–12257, https://doi.org/10.5194/acp-24-12225-2024, https://doi.org/10.5194/acp-24-12225-2024, 2024
Short summary
Short summary
We investigated tropospheric ozone spatial variability and trends from 2005 to 2019 and related those to ozone precursors on global and regional scales. We also investigate the spatiotemporal characteristics of the ozone formation regime in relation to ozone chemical sources and sinks. Our analysis is based on remote sensing products of the tropospheric column of ozone and its precursors, nitrogen dioxide, formaldehyde, and total column CO, as well as ozonesonde data and model simulations.
Kavitha Mottungan, Chayan Roychoudhury, Vanessa Brocchi, Benjamin Gaubert, Wenfu Tang, Mohammad Amin Mirrezaei, John McKinnon, Yafang Guo, David W. T. Griffith, Dietrich G. Feist, Isamu Morino, Mahesh K. Sha, Manvendra K. Dubey, Martine De Mazière, Nicholas M. Deutscher, Paul O. Wennberg, Ralf Sussmann, Rigel Kivi, Tae-Young Goo, Voltaire A. Velazco, Wei Wang, and Avelino F. Arellano Jr.
Atmos. Meas. Tech., 17, 5861–5885, https://doi.org/10.5194/amt-17-5861-2024, https://doi.org/10.5194/amt-17-5861-2024, 2024
Short summary
Short summary
A combination of data analysis techniques is introduced to separate local and regional influences on observed levels of carbon dioxide, carbon monoxide, and methane from an established ground-based remote sensing network. We take advantage of the covariations in these trace gases to identify the dominant type of sources driving these levels. Applying these methods in conjunction with existing approaches to other datasets can better address uncertainties in identifying sources and sinks.
Cynthia H. Whaley, Tim Butler, Jose A. Adame, Rupal Ambulkar, Stephen R. Arnold, Rebecca R. Buchholz, Benjamin Gaubert, Douglas S. Hamilton, Min Huang, Hayley Hung, Johannes W. Kaiser, Jacek W. Kaminski, Christophe Knote, Gerbrand Koren, Jean-Luc Kouassi, Meiyun Lin, Tianjia Liu, Jianmin Ma, Kasemsan Manomaiphiboon, Elisa Bergas Masso, Jessica L. McCarty, Mariano Mertens, Mark Parrington, Helene Peiro, Pallavi Saxena, Saurabh Sonwani, Vanisa Surapipith, Damaris Tan, Wenfu Tang, Veerachai Tanpipat, Kostas Tsigaridis, Christine Wiedinmyer, Oliver Wild, Yuanyu Xie, and Paquita Zuidema
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-126, https://doi.org/10.5194/gmd-2024-126, 2024
Preprint under review for GMD
Short summary
Short summary
The multi-model experiment design of the HTAP3 Fires project takes a multi-pollutant approach to improving our understanding of transboundary transport of wildland fire and agricultural burning emissions and their impacts. The experiments are designed with the goal of answering science policy questions related to fires. The options for the multi-model approach, including inputs, outputs, and model set up are discussed, and the official recommendations for the project are presented.
Rajesh Kumar, Piyush Bhardwaj, Cenlin He, Jennifer Boehnert, Forrest Lacey, Stefano Alessandrini, Kevin Sampson, Matthew Casali, Scott Swerdlin, Olga Wilhelmi, Gabriele G. Pfister, Benjamin Gaubert, and Helen Worden
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-180, https://doi.org/10.5194/essd-2024-180, 2024
Revised manuscript under review for ESSD
Short summary
Short summary
We have created a 14-year hourly air quality dataset at 12 km resolution by combining satellite observations of atmospheric composition with air quality models over the contiguous United States (CONUS) . The dataset has been found to reproduce key observed features of air quality over the CONUS. To enable easy visualization and interpretation of county level air quality measures and trends by stakeholders, an ArcGIS air quality dashboard has also been developed.
Wenfu Tang, Benjamin Gaubert, Louisa Emmons, Daniel Ziskin, Debbie Mao, David Edwards, Avelino Arellano, Kevin Raeder, Jeffrey Anderson, and Helen Worden
Atmos. Meas. Tech., 17, 1941–1963, https://doi.org/10.5194/amt-17-1941-2024, https://doi.org/10.5194/amt-17-1941-2024, 2024
Short summary
Short summary
We assimilate different MOPITT CO products to understand the impact of (1) assimilating multispectral and joint retrievals versus single spectral products, (2) assimilating satellite profile products versus column products, and (3) assimilating multispectral and joint retrievals versus assimilating individual products separately.
Lucien Froidevaux, Douglas E. Kinnison, Benjamin Gaubert, Michael J. Schwartz, Nathaniel J. Livesey, William G. Read, Charles G. Bardeen, Jerry R. Ziemke, and Ryan A. Fuller
EGUsphere, https://doi.org/10.5194/egusphere-2024-525, https://doi.org/10.5194/egusphere-2024-525, 2024
Short summary
Short summary
We compare observed changes in ozone (O3) and carbon monoxide (CO) in the tropical upper troposphere (10–15 km altitude) for 2005–2020 to predictions from model simulations that track the evolution of natural and industrial emissions transported to this region. An increasing trend in measured upper tropospheric O3 is generally well matched by the model trends. We also find that changes in modeled industrial CO surface emissions lead to better model agreement with observed decreasing CO trends.
Adrien Deroubaix, Marco Vountas, Benjamin Gaubert, Maria Dolores Andrés Hernández, Stephan Borrmann, Guy Brasseur, Bruna Holanda, Yugo Kanaya, Katharina Kaiser, Flora Kluge, Ovid Oktavian Krüger, Inga Labuhn, Michael Lichtenstern, Klaus Pfeilsticker, Mira Pöhlker, Hans Schlager, Johannes Schneider, Guillaume Siour, Basudev Swain, Paolo Tuccella, Kameswara S. Vinjamuri, Mihalis Vrekoussis, Benjamin Weyland, and John P. Burrows
EGUsphere, https://doi.org/10.5194/egusphere-2024-516, https://doi.org/10.5194/egusphere-2024-516, 2024
Preprint archived
Short summary
Short summary
This study assesses atmospheric composition using air quality models during aircraft campaigns in Europe and Asia, focusing on carbonaceous aerosols and trace gases. While carbon monoxide is well modeled, other pollutants have moderate to weak agreement with observations. Wind speed modeling is reliable for identifying pollution plumes, where models tend to overestimate concentrations. This highlights challenges in accurately modeling aerosol and trace gas composition, particularly in cities.
Adrien Deroubaix, Marco Vountas, Benjamin Gaubert, Maria Dolores Andrés Hernández, Stephan Borrmann, Guy Brasseur, Bruna Holanda, Yugo Kanaya, Katharina Kaiser, Flora Kluge, Ovid Oktavian Krüger, Inga Labuhn, Michael Lichtenstern, Klaus Pfeilsticker, Mira Pöhlker, Hans Schlager, Johannes Schneider, Guillaume Siour, Basudev Swain, Paolo Tuccella, Kameswara S. Vinjamuri, Mihalis Vrekoussis, Benjamin Weyland, and John P. Burrows
EGUsphere, https://doi.org/10.5194/egusphere-2024-521, https://doi.org/10.5194/egusphere-2024-521, 2024
Short summary
Short summary
This study explores the proportional relationships between carbonaceous aerosols (black and organic carbon) and trace gases using airborne measurements from two campaigns in Europe and East Asia. Differences between regions were found, but air quality models struggled to reproduce them accurately. We show that these proportional relationships can help to constrain models and can be used to infer aerosol concentrations from satellite observations of trace gases, especially in urban areas.
Wenfu Tang, Louisa K. Emmons, Helen M. Worden, Rajesh Kumar, Cenlin He, Benjamin Gaubert, Zhonghua Zheng, Simone Tilmes, Rebecca R. Buchholz, Sara-Eva Martinez-Alonso, Claire Granier, Antonin Soulie, Kathryn McKain, Bruce C. Daube, Jeff Peischl, Chelsea Thompson, and Pieternel Levelt
Geosci. Model Dev., 16, 6001–6028, https://doi.org/10.5194/gmd-16-6001-2023, https://doi.org/10.5194/gmd-16-6001-2023, 2023
Short summary
Short summary
The new MUSICAv0 model enables the study of atmospheric chemistry across all relevant scales. We develop a MUSICAv0 grid for Africa. We evaluate MUSICAv0 with observations and compare it with a previously used model – WRF-Chem. Overall, the performance of MUSICAv0 is comparable to WRF-Chem. Based on model–satellite discrepancies, we find that future field campaigns in an eastern African region (30°E–45°E, 5°S–5°N) could substantially improve the predictive skill of air quality models.
Thierno Doumbia, Claire Granier, Nellie Elguindi, Idir Bouarar, Sabine Darras, Guy Brasseur, Benjamin Gaubert, Yiming Liu, Xiaoqin Shi, Trissevgeni Stavrakou, Simone Tilmes, Forrest Lacey, Adrien Deroubaix, and Tao Wang
Earth Syst. Sci. Data, 13, 4191–4206, https://doi.org/10.5194/essd-13-4191-2021, https://doi.org/10.5194/essd-13-4191-2021, 2021
Short summary
Short summary
Most countries around the world have implemented control measures to combat the spread of the COVID-19 pandemic, resulting in significant changes in economic and personal activities. We developed the CONFORM (COvid-19 adjustmeNt Factors fOR eMissions) dataset to account for changes in emissions during lockdowns. This dataset was created with the intention of being directly applicable to existing global and regional inventories used in chemical transport models.
Wenfu Tang, David P. Edwards, Louisa K. Emmons, Helen M. Worden, Laura M. Judd, Lok N. Lamsal, Jassim A. Al-Saadi, Scott J. Janz, James H. Crawford, Merritt N. Deeter, Gabriele Pfister, Rebecca R. Buchholz, Benjamin Gaubert, and Caroline R. Nowlan
Atmos. Meas. Tech., 14, 4639–4655, https://doi.org/10.5194/amt-14-4639-2021, https://doi.org/10.5194/amt-14-4639-2021, 2021
Short summary
Short summary
We use high-resolution airborne mapping spectrometer measurements to assess sub-grid variability within satellite pixels over urban regions. The sub-grid variability within satellite pixels increases with increasing satellite pixel sizes. Temporal variability within satellite pixels decreases with increasing satellite pixel sizes. This work is particularly relevant and useful for future satellite design, satellite data interpretation, and point-grid data comparisons.
Benjamin Gaubert, Louisa K. Emmons, Kevin Raeder, Simone Tilmes, Kazuyuki Miyazaki, Avelino F. Arellano Jr., Nellie Elguindi, Claire Granier, Wenfu Tang, Jérôme Barré, Helen M. Worden, Rebecca R. Buchholz, David P. Edwards, Philipp Franke, Jeffrey L. Anderson, Marielle Saunois, Jason Schroeder, Jung-Hun Woo, Isobel J. Simpson, Donald R. Blake, Simone Meinardi, Paul O. Wennberg, John Crounse, Alex Teng, Michelle Kim, Russell R. Dickerson, Hao He, Xinrong Ren, Sally E. Pusede, and Glenn S. Diskin
Atmos. Chem. Phys., 20, 14617–14647, https://doi.org/10.5194/acp-20-14617-2020, https://doi.org/10.5194/acp-20-14617-2020, 2020
Short summary
Short summary
This study investigates carbon monoxide pollution in East Asia during spring using a numerical model, satellite remote sensing, and aircraft measurements. We found an underestimation of emission sources. Correcting the emission bias can improve air quality forecasting of carbon monoxide and other species including ozone. Results also suggest that controlling VOC and CO emissions, in addition to widespread NOx controls, can improve ozone pollution over East Asia.
Wenfu Tang, Benjamin Gaubert, Louisa Emmons, Yonghoon Choi, Joshua P. DiGangi, Glenn S. Diskin, Xiaomei Xu, Cenlin He, Helen Worden, Simone Tilmes, Rebecca Buchholz, Hannah S. Halliday, and Avelino F. Arellano
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-864, https://doi.org/10.5194/acp-2020-864, 2020
Revised manuscript not accepted
Short summary
Short summary
A specific demonstration of the potential use of correlative information from carbon monoxide to refine estimates of regional carbon dioxide emissions from fossil fuel combustion.
Wenfu Tang, Helen M. Worden, Merritt N. Deeter, David P. Edwards, Louisa K. Emmons, Sara Martínez-Alonso, Benjamin Gaubert, Rebecca R. Buchholz, Glenn S. Diskin, Russell R. Dickerson, Xinrong Ren, Hao He, and Yutaka Kondo
Atmos. Meas. Tech., 13, 1337–1356, https://doi.org/10.5194/amt-13-1337-2020, https://doi.org/10.5194/amt-13-1337-2020, 2020
Helen M. Worden, A. Anthony Bloom, John R. Worden, Zhe Jiang, Eloise A. Marais, Trissevgeni Stavrakou, Benjamin Gaubert, and Forrest Lacey
Atmos. Chem. Phys., 19, 13569–13579, https://doi.org/10.5194/acp-19-13569-2019, https://doi.org/10.5194/acp-19-13569-2019, 2019
Short summary
Short summary
Biogenic non-methane volatile organic compounds (NMVOCs) emitted from vegetation play a significant role in air quality and climate. However, there are large uncertainties in their role for climate. We present a Bayesian approach to estimate carbon monoxide fluxes that are chemically produced from biogenic sources. This provides independent constraints on models that predict biogenic emissions in order improve their capability for predicting air quality and future climate scenarios.
Wenfu Tang, Avelino F. Arellano, Benjamin Gaubert, Kazuyuki Miyazaki, and Helen M. Worden
Atmos. Chem. Phys., 19, 4269–4288, https://doi.org/10.5194/acp-19-4269-2019, https://doi.org/10.5194/acp-19-4269-2019, 2019
Benjamin Gaubert, Britton B. Stephens, Sourish Basu, Frédéric Chevallier, Feng Deng, Eric A. Kort, Prabir K. Patra, Wouter Peters, Christian Rödenbeck, Tazu Saeki, David Schimel, Ingrid Van der Laan-Luijkx, Steven Wofsy, and Yi Yin
Biogeosciences, 16, 117–134, https://doi.org/10.5194/bg-16-117-2019, https://doi.org/10.5194/bg-16-117-2019, 2019
Short summary
Short summary
We have compared global carbon budgets calculated from numerical inverse models and CO2 observations, and evaluated how these systems reproduce vertical gradients in atmospheric CO2 from aircraft measurements. We found that available models have converged on near-neutral tropical total fluxes for several decades, implying consistent sinks in intact tropical forests, and that assumed fossil fuel emissions and predicted atmospheric growth rates are now the dominant axes of disagreement.
Wenfu Tang, Avelino F. Arellano, Joshua P. DiGangi, Yonghoon Choi, Glenn S. Diskin, Anna Agustí-Panareda, Mark Parrington, Sebastien Massart, Benjamin Gaubert, Youngjae Lee, Danbi Kim, Jinsang Jung, Jinkyu Hong, Je-Woo Hong, Yugo Kanaya, Mindo Lee, Ryan M. Stauffer, Anne M. Thompson, James H. Flynn, and Jung-Hun Woo
Atmos. Chem. Phys., 18, 11007–11030, https://doi.org/10.5194/acp-18-11007-2018, https://doi.org/10.5194/acp-18-11007-2018, 2018
J. Cuesta, M. Eremenko, X. Liu, G. Dufour, Z. Cai, M. Höpfner, T. von Clarmann, P. Sellitto, G. Foret, B. Gaubert, M. Beekmann, J. Orphal, K. Chance, R. Spurr, and J.-M. Flaud
Atmos. Chem. Phys., 13, 9675–9693, https://doi.org/10.5194/acp-13-9675-2013, https://doi.org/10.5194/acp-13-9675-2013, 2013
Yasin Elshorbany, Jerald R. Ziemke, Sarah Strode, Hervé Petetin, Kazuyuki Miyazaki, Isabelle De Smedt, Kenneth Pickering, Rodrigo J. Seguel, Helen Worden, Tamara Emmerichs, Domenico Taraborrelli, Maria Cazorla, Suvarna Fadnavis, Rebecca R. Buchholz, Benjamin Gaubert, Néstor Y. Rojas, Thiago Nogueira, Thérèse Salameh, and Min Huang
Atmos. Chem. Phys., 24, 12225–12257, https://doi.org/10.5194/acp-24-12225-2024, https://doi.org/10.5194/acp-24-12225-2024, 2024
Short summary
Short summary
We investigated tropospheric ozone spatial variability and trends from 2005 to 2019 and related those to ozone precursors on global and regional scales. We also investigate the spatiotemporal characteristics of the ozone formation regime in relation to ozone chemical sources and sinks. Our analysis is based on remote sensing products of the tropospheric column of ozone and its precursors, nitrogen dioxide, formaldehyde, and total column CO, as well as ozonesonde data and model simulations.
Kavitha Mottungan, Chayan Roychoudhury, Vanessa Brocchi, Benjamin Gaubert, Wenfu Tang, Mohammad Amin Mirrezaei, John McKinnon, Yafang Guo, David W. T. Griffith, Dietrich G. Feist, Isamu Morino, Mahesh K. Sha, Manvendra K. Dubey, Martine De Mazière, Nicholas M. Deutscher, Paul O. Wennberg, Ralf Sussmann, Rigel Kivi, Tae-Young Goo, Voltaire A. Velazco, Wei Wang, and Avelino F. Arellano Jr.
Atmos. Meas. Tech., 17, 5861–5885, https://doi.org/10.5194/amt-17-5861-2024, https://doi.org/10.5194/amt-17-5861-2024, 2024
Short summary
Short summary
A combination of data analysis techniques is introduced to separate local and regional influences on observed levels of carbon dioxide, carbon monoxide, and methane from an established ground-based remote sensing network. We take advantage of the covariations in these trace gases to identify the dominant type of sources driving these levels. Applying these methods in conjunction with existing approaches to other datasets can better address uncertainties in identifying sources and sinks.
Cynthia H. Whaley, Tim Butler, Jose A. Adame, Rupal Ambulkar, Stephen R. Arnold, Rebecca R. Buchholz, Benjamin Gaubert, Douglas S. Hamilton, Min Huang, Hayley Hung, Johannes W. Kaiser, Jacek W. Kaminski, Christophe Knote, Gerbrand Koren, Jean-Luc Kouassi, Meiyun Lin, Tianjia Liu, Jianmin Ma, Kasemsan Manomaiphiboon, Elisa Bergas Masso, Jessica L. McCarty, Mariano Mertens, Mark Parrington, Helene Peiro, Pallavi Saxena, Saurabh Sonwani, Vanisa Surapipith, Damaris Tan, Wenfu Tang, Veerachai Tanpipat, Kostas Tsigaridis, Christine Wiedinmyer, Oliver Wild, Yuanyu Xie, and Paquita Zuidema
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-126, https://doi.org/10.5194/gmd-2024-126, 2024
Preprint under review for GMD
Short summary
Short summary
The multi-model experiment design of the HTAP3 Fires project takes a multi-pollutant approach to improving our understanding of transboundary transport of wildland fire and agricultural burning emissions and their impacts. The experiments are designed with the goal of answering science policy questions related to fires. The options for the multi-model approach, including inputs, outputs, and model set up are discussed, and the official recommendations for the project are presented.
Rajesh Kumar, Piyush Bhardwaj, Cenlin He, Jennifer Boehnert, Forrest Lacey, Stefano Alessandrini, Kevin Sampson, Matthew Casali, Scott Swerdlin, Olga Wilhelmi, Gabriele G. Pfister, Benjamin Gaubert, and Helen Worden
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-180, https://doi.org/10.5194/essd-2024-180, 2024
Revised manuscript under review for ESSD
Short summary
Short summary
We have created a 14-year hourly air quality dataset at 12 km resolution by combining satellite observations of atmospheric composition with air quality models over the contiguous United States (CONUS) . The dataset has been found to reproduce key observed features of air quality over the CONUS. To enable easy visualization and interpretation of county level air quality measures and trends by stakeholders, an ArcGIS air quality dashboard has also been developed.
Wenfu Tang, Benjamin Gaubert, Louisa Emmons, Daniel Ziskin, Debbie Mao, David Edwards, Avelino Arellano, Kevin Raeder, Jeffrey Anderson, and Helen Worden
Atmos. Meas. Tech., 17, 1941–1963, https://doi.org/10.5194/amt-17-1941-2024, https://doi.org/10.5194/amt-17-1941-2024, 2024
Short summary
Short summary
We assimilate different MOPITT CO products to understand the impact of (1) assimilating multispectral and joint retrievals versus single spectral products, (2) assimilating satellite profile products versus column products, and (3) assimilating multispectral and joint retrievals versus assimilating individual products separately.
Lucien Froidevaux, Douglas E. Kinnison, Benjamin Gaubert, Michael J. Schwartz, Nathaniel J. Livesey, William G. Read, Charles G. Bardeen, Jerry R. Ziemke, and Ryan A. Fuller
EGUsphere, https://doi.org/10.5194/egusphere-2024-525, https://doi.org/10.5194/egusphere-2024-525, 2024
Short summary
Short summary
We compare observed changes in ozone (O3) and carbon monoxide (CO) in the tropical upper troposphere (10–15 km altitude) for 2005–2020 to predictions from model simulations that track the evolution of natural and industrial emissions transported to this region. An increasing trend in measured upper tropospheric O3 is generally well matched by the model trends. We also find that changes in modeled industrial CO surface emissions lead to better model agreement with observed decreasing CO trends.
Adrien Deroubaix, Marco Vountas, Benjamin Gaubert, Maria Dolores Andrés Hernández, Stephan Borrmann, Guy Brasseur, Bruna Holanda, Yugo Kanaya, Katharina Kaiser, Flora Kluge, Ovid Oktavian Krüger, Inga Labuhn, Michael Lichtenstern, Klaus Pfeilsticker, Mira Pöhlker, Hans Schlager, Johannes Schneider, Guillaume Siour, Basudev Swain, Paolo Tuccella, Kameswara S. Vinjamuri, Mihalis Vrekoussis, Benjamin Weyland, and John P. Burrows
EGUsphere, https://doi.org/10.5194/egusphere-2024-516, https://doi.org/10.5194/egusphere-2024-516, 2024
Preprint archived
Short summary
Short summary
This study assesses atmospheric composition using air quality models during aircraft campaigns in Europe and Asia, focusing on carbonaceous aerosols and trace gases. While carbon monoxide is well modeled, other pollutants have moderate to weak agreement with observations. Wind speed modeling is reliable for identifying pollution plumes, where models tend to overestimate concentrations. This highlights challenges in accurately modeling aerosol and trace gas composition, particularly in cities.
Adrien Deroubaix, Marco Vountas, Benjamin Gaubert, Maria Dolores Andrés Hernández, Stephan Borrmann, Guy Brasseur, Bruna Holanda, Yugo Kanaya, Katharina Kaiser, Flora Kluge, Ovid Oktavian Krüger, Inga Labuhn, Michael Lichtenstern, Klaus Pfeilsticker, Mira Pöhlker, Hans Schlager, Johannes Schneider, Guillaume Siour, Basudev Swain, Paolo Tuccella, Kameswara S. Vinjamuri, Mihalis Vrekoussis, Benjamin Weyland, and John P. Burrows
EGUsphere, https://doi.org/10.5194/egusphere-2024-521, https://doi.org/10.5194/egusphere-2024-521, 2024
Short summary
Short summary
This study explores the proportional relationships between carbonaceous aerosols (black and organic carbon) and trace gases using airborne measurements from two campaigns in Europe and East Asia. Differences between regions were found, but air quality models struggled to reproduce them accurately. We show that these proportional relationships can help to constrain models and can be used to infer aerosol concentrations from satellite observations of trace gases, especially in urban areas.
Wenfu Tang, Louisa K. Emmons, Helen M. Worden, Rajesh Kumar, Cenlin He, Benjamin Gaubert, Zhonghua Zheng, Simone Tilmes, Rebecca R. Buchholz, Sara-Eva Martinez-Alonso, Claire Granier, Antonin Soulie, Kathryn McKain, Bruce C. Daube, Jeff Peischl, Chelsea Thompson, and Pieternel Levelt
Geosci. Model Dev., 16, 6001–6028, https://doi.org/10.5194/gmd-16-6001-2023, https://doi.org/10.5194/gmd-16-6001-2023, 2023
Short summary
Short summary
The new MUSICAv0 model enables the study of atmospheric chemistry across all relevant scales. We develop a MUSICAv0 grid for Africa. We evaluate MUSICAv0 with observations and compare it with a previously used model – WRF-Chem. Overall, the performance of MUSICAv0 is comparable to WRF-Chem. Based on model–satellite discrepancies, we find that future field campaigns in an eastern African region (30°E–45°E, 5°S–5°N) could substantially improve the predictive skill of air quality models.
Jean-Maxime Bertrand, Frédérik Meleux, Anthony Ung, Gaël Descombes, and Augustin Colette
Atmos. Chem. Phys., 23, 5317–5333, https://doi.org/10.5194/acp-23-5317-2023, https://doi.org/10.5194/acp-23-5317-2023, 2023
Short summary
Short summary
Post-processing methods based on machine learning algorithms were applied to refine the forecasts of four key pollutants at monitoring sites across Europe. Performances show significant improvements compared to those of the deterministic model raw outputs. Taking advantage of the large modelling domain extension, an innovative
globalapproach is proposed to drastically reduce the period necessary to train the models and thus facilitate the implementation in an operational context.
Elsa Real, Florian Couvidat, Anthony Ung, Laure Malherbe, Blandine Raux, Alicia Gressent, and Augustin Colette
Earth Syst. Sci. Data, 14, 2419–2443, https://doi.org/10.5194/essd-14-2419-2022, https://doi.org/10.5194/essd-14-2419-2022, 2022
Short summary
Short summary
This paper describes a 16-year (2000–2015) dataset of air pollution concentrations and air quality indicators over France combining background measurements and modeling. Hourly concentrations and regulatory indicators of NO2, O3, PM10 and PM2.5 are produced with 4 km spatial resolution. The overall dataset has been cross-validated and showed overall very good results. We hope that this open-access publication will facilitate further studies on the impacts of air pollution.
Augustin Colette, Laurence Rouïl, Frédérik Meleux, Vincent Lemaire, and Blandine Raux
Geosci. Model Dev., 15, 1441–1465, https://doi.org/10.5194/gmd-15-1441-2022, https://doi.org/10.5194/gmd-15-1441-2022, 2022
Short summary
Short summary
We introduce the first toolbox that allows exploration of the benefits of air pollution mitigation scenarios in the every-day air quality forecasts through a web interface. The toolbox relies on the joint use of chemistry-transport models (CTMs) and surrogate modelling techniques.
Thierno Doumbia, Claire Granier, Nellie Elguindi, Idir Bouarar, Sabine Darras, Guy Brasseur, Benjamin Gaubert, Yiming Liu, Xiaoqin Shi, Trissevgeni Stavrakou, Simone Tilmes, Forrest Lacey, Adrien Deroubaix, and Tao Wang
Earth Syst. Sci. Data, 13, 4191–4206, https://doi.org/10.5194/essd-13-4191-2021, https://doi.org/10.5194/essd-13-4191-2021, 2021
Short summary
Short summary
Most countries around the world have implemented control measures to combat the spread of the COVID-19 pandemic, resulting in significant changes in economic and personal activities. We developed the CONFORM (COvid-19 adjustmeNt Factors fOR eMissions) dataset to account for changes in emissions during lockdowns. This dataset was created with the intention of being directly applicable to existing global and regional inventories used in chemical transport models.
Wenfu Tang, David P. Edwards, Louisa K. Emmons, Helen M. Worden, Laura M. Judd, Lok N. Lamsal, Jassim A. Al-Saadi, Scott J. Janz, James H. Crawford, Merritt N. Deeter, Gabriele Pfister, Rebecca R. Buchholz, Benjamin Gaubert, and Caroline R. Nowlan
Atmos. Meas. Tech., 14, 4639–4655, https://doi.org/10.5194/amt-14-4639-2021, https://doi.org/10.5194/amt-14-4639-2021, 2021
Short summary
Short summary
We use high-resolution airborne mapping spectrometer measurements to assess sub-grid variability within satellite pixels over urban regions. The sub-grid variability within satellite pixels increases with increasing satellite pixel sizes. Temporal variability within satellite pixels decreases with increasing satellite pixel sizes. This work is particularly relevant and useful for future satellite design, satellite data interpretation, and point-grid data comparisons.
Jérôme Barré, Hervé Petetin, Augustin Colette, Marc Guevara, Vincent-Henri Peuch, Laurence Rouil, Richard Engelen, Antje Inness, Johannes Flemming, Carlos Pérez García-Pando, Dene Bowdalo, Frederik Meleux, Camilla Geels, Jesper H. Christensen, Michael Gauss, Anna Benedictow, Svetlana Tsyro, Elmar Friese, Joanna Struzewska, Jacek W. Kaminski, John Douros, Renske Timmermans, Lennart Robertson, Mario Adani, Oriol Jorba, Mathieu Joly, and Rostislav Kouznetsov
Atmos. Chem. Phys., 21, 7373–7394, https://doi.org/10.5194/acp-21-7373-2021, https://doi.org/10.5194/acp-21-7373-2021, 2021
Short summary
Short summary
This study provides a comprehensive assessment of air quality changes across the main European urban areas induced by the COVID-19 lockdown using satellite observations, surface site measurements, and the forecasting system from the Copernicus Atmospheric Monitoring Service (CAMS). We demonstrate the importance of accounting for weather and seasonal variability when calculating such estimates.
Benjamin Gaubert, Louisa K. Emmons, Kevin Raeder, Simone Tilmes, Kazuyuki Miyazaki, Avelino F. Arellano Jr., Nellie Elguindi, Claire Granier, Wenfu Tang, Jérôme Barré, Helen M. Worden, Rebecca R. Buchholz, David P. Edwards, Philipp Franke, Jeffrey L. Anderson, Marielle Saunois, Jason Schroeder, Jung-Hun Woo, Isobel J. Simpson, Donald R. Blake, Simone Meinardi, Paul O. Wennberg, John Crounse, Alex Teng, Michelle Kim, Russell R. Dickerson, Hao He, Xinrong Ren, Sally E. Pusede, and Glenn S. Diskin
Atmos. Chem. Phys., 20, 14617–14647, https://doi.org/10.5194/acp-20-14617-2020, https://doi.org/10.5194/acp-20-14617-2020, 2020
Short summary
Short summary
This study investigates carbon monoxide pollution in East Asia during spring using a numerical model, satellite remote sensing, and aircraft measurements. We found an underestimation of emission sources. Correcting the emission bias can improve air quality forecasting of carbon monoxide and other species including ozone. Results also suggest that controlling VOC and CO emissions, in addition to widespread NOx controls, can improve ozone pollution over East Asia.
Wenfu Tang, Benjamin Gaubert, Louisa Emmons, Yonghoon Choi, Joshua P. DiGangi, Glenn S. Diskin, Xiaomei Xu, Cenlin He, Helen Worden, Simone Tilmes, Rebecca Buchholz, Hannah S. Halliday, and Avelino F. Arellano
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-864, https://doi.org/10.5194/acp-2020-864, 2020
Revised manuscript not accepted
Short summary
Short summary
A specific demonstration of the potential use of correlative information from carbon monoxide to refine estimates of regional carbon dioxide emissions from fossil fuel combustion.
Wenfu Tang, Helen M. Worden, Merritt N. Deeter, David P. Edwards, Louisa K. Emmons, Sara Martínez-Alonso, Benjamin Gaubert, Rebecca R. Buchholz, Glenn S. Diskin, Russell R. Dickerson, Xinrong Ren, Hao He, and Yutaka Kondo
Atmos. Meas. Tech., 13, 1337–1356, https://doi.org/10.5194/amt-13-1337-2020, https://doi.org/10.5194/amt-13-1337-2020, 2020
Helen M. Worden, A. Anthony Bloom, John R. Worden, Zhe Jiang, Eloise A. Marais, Trissevgeni Stavrakou, Benjamin Gaubert, and Forrest Lacey
Atmos. Chem. Phys., 19, 13569–13579, https://doi.org/10.5194/acp-19-13569-2019, https://doi.org/10.5194/acp-19-13569-2019, 2019
Short summary
Short summary
Biogenic non-methane volatile organic compounds (NMVOCs) emitted from vegetation play a significant role in air quality and climate. However, there are large uncertainties in their role for climate. We present a Bayesian approach to estimate carbon monoxide fluxes that are chemically produced from biogenic sources. This provides independent constraints on models that predict biogenic emissions in order improve their capability for predicting air quality and future climate scenarios.
Wenfu Tang, Avelino F. Arellano, Benjamin Gaubert, Kazuyuki Miyazaki, and Helen M. Worden
Atmos. Chem. Phys., 19, 4269–4288, https://doi.org/10.5194/acp-19-4269-2019, https://doi.org/10.5194/acp-19-4269-2019, 2019
Benjamin Gaubert, Britton B. Stephens, Sourish Basu, Frédéric Chevallier, Feng Deng, Eric A. Kort, Prabir K. Patra, Wouter Peters, Christian Rödenbeck, Tazu Saeki, David Schimel, Ingrid Van der Laan-Luijkx, Steven Wofsy, and Yi Yin
Biogeosciences, 16, 117–134, https://doi.org/10.5194/bg-16-117-2019, https://doi.org/10.5194/bg-16-117-2019, 2019
Short summary
Short summary
We have compared global carbon budgets calculated from numerical inverse models and CO2 observations, and evaluated how these systems reproduce vertical gradients in atmospheric CO2 from aircraft measurements. We found that available models have converged on near-neutral tropical total fluxes for several decades, implying consistent sinks in intact tropical forests, and that assumed fossil fuel emissions and predicted atmospheric growth rates are now the dominant axes of disagreement.
Gaëlle Dufour, Maxim Eremenko, Matthias Beekmann, Juan Cuesta, Gilles Foret, Audrey Fortems-Cheiney, Mathieu Lachâtre, Weili Lin, Yi Liu, Xiaobin Xu, and Yuli Zhang
Atmos. Chem. Phys., 18, 16439–16459, https://doi.org/10.5194/acp-18-16439-2018, https://doi.org/10.5194/acp-18-16439-2018, 2018
Short summary
Short summary
The analysis of IASI lower tropospheric ozone columns over the North China Plain for the 2008–2016 period reveals two distinct periods: one before 2013 without any significant trend, and one after 2013 with a significant negative trend (−1.2 % yr−1). Our results suggest that the negative trend could be attributed to a reduction of the stratosphere-to-troposphere transport combined with the recent reduction of regional NOx emissions.
Wenfu Tang, Avelino F. Arellano, Joshua P. DiGangi, Yonghoon Choi, Glenn S. Diskin, Anna Agustí-Panareda, Mark Parrington, Sebastien Massart, Benjamin Gaubert, Youngjae Lee, Danbi Kim, Jinsang Jung, Jinkyu Hong, Je-Woo Hong, Yugo Kanaya, Mindo Lee, Ryan M. Stauffer, Anne M. Thompson, James H. Flynn, and Jung-Hun Woo
Atmos. Chem. Phys., 18, 11007–11030, https://doi.org/10.5194/acp-18-11007-2018, https://doi.org/10.5194/acp-18-11007-2018, 2018
Q. J. Zhang, M. Beekmann, E. Freney, K. Sellegri, J. M. Pichon, A. Schwarzenboeck, A. Colomb, T. Bourrianne, V. Michoud, and A. Borbon
Atmos. Chem. Phys., 15, 13973–13992, https://doi.org/10.5194/acp-15-13973-2015, https://doi.org/10.5194/acp-15-13973-2015, 2015
Short summary
Short summary
Secondary organic aerosol (SOA) is an important pollutant formed from megacity emissions at a regional scale. An original method based on ratios of different pollutants is used to specifically validate the aerosol scheme (the volatility basis set approach) within a CTM. The method is applied to airborne measurements performed within the Paris plume during the MEGAPOLI summer campaign. Simulations indicate that SOA of anthropogenic origin has a significant impact on regional air quality.
G. Dufour, M. Eremenko, J. Cuesta, C. Doche, G. Foret, M. Beekmann, A. Cheiney, Y. Wang, Z. Cai, Y. Liu, M. Takigawa, Y. Kanaya, and J.-M. Flaud
Atmos. Chem. Phys., 15, 10839–10856, https://doi.org/10.5194/acp-15-10839-2015, https://doi.org/10.5194/acp-15-10839-2015, 2015
Short summary
Short summary
We identify the stratospheric and the photochemical sources contributing to the late-spring O3 distribution over East Asia using IASI O3 and CO observations. Reversible subsiding O3 transfers in the UTLS associated with low-pressure systems impact lower-tropospheric O3 north of 40°N. By contrast, photochemical production from primary pollutants significantly contributes to the enhanced lower-tropospheric O3 over the NCP and photochemical processing occurs within the plume exported from the NCP.
E. Terrenoire, B. Bessagnet, L. Rouïl, F. Tognet, G. Pirovano, L. Létinois, M. Beauchamp, A. Colette, P. Thunis, M. Amann, and L. Menut
Geosci. Model Dev., 8, 21–42, https://doi.org/10.5194/gmd-8-21-2015, https://doi.org/10.5194/gmd-8-21-2015, 2015
Short summary
Short summary
The model reproduces the temporal variability of NO2, O3, PM10, PM2.5 better at rural than urban background stations.
The fractional biases show that the model performs slightly better at RB sites than at UB sites for NO2, O3 and PM10.
At UB sites, CHIMERE reproduces PM2.5 better than PM10.
This is primarily the result of an underestimation of coarse particulate matter (PM) associated with uncertainties on SOA chemistry and their precursor emissions, dust and sea salt.
V. Michoud, A. Colomb, A. Borbon, K. Miet, M. Beekmann, M. Camredon, B. Aumont, S. Perrier, P. Zapf, G. Siour, W. Ait-Helal, C. Afif, A. Kukui, M. Furger, J. C. Dupont, M. Haeffelin, and J. F. Doussin
Atmos. Chem. Phys., 14, 2805–2822, https://doi.org/10.5194/acp-14-2805-2014, https://doi.org/10.5194/acp-14-2805-2014, 2014
A. Colette, B. Bessagnet, F. Meleux, E. Terrenoire, and L. Rouïl
Geosci. Model Dev., 7, 203–210, https://doi.org/10.5194/gmd-7-203-2014, https://doi.org/10.5194/gmd-7-203-2014, 2014
J. Cuesta, M. Eremenko, X. Liu, G. Dufour, Z. Cai, M. Höpfner, T. von Clarmann, P. Sellitto, G. Foret, B. Gaubert, M. Beekmann, J. Orphal, K. Chance, R. Spurr, and J.-M. Flaud
Atmos. Chem. Phys., 13, 9675–9693, https://doi.org/10.5194/acp-13-9675-2013, https://doi.org/10.5194/acp-13-9675-2013, 2013
A. Colette, B. Bessagnet, R. Vautard, S. Szopa, S. Rao, S. Schucht, Z. Klimont, L. Menut, G. Clain, F. Meleux, G. Curci, and L. Rouïl
Atmos. Chem. Phys., 13, 7451–7471, https://doi.org/10.5194/acp-13-7451-2013, https://doi.org/10.5194/acp-13-7451-2013, 2013
L. Menut, B. Bessagnet, D. Khvorostyanov, M. Beekmann, N. Blond, A. Colette, I. Coll, G. Curci, G. Foret, A. Hodzic, S. Mailler, F. Meleux, J.-L. Monge, I. Pison, G. Siour, S. Turquety, M. Valari, R. Vautard, and M. G. Vivanco
Geosci. Model Dev., 6, 981–1028, https://doi.org/10.5194/gmd-6-981-2013, https://doi.org/10.5194/gmd-6-981-2013, 2013
Q. J. Zhang, M. Beekmann, F. Drewnick, F. Freutel, J. Schneider, M. Crippa, A. S. H. Prevot, U. Baltensperger, L. Poulain, A. Wiedensohler, J. Sciare, V. Gros, A. Borbon, A. Colomb, V. Michoud, J.-F. Doussin, H. A. C. Denier van der Gon, M. Haeffelin, J.-C. Dupont, G. Siour, H. Petetin, B. Bessagnet, S. N. Pandis, A. Hodzic, O. Sanchez, C. Honoré, and O. Perrussel
Atmos. Chem. Phys., 13, 5767–5790, https://doi.org/10.5194/acp-13-5767-2013, https://doi.org/10.5194/acp-13-5767-2013, 2013
F. Freutel, J. Schneider, F. Drewnick, S.-L. von der Weiden-Reinmüller, M. Crippa, A. S. H. Prévôt, U. Baltensperger, L. Poulain, A. Wiedensohler, J. Sciare, R. Sarda-Estève, J. F. Burkhart, S. Eckhardt, A. Stohl, V. Gros, A. Colomb, V. Michoud, J. F. Doussin, A. Borbon, M. Haeffelin, Y. Morille, M. Beekmann, and S. Borrmann
Atmos. Chem. Phys., 13, 933–959, https://doi.org/10.5194/acp-13-933-2013, https://doi.org/10.5194/acp-13-933-2013, 2013
V. Michoud, A. Kukui, M. Camredon, A. Colomb, A. Borbon, K. Miet, B. Aumont, M. Beekmann, R. Durand-Jolibois, S. Perrier, P. Zapf, G. Siour, W. Ait-Helal, N. Locoge, S. Sauvage, C. Afif, V. Gros, M. Furger, G. Ancellet, and J. F. Doussin
Atmos. Chem. Phys., 12, 11951–11974, https://doi.org/10.5194/acp-12-11951-2012, https://doi.org/10.5194/acp-12-11951-2012, 2012
Related subject area
Atmospheric sciences
Source-specific bias correction of US background and anthropogenic ozone modeled in CMAQ
Observational operator for fair model evaluation with ground NO2 measurements
Valid time shifting ensemble Kalman filter (VTS-EnKF) for dust storm forecasting
An updated parameterization of the unstable atmospheric surface layer in the Weather Research and Forecasting (WRF) modeling system
The impact of cloud microphysics and ice nucleation on Southern Ocean clouds assessed with single-column modeling and instrument simulators
An updated aerosol simulation in the Community Earth System Model (v2.1.3): dust and marine aerosol emissions and secondary organic aerosol formation
Exploring ship track spreading rates with a physics-informed Langevin particle parameterization
Do data-driven models beat numerical models in forecasting weather extremes? A comparison of IFS HRES, Pangu-Weather, and GraphCast
Development of the MPAS-CMAQ coupled system (V1.0) for multiscale global air quality modeling
Assessment of object-based indices to identify convective organization
The Global Forest Fire Emissions Prediction System version 1.0
NEIVAv1.0: Next-generation Emissions InVentory expansion of Akagi et al. (2011) version 1.0
FLEXPART version 11: improved accuracy, efficiency, and flexibility
Challenges of high-fidelity air quality modeling in urban environments – PALM sensitivity study during stable conditions
Air quality modeling intercomparison and multiscale ensemble chain for Latin America
Recommended coupling to global meteorological fields for long-term tracer simulations with WRF-GHG
Selecting CMIP6 global climate models (GCMs) for Coordinated Regional Climate Downscaling Experiment (CORDEX) dynamical downscaling over Southeast Asia using a standardised benchmarking framework
Improved definition of prior uncertainties in CO2 and CO fossil fuel fluxes and its impact on multi-species inversion with GEOS-Chem (v12.5)
RASCAL v1.0: an open-source tool for climatological time series reconstruction and extension
Introducing graupel density prediction in Weather Research and Forecasting (WRF) double-moment 6-class (WDM6) microphysics and evaluation of the modified scheme during the ICE-POP field campaign
Enabling high-performance cloud computing for the Community Multiscale Air Quality Model (CMAQ) version 5.3.3: performance evaluation and benefits for the user community
Atmospheric-river-induced precipitation in California as simulated by the regionally refined Simple Convective Resolving E3SM Atmosphere Model (SCREAM) Version 0
Recent improvements and maximum covariance analysis of aerosol and cloud properties in the EC-Earth3-AerChem model
GPU-HADVPPM4HIP V1.0: using the heterogeneous-compute interface for portability (HIP) to speed up the piecewise parabolic method in the CAMx (v6.10) air quality model on China's domestic GPU-like accelerator
Preliminary evaluation of the effect of electro-coalescence with conducting sphere approximation on the formation of warm cumulus clouds using SCALE-SDM version 0.2.5–2.3.0
Exploring the footprint representation of microwave radiance observations in an Arctic limited-area data assimilation system
Orbital-Radar v1.0.0: A tool to transform suborbital radar observations to synthetic EarthCARE cloud radar data
Analysis of model error in forecast errors of extended atmospheric Lorenz 05 systems and the ECMWF system
Description and validation of Vehicular Emissions from Road Traffic (VERT) 1.0, an R-based framework for estimating road transport emissions from traffic flows
AeroMix v1.0.1: a Python package for modeling aerosol optical properties and mixing states
Impact of ITCZ width on global climate: ITCZ-MIP
Deep-learning-driven simulations of boundary layer clouds over the Southern Great Plains
Mixed-precision computing in the GRIST dynamical core for weather and climate modelling
A conservative immersed boundary method for the multi-physics urban large-eddy simulation model uDALES v2.0
RCEMIP-II: mock-Walker simulations as phase II of the radiative–convective equilibrium model intercomparison project
Objective identification of meteorological fronts and climatologies from ERA-Interim and ERA5
TAMS: a tracking, classifying, and variable-assigning algorithm for mesoscale convective systems in simulated and satellite-derived datasets
Development of the adjoint of the unified tropospheric–stratospheric chemistry extension (UCX) in GEOS-Chem adjoint v36
New explicit formulae for the settling speed of prolate spheroids in the atmosphere: theoretical background and implementation in AerSett v2.0.2
ZJU-AERO V0.5: an Accurate and Efficient Radar Operator designed for CMA-GFS/MESO with the capability to simulate non-spherical hydrometeors
The Year of Polar Prediction site Model Intercomparison Project (YOPPsiteMIP) phase 1: project overview and Arctic winter forecast evaluation
Evaluating CHASER V4.0 global formaldehyde (HCHO) simulations using satellite, aircraft, and ground-based remote-sensing observations
Global variable-resolution simulations of extreme precipitation over Henan, China, in 2021 with MPAS-Atmosphere v7.3
The CHIMERE chemistry-transport model v2023r1
tobac v1.5: introducing fast 3D tracking, splits and mergers, and other enhancements for identifying and analysing meteorological phenomena
Merged Observatory Data Files (MODFs): an integrated observational data product supporting process-oriented investigations and diagnostics
Simulation of marine stratocumulus using the super-droplet method: numerical convergence and comparison to a double-moment bulk scheme using SCALE-SDM 5.2.6-2.3.1
Modeling of PAHs From Global to Regional Scales: Model Development and Investigation of Health Risks from 2013 to 2018 in China
WRF-Comfort: simulating microscale variability in outdoor heat stress at the city scale with a mesoscale model
Representing effects of surface heterogeneity in a multi-plume eddy diffusivity mass flux boundary layer parameterization
T. Nash Skipper, Christian Hogrefe, Barron H. Henderson, Rohit Mathur, Kristen M. Foley, and Armistead G. Russell
Geosci. Model Dev., 17, 8373–8397, https://doi.org/10.5194/gmd-17-8373-2024, https://doi.org/10.5194/gmd-17-8373-2024, 2024
Short summary
Short summary
Chemical transport model simulations are combined with ozone observations to estimate the bias in ozone attributable to US anthropogenic sources and individual sources of US background ozone: natural sources, non-US anthropogenic sources, and stratospheric ozone. Results indicate a positive bias correlated with US anthropogenic emissions during summer in the eastern US and a negative bias correlated with stratospheric ozone during spring.
Li Fang, Jianbing Jin, Arjo Segers, Ke Li, Ji Xia, Wei Han, Baojie Li, Hai Xiang Lin, Lei Zhu, Song Liu, and Hong Liao
Geosci. Model Dev., 17, 8267–8282, https://doi.org/10.5194/gmd-17-8267-2024, https://doi.org/10.5194/gmd-17-8267-2024, 2024
Short summary
Short summary
Model evaluations against ground observations are usually unfair. The former simulates mean status over coarse grids and the latter the surrounding atmosphere. To solve this, we proposed the new land-use-based representative (LUBR) operator that considers intra-grid variance. The LUBR operator is validated to provide insights that align with satellite measurements. The results highlight the importance of considering fine-scale urban–rural differences when comparing models and observation.
Mijie Pang, Jianbing Jin, Arjo Segers, Huiya Jiang, Wei Han, Batjargal Buyantogtokh, Ji Xia, Li Fang, Jiandong Li, Hai Xiang Lin, and Hong Liao
Geosci. Model Dev., 17, 8223–8242, https://doi.org/10.5194/gmd-17-8223-2024, https://doi.org/10.5194/gmd-17-8223-2024, 2024
Short summary
Short summary
The ensemble Kalman filter (EnKF) improves dust storm forecasts but faces challenges with position errors. The valid time shifting EnKF (VTS-EnKF) addresses this by adjusting for position errors, enhancing accuracy in forecasting dust storms, as proven in tests on 2021 events, even with smaller ensembles and time intervals.
Prabhakar Namdev, Maithili Sharan, Piyush Srivastava, and Saroj Kanta Mishra
Geosci. Model Dev., 17, 8093–8114, https://doi.org/10.5194/gmd-17-8093-2024, https://doi.org/10.5194/gmd-17-8093-2024, 2024
Short summary
Short summary
Inadequate representation of surface–atmosphere interaction processes is a major source of uncertainty in numerical weather prediction models. Here, an effort has been made to improve the Weather Research and Forecasting (WRF) model version 4.2.2 by introducing a unique theoretical framework under convective conditions. In addition, to enhance the potential applicability of the WRF modeling system, various commonly used similarity functions under convective conditions have also been installed.
Andrew Gettelman, Richard Forbes, Roger Marchand, Chih-Chieh Chen, and Mark Fielding
Geosci. Model Dev., 17, 8069–8092, https://doi.org/10.5194/gmd-17-8069-2024, https://doi.org/10.5194/gmd-17-8069-2024, 2024
Short summary
Short summary
Supercooled liquid clouds (liquid clouds colder than 0°C) are common at higher latitudes (especially over the Southern Ocean) and are critical for constraining climate projections. We compare a single-column version of a weather model to observations with two different cloud schemes and find that both the dynamical environment and atmospheric aerosols are important for reproducing observations.
Yujuan Wang, Peng Zhang, Jie Li, Yaman Liu, Yanxu Zhang, Jiawei Li, and Zhiwei Han
Geosci. Model Dev., 17, 7995–8021, https://doi.org/10.5194/gmd-17-7995-2024, https://doi.org/10.5194/gmd-17-7995-2024, 2024
Short summary
Short summary
This study updates the CESM's aerosol schemes, focusing on dust, marine aerosol emissions, and secondary organic aerosol (SOA) . Dust emission modifications make deflation areas more continuous, improving results in North America and the sub-Arctic. Humidity correction to sea-salt emissions has a minor effect. Introducing marine organic aerosol emissions, coupled with ocean biogeochemical processes, and adding aqueous reactions for SOA formation advance the CESM's aerosol modelling results.
Lucas A. McMichael, Michael J. Schmidt, Robert Wood, Peter N. Blossey, and Lekha Patel
Geosci. Model Dev., 17, 7867–7888, https://doi.org/10.5194/gmd-17-7867-2024, https://doi.org/10.5194/gmd-17-7867-2024, 2024
Short summary
Short summary
Marine cloud brightening (MCB) is a climate intervention technique to potentially cool the climate. Climate models used to gauge regional climate impacts associated with MCB often assume large areas of the ocean are uniformly perturbed. However, a more realistic representation of MCB application would require information about how an injected particle plume spreads. This work aims to develop such a plume-spreading model.
Leonardo Olivetti and Gabriele Messori
Geosci. Model Dev., 17, 7915–7962, https://doi.org/10.5194/gmd-17-7915-2024, https://doi.org/10.5194/gmd-17-7915-2024, 2024
Short summary
Short summary
Data-driven models are becoming a viable alternative to physics-based models for weather forecasting up to 15 d into the future. However, it is unclear whether they are as reliable as physics-based models when forecasting weather extremes. We evaluate their performance in forecasting near-surface cold, hot, and windy extremes globally. We find that data-driven models can compete with physics-based models and that the choice of the best model mainly depends on the region and type of extreme.
David C. Wong, Jeff Willison, Jonathan E. Pleim, Golam Sarwar, James Beidler, Russ Bullock, Jerold A. Herwehe, Rob Gilliam, Daiwen Kang, Christian Hogrefe, George Pouliot, and Hosein Foroutan
Geosci. Model Dev., 17, 7855–7866, https://doi.org/10.5194/gmd-17-7855-2024, https://doi.org/10.5194/gmd-17-7855-2024, 2024
Short summary
Short summary
This work describe how we linked the meteorological Model for Prediction Across Scales – Atmosphere (MPAS-A) with the Community Multiscale Air Quality (CMAQ) air quality model to form a coupled modelling system. This could be used to study air quality or climate and air quality interaction at a global scale. This new model scales well in high-performance computing environments and performs well with respect to ground surface networks in terms of ozone and PM2.5.
Giulio Mandorli and Claudia J. Stubenrauch
Geosci. Model Dev., 17, 7795–7813, https://doi.org/10.5194/gmd-17-7795-2024, https://doi.org/10.5194/gmd-17-7795-2024, 2024
Short summary
Short summary
In recent years, several studies focused their attention on the disposition of convection. Lots of methods, called indices, have been developed to quantify the amount of convection clustering. These indices are evaluated in this study by defining criteria that must be satisfied and then evaluating the indices against these standards. None of the indices meet all criteria, with some only partially meeting them.
Kerry Anderson, Jack Chen, Peter Englefield, Debora Griffin, Paul A. Makar, and Dan Thompson
Geosci. Model Dev., 17, 7713–7749, https://doi.org/10.5194/gmd-17-7713-2024, https://doi.org/10.5194/gmd-17-7713-2024, 2024
Short summary
Short summary
The Global Forest Fire Emissions Prediction System (GFFEPS) is a model that predicts smoke and carbon emissions from wildland fires. The model calculates emissions from the ground up based on satellite-detected fires, modelled weather and fire characteristics. Unlike other global models, GFFEPS uses daily weather conditions to capture changing burning conditions on a day-to-day basis. GFFEPS produced lower carbon emissions due to the changing weather not captured by the other models.
Samiha Binte Shahid, Forrest G. Lacey, Christine Wiedinmyer, Robert J. Yokelson, and Kelley C. Barsanti
Geosci. Model Dev., 17, 7679–7711, https://doi.org/10.5194/gmd-17-7679-2024, https://doi.org/10.5194/gmd-17-7679-2024, 2024
Short summary
Short summary
The Next-generation Emissions InVentory expansion of Akagi (NEIVA) v.1.0 is a comprehensive biomass burning emissions database that allows integration of new data and flexible querying. Data are stored in connected datasets, including recommended averages of ~1500 constituents for 14 globally relevant fire types. Individual compounds were mapped to common model species to allow better attribution of emissions in modeling studies that predict the effects of fires on air quality and climate.
Lucie Bakels, Daria Tatsii, Anne Tipka, Rona Thompson, Marina Dütsch, Michael Blaschek, Petra Seibert, Katharina Baier, Silvia Bucci, Massimo Cassiani, Sabine Eckhardt, Christine Groot Zwaaftink, Stephan Henne, Pirmin Kaufmann, Vincent Lechner, Christian Maurer, Marie D. Mulder, Ignacio Pisso, Andreas Plach, Rakesh Subramanian, Martin Vojta, and Andreas Stohl
Geosci. Model Dev., 17, 7595–7627, https://doi.org/10.5194/gmd-17-7595-2024, https://doi.org/10.5194/gmd-17-7595-2024, 2024
Short summary
Short summary
Computer models are essential for improving our understanding of how gases and particles move in the atmosphere. We present an update of the atmospheric transport model FLEXPART. FLEXPART 11 is more accurate due to a reduced number of interpolations and a new scheme for wet deposition. It can simulate non-spherical aerosols and includes linear chemical reactions. It is parallelised using OpenMP and includes new user options. A new user manual details how to use FLEXPART 11.
Jaroslav Resler, Petra Bauerová, Michal Belda, Martin Bureš, Kryštof Eben, Vladimír Fuka, Jan Geletič, Radek Jareš, Jan Karel, Josef Keder, Pavel Krč, William Patiño, Jelena Radović, Hynek Řezníček, Matthias Sühring, Adriana Šindelářová, and Ondřej Vlček
Geosci. Model Dev., 17, 7513–7537, https://doi.org/10.5194/gmd-17-7513-2024, https://doi.org/10.5194/gmd-17-7513-2024, 2024
Short summary
Short summary
Detailed modeling of urban air quality in stable conditions is a challenge. We show the unprecedented sensitivity of a large eddy simulation (LES) model to meteorological boundary conditions and model parameters in an urban environment under stable conditions. We demonstrate the crucial role of boundary conditions for the comparability of results with observations. The study reveals a strong sensitivity of the results to model parameters and model numerical instabilities during such conditions.
Jorge E. Pachón, Mariel A. Opazo, Pablo Lichtig, Nicolas Huneeus, Idir Bouarar, Guy Brasseur, Cathy W. Y. Li, Johannes Flemming, Laurent Menut, Camilo Menares, Laura Gallardo, Michael Gauss, Mikhail Sofiev, Rostislav Kouznetsov, Julia Palamarchuk, Andreas Uppstu, Laura Dawidowski, Nestor Y. Rojas, María de Fátima Andrade, Mario E. Gavidia-Calderón, Alejandro H. Delgado Peralta, and Daniel Schuch
Geosci. Model Dev., 17, 7467–7512, https://doi.org/10.5194/gmd-17-7467-2024, https://doi.org/10.5194/gmd-17-7467-2024, 2024
Short summary
Short summary
Latin America (LAC) has some of the most populated urban areas in the world, with high levels of air pollution. Air quality management in LAC has been traditionally focused on surveillance and building emission inventories. This study performed the first intercomparison and model evaluation in LAC, with interesting and insightful findings for the region. A multiscale modeling ensemble chain was assembled as a first step towards an air quality forecasting system.
David Ho, Michał Gałkowski, Friedemann Reum, Santiago Botía, Julia Marshall, Kai Uwe Totsche, and Christoph Gerbig
Geosci. Model Dev., 17, 7401–7422, https://doi.org/10.5194/gmd-17-7401-2024, https://doi.org/10.5194/gmd-17-7401-2024, 2024
Short summary
Short summary
Atmospheric model users often overlook the impact of the land–atmosphere interaction. This study accessed various setups of WRF-GHG simulations that ensure consistency between the model and driving reanalysis fields. We found that a combination of nudging and frequent re-initialization allows certain improvement by constraining the soil moisture fields and, through its impact on atmospheric mixing, improves atmospheric transport.
Phuong Loan Nguyen, Lisa V. Alexander, Marcus J. Thatcher, Son C. H. Truong, Rachael N. Isphording, and John L. McGregor
Geosci. Model Dev., 17, 7285–7315, https://doi.org/10.5194/gmd-17-7285-2024, https://doi.org/10.5194/gmd-17-7285-2024, 2024
Short summary
Short summary
We use a comprehensive approach to select a subset of CMIP6 models for dynamical downscaling over Southeast Asia, taking into account model performance, model independence, data availability and the range of future climate projections. The standardised benchmarking framework is applied to assess model performance through both statistical and process-based metrics. Ultimately, we identify two independent model groups that are suitable for dynamical downscaling in the Southeast Asian region.
Ingrid Super, Tia Scarpelli, Arjan Droste, and Paul I. Palmer
Geosci. Model Dev., 17, 7263–7284, https://doi.org/10.5194/gmd-17-7263-2024, https://doi.org/10.5194/gmd-17-7263-2024, 2024
Short summary
Short summary
Monitoring greenhouse gas emission reductions requires a combination of models and observations, as well as an initial emission estimate. Each component provides information with a certain level of certainty and is weighted to yield the most reliable estimate of actual emissions. We describe efforts for estimating the uncertainty in the initial emission estimate, which significantly impacts the outcome. Hence, a good uncertainty estimate is key for obtaining reliable information on emissions.
Álvaro González-Cervera and Luis Durán
Geosci. Model Dev., 17, 7245–7261, https://doi.org/10.5194/gmd-17-7245-2024, https://doi.org/10.5194/gmd-17-7245-2024, 2024
Short summary
Short summary
RASCAL is an open-source Python tool designed for reconstructing daily climate observations, especially in regions with complex local phenomena. It merges large-scale weather patterns with local weather using the analog method. Evaluations in central Spain show that RASCAL outperforms ERA20C reanalysis in reconstructing precipitation and temperature. RASCAL offers opportunities for broad scientific applications, from short-term forecasts to local-scale climate change scenarios.
Sun-Young Park, Kyo-Sun Sunny Lim, Kwonil Kim, Gyuwon Lee, and Jason A. Milbrandt
Geosci. Model Dev., 17, 7199–7218, https://doi.org/10.5194/gmd-17-7199-2024, https://doi.org/10.5194/gmd-17-7199-2024, 2024
Short summary
Short summary
We enhance the WDM6 scheme by incorporating predicted graupel density. The modification affects graupel characteristics, including fall velocity–diameter and mass–diameter relationships. Simulations highlight changes in graupel distribution and precipitation patterns, potentially influencing surface snow amounts. The study underscores the significance of integrating predicted graupel density for a more realistic portrayal of microphysical properties in weather models.
Christos I. Efstathiou, Elizabeth Adams, Carlie J. Coats, Robert Zelt, Mark Reed, John McGee, Kristen M. Foley, Fahim I. Sidi, David C. Wong, Steven Fine, and Saravanan Arunachalam
Geosci. Model Dev., 17, 7001–7027, https://doi.org/10.5194/gmd-17-7001-2024, https://doi.org/10.5194/gmd-17-7001-2024, 2024
Short summary
Short summary
We present a summary of enabling high-performance computing of the Community Multiscale Air Quality Model (CMAQ) – a state-of-the-science community multiscale air quality model – on two cloud computing platforms through documenting the technologies, model performance, scaling and relative merits. This may be a new paradigm for computationally intense future model applications. We initiated this work due to a need to leverage cloud computing advances and to ease the learning curve for new users.
Peter A. Bogenschutz, Jishi Zhang, Qi Tang, and Philip Cameron-Smith
Geosci. Model Dev., 17, 7029–7050, https://doi.org/10.5194/gmd-17-7029-2024, https://doi.org/10.5194/gmd-17-7029-2024, 2024
Short summary
Short summary
Using high-resolution and state-of-the-art modeling techniques we simulate five atmospheric river events for California to test the capability to represent precipitation for these events. We find that our model is able to capture the distribution of precipitation very well but suffers from overestimating the precipitation amounts over high elevation. Increasing the resolution further has no impact on reducing this bias, while increasing the domain size does have modest impacts.
Manu Anna Thomas, Klaus Wyser, Shiyu Wang, Marios Chatziparaschos, Paraskevi Georgakaki, Montserrat Costa-Surós, Maria Gonçalves Ageitos, Maria Kanakidou, Carlos Pérez García-Pando, Athanasios Nenes, Twan van Noije, Philippe Le Sager, and Abhay Devasthale
Geosci. Model Dev., 17, 6903–6927, https://doi.org/10.5194/gmd-17-6903-2024, https://doi.org/10.5194/gmd-17-6903-2024, 2024
Short summary
Short summary
Aerosol–cloud interactions occur at a range of spatio-temporal scales. While evaluating recent developments in EC-Earth3-AerChem, this study aims to understand the extent to which the Twomey effect manifests itself at larger scales. We find a reduction in the warm bias over the Southern Ocean due to model improvements. While we see footprints of the Twomey effect at larger scales, the negative relationship between cloud droplet number and liquid water drives the shortwave radiative effect.
Kai Cao, Qizhong Wu, Lingling Wang, Hengliang Guo, Nan Wang, Huaqiong Cheng, Xiao Tang, Dongxing Li, Lina Liu, Dongqing Li, Hao Wu, and Lanning Wang
Geosci. Model Dev., 17, 6887–6901, https://doi.org/10.5194/gmd-17-6887-2024, https://doi.org/10.5194/gmd-17-6887-2024, 2024
Short summary
Short summary
AMD’s heterogeneous-compute interface for portability was implemented to port the piecewise parabolic method solver from NVIDIA GPUs to China's GPU-like accelerators. The results show that the larger the model scale, the more acceleration effect on the GPU-like accelerator, up to 28.9 times. The multi-level parallelism achieves a speedup of 32.7 times on the heterogeneous cluster. By comparing the results, the GPU-like accelerators have more accuracy for the geoscience numerical models.
Ruyi Zhang, Limin Zhou, Shin-ichiro Shima, and Huawei Yang
Geosci. Model Dev., 17, 6761–6774, https://doi.org/10.5194/gmd-17-6761-2024, https://doi.org/10.5194/gmd-17-6761-2024, 2024
Short summary
Short summary
Solar activity weakly ionises Earth's atmosphere, charging cloud droplets. Electro-coalescence is when oppositely charged droplets stick together. We introduce an analytical expression of electro-coalescence probability and use it in a warm-cumulus-cloud simulation. Results show that charge cases increase rain and droplet size, with the new method outperforming older ones. The new method requires longer computation time, but its impact on rain justifies inclusion in meteorology models.
Máté Mile, Stephanie Guedj, and Roger Randriamampianina
Geosci. Model Dev., 17, 6571–6587, https://doi.org/10.5194/gmd-17-6571-2024, https://doi.org/10.5194/gmd-17-6571-2024, 2024
Short summary
Short summary
Satellite observations provide crucial information about atmospheric constituents in a global distribution that helps to better predict the weather over sparsely observed regions like the Arctic. However, the use of satellite data is usually conservative and imperfect. In this study, a better spatial representation of satellite observations is discussed and explored by a so-called footprint function or operator, highlighting its added value through a case study and diagnostics.
Lukas Pfitzenmaier, Pavlos Kollias, Nils Risse, Imke Schirmacher, Bernat Puigdomenech Treserras, and Katia Lamer
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-129, https://doi.org/10.5194/gmd-2024-129, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
Orbital-radar is a Python tool transferring sub-orbital radar data (ground-based, airborne, and forward-simulated NWP) into synthetical space-borne cloud profiling radar data mimicking the platform characteristics, e.g. EarthCARE or CloudSat CPR. The novelty of orbital-radar is the simulation platform characteristic noise floors and errors. By this long time data sets can be transformed into synthetic observations for Cal/Valor sensitivity studies for new or future satellite missions.
Hynek Bednář and Holger Kantz
Geosci. Model Dev., 17, 6489–6511, https://doi.org/10.5194/gmd-17-6489-2024, https://doi.org/10.5194/gmd-17-6489-2024, 2024
Short summary
Short summary
The forecast error growth of atmospheric phenomena is caused by initial and model errors. When studying the initial error growth, it may turn out that small-scale phenomena, which contribute little to the forecast product, significantly affect the ability to predict this product. With a negative result, we investigate in the extended Lorenz (2005) system whether omitting these phenomena will improve predictability. A theory explaining and describing this behavior is developed.
Giorgio Veratti, Alessandro Bigi, Sergio Teggi, and Grazia Ghermandi
Geosci. Model Dev., 17, 6465–6487, https://doi.org/10.5194/gmd-17-6465-2024, https://doi.org/10.5194/gmd-17-6465-2024, 2024
Short summary
Short summary
In this study, we present VERT (Vehicular Emissions from Road Traffic), an R package designed to estimate transport emissions using traffic estimates and vehicle fleet composition data. Compared to other tools available in the literature, VERT stands out for its user-friendly configuration and flexibility of user input. Case studies demonstrate its accuracy in both urban and regional contexts, making it a valuable tool for air quality management and transport scenario planning.
Sam P. Raj, Puna Ram Sinha, Rohit Srivastava, Srinivas Bikkina, and Damu Bala Subrahamanyam
Geosci. Model Dev., 17, 6379–6399, https://doi.org/10.5194/gmd-17-6379-2024, https://doi.org/10.5194/gmd-17-6379-2024, 2024
Short summary
Short summary
A Python successor to the aerosol module of the OPAC model, named AeroMix, has been developed, with enhanced capabilities to better represent real atmospheric aerosol mixing scenarios. AeroMix’s performance in modeling aerosol mixing states has been evaluated against field measurements, substantiating its potential as a versatile aerosol optical model framework for next-generation algorithms to infer aerosol mixing states and chemical composition.
Angeline G. Pendergrass, Michael P. Byrne, Oliver Watt-Meyer, Penelope Maher, and Mark J. Webb
Geosci. Model Dev., 17, 6365–6378, https://doi.org/10.5194/gmd-17-6365-2024, https://doi.org/10.5194/gmd-17-6365-2024, 2024
Short summary
Short summary
The width of the tropical rain belt affects many aspects of our climate, yet we do not understand what controls it. To better understand it, we present a method to change it in numerical model experiments. We show that the method works well in four different models. The behavior of the width is unexpectedly simple in some ways, such as how strong the winds are as it changes, but in other ways, it is more complicated, especially how temperature increases with carbon dioxide.
Tianning Su and Yunyan Zhang
Geosci. Model Dev., 17, 6319–6336, https://doi.org/10.5194/gmd-17-6319-2024, https://doi.org/10.5194/gmd-17-6319-2024, 2024
Short summary
Short summary
Using 2 decades of field observations over the Southern Great Plains, this study developed a deep-learning model to simulate the complex dynamics of boundary layer clouds. The deep-learning model can serve as the cloud parameterization within reanalysis frameworks, offering insights into improving the simulation of low clouds. By quantifying biases due to various meteorological factors and parameterizations, this deep-learning-driven approach helps bridge the observation–modeling divide.
Siyuan Chen, Yi Zhang, Yiming Wang, Zhuang Liu, Xiaohan Li, and Wei Xue
Geosci. Model Dev., 17, 6301–6318, https://doi.org/10.5194/gmd-17-6301-2024, https://doi.org/10.5194/gmd-17-6301-2024, 2024
Short summary
Short summary
This study explores strategies and techniques for implementing mixed-precision code optimization within an atmosphere model dynamical core. The coded equation terms in the governing equations that are sensitive (or insensitive) to the precision level have been identified. The performance of mixed-precision computing in weather and climate simulations was analyzed.
Sam O. Owens, Dipanjan Majumdar, Chris E. Wilson, Paul Bartholomew, and Maarten van Reeuwijk
Geosci. Model Dev., 17, 6277–6300, https://doi.org/10.5194/gmd-17-6277-2024, https://doi.org/10.5194/gmd-17-6277-2024, 2024
Short summary
Short summary
Designing cities that are resilient, sustainable, and beneficial to health requires an understanding of urban climate and air quality. This article presents an upgrade to the multi-physics numerical model uDALES, which can simulate microscale airflow, heat transfer, and pollutant dispersion in urban environments. This upgrade enables it to resolve realistic urban geometries more accurately and to take advantage of the resources available on current and future high-performance computing systems.
Allison A. Wing, Levi G. Silvers, and Kevin A. Reed
Geosci. Model Dev., 17, 6195–6225, https://doi.org/10.5194/gmd-17-6195-2024, https://doi.org/10.5194/gmd-17-6195-2024, 2024
Short summary
Short summary
This paper presents the experimental design for a model intercomparison project to study tropical clouds and climate. It is a follow-up from a prior project that used a simplified framework for tropical climate. The new project adds one new component – a specified pattern of sea surface temperatures as the lower boundary condition. We provide example results from one cloud-resolving model and one global climate model and test the sensitivity to the experimental parameters.
Philip G. Sansom and Jennifer L. Catto
Geosci. Model Dev., 17, 6137–6151, https://doi.org/10.5194/gmd-17-6137-2024, https://doi.org/10.5194/gmd-17-6137-2024, 2024
Short summary
Short summary
Weather fronts bring a lot of rain and strong winds to many regions of the mid-latitudes. We have developed an updated method of identifying these fronts in gridded data that can be used on new datasets with small grid spacing. The method can be easily applied to different datasets due to the use of open-source software for its development and shows improvements over similar previous methods. We present an updated estimate of the average frequency of fronts over the past 40 years.
Kelly M. Núñez Ocasio and Zachary L. Moon
Geosci. Model Dev., 17, 6035–6049, https://doi.org/10.5194/gmd-17-6035-2024, https://doi.org/10.5194/gmd-17-6035-2024, 2024
Short summary
Short summary
TAMS is an open-source Python-based package for tracking and classifying mesoscale convective systems that can be used to study observed and simulated systems. Each step of the algorithm is described in this paper with examples showing how to make use of visualization and post-processing tools within the package. A unique and valuable feature of this tracker is its support for unstructured grids in the identification stage and grid-independent tracking.
Irene C. Dedoussi, Daven K. Henze, Sebastian D. Eastham, Raymond L. Speth, and Steven R. H. Barrett
Geosci. Model Dev., 17, 5689–5703, https://doi.org/10.5194/gmd-17-5689-2024, https://doi.org/10.5194/gmd-17-5689-2024, 2024
Short summary
Short summary
Atmospheric model gradients provide a meaningful tool for better understanding the underlying atmospheric processes. Adjoint modeling enables computationally efficient gradient calculations. We present the adjoint of the GEOS-Chem unified chemistry extension (UCX). With this development, the GEOS-Chem adjoint model can capture stratospheric ozone and other processes jointly with tropospheric processes. We apply it to characterize the Antarctic ozone depletion potential of active halogen species.
Sylvain Mailler, Sotirios Mallios, Arineh Cholakian, Vassilis Amiridis, Laurent Menut, and Romain Pennel
Geosci. Model Dev., 17, 5641–5655, https://doi.org/10.5194/gmd-17-5641-2024, https://doi.org/10.5194/gmd-17-5641-2024, 2024
Short summary
Short summary
We propose two explicit expressions to calculate the settling speed of solid atmospheric particles with prolate spheroidal shapes. The first formulation is based on theoretical arguments only, while the second one is based on computational fluid dynamics calculations. We show that the first method is suitable for virtually all atmospheric aerosols, provided their shape can be adequately described as a prolate spheroid, and we provide an implementation of the first method in AerSett v2.0.2.
Hejun Xie, Lei Bi, and Wei Han
Geosci. Model Dev., 17, 5657–5688, https://doi.org/10.5194/gmd-17-5657-2024, https://doi.org/10.5194/gmd-17-5657-2024, 2024
Short summary
Short summary
A radar operator plays a crucial role in utilizing radar observations to enhance numerical weather forecasts. However, developing an advanced radar operator is challenging due to various complexities associated with the wave scattering by non-spherical hydrometeors, radar beam propagation, and multiple platforms. In this study, we introduce a novel radar operator named the Accurate and Efficient Radar Operator developed by ZheJiang University (ZJU-AERO) which boasts several unique features.
Jonathan J. Day, Gunilla Svensson, Barbara Casati, Taneil Uttal, Siri-Jodha Khalsa, Eric Bazile, Elena Akish, Niramson Azouz, Lara Ferrighi, Helmut Frank, Michael Gallagher, Øystein Godøy, Leslie M. Hartten, Laura X. Huang, Jareth Holt, Massimo Di Stefano, Irene Suomi, Zen Mariani, Sara Morris, Ewan O'Connor, Roberta Pirazzini, Teresa Remes, Rostislav Fadeev, Amy Solomon, Johanna Tjernström, and Mikhail Tolstykh
Geosci. Model Dev., 17, 5511–5543, https://doi.org/10.5194/gmd-17-5511-2024, https://doi.org/10.5194/gmd-17-5511-2024, 2024
Short summary
Short summary
The YOPP site Model Intercomparison Project (YOPPsiteMIP), which was designed to facilitate enhanced weather forecast evaluation in polar regions, is discussed here, focussing on describing the archive of forecast data and presenting a multi-model evaluation at Arctic supersites during February and March 2018. The study highlights an underestimation in boundary layer temperature variance that is common across models and a related inability to forecast cold extremes at several of the sites.
Hossain Mohammed Syedul Hoque, Kengo Sudo, Hitoshi Irie, Yanfeng He, and Md Firoz Khan
Geosci. Model Dev., 17, 5545–5571, https://doi.org/10.5194/gmd-17-5545-2024, https://doi.org/10.5194/gmd-17-5545-2024, 2024
Short summary
Short summary
Using multi-platform observations, we validated global formaldehyde (HCHO) simulations from a chemistry transport model. HCHO is a crucial intermediate in the chemical catalytic cycle that governs the ozone formation in the troposphere. The model was capable of replicating the observed spatiotemporal variability in HCHO. In a few cases, the model's capability was limited. This is attributed to the uncertainties in the observations and the model parameters.
Zijun Liu, Li Dong, Zongxu Qiu, Xingrong Li, Huiling Yuan, Dongmei Meng, Xiaobin Qiu, Dingyuan Liang, and Yafei Wang
Geosci. Model Dev., 17, 5477–5496, https://doi.org/10.5194/gmd-17-5477-2024, https://doi.org/10.5194/gmd-17-5477-2024, 2024
Short summary
Short summary
In this study, we completed a series of simulations with MPAS-Atmosphere (version 7.3) to study the extreme precipitation event of Henan, China, during 20–22 July 2021. We found the different performance of two built-in parameterization scheme suites (mesoscale and convection-permitting suites) with global quasi-uniform and variable-resolution meshes. This study holds significant implications for advancing the understanding of the scale-aware capability of MPAS-Atmosphere.
Laurent Menut, Arineh Cholakian, Romain Pennel, Guillaume Siour, Sylvain Mailler, Myrto Valari, Lya Lugon, and Yann Meurdesoif
Geosci. Model Dev., 17, 5431–5457, https://doi.org/10.5194/gmd-17-5431-2024, https://doi.org/10.5194/gmd-17-5431-2024, 2024
Short summary
Short summary
A new version of the CHIMERE model is presented. This version contains both computational and physico-chemical changes. The computational changes make it easy to choose the variables to be extracted as a result, including values of maximum sub-hourly concentrations. Performance tests show that the model is 1.5 to 2 times faster than the previous version for the same setup. Processes such as turbulence, transport schemes and dry deposition have been modified and updated.
G. Alexander Sokolowsky, Sean W. Freeman, William K. Jones, Julia Kukulies, Fabian Senf, Peter J. Marinescu, Max Heikenfeld, Kelcy N. Brunner, Eric C. Bruning, Scott M. Collis, Robert C. Jackson, Gabrielle R. Leung, Nils Pfeifer, Bhupendra A. Raut, Stephen M. Saleeby, Philip Stier, and Susan C. van den Heever
Geosci. Model Dev., 17, 5309–5330, https://doi.org/10.5194/gmd-17-5309-2024, https://doi.org/10.5194/gmd-17-5309-2024, 2024
Short summary
Short summary
Building on previous analysis tools developed for atmospheric science, the original release of the Tracking and Object-Based Analysis (tobac) Python package, v1.2, was open-source, modular, and insensitive to the type of gridded input data. Here, we present the latest version of tobac, v1.5, which substantially improves scientific capabilities and computational efficiency from the previous version. These enhancements permit new uses for tobac in atmospheric science and potentially other fields.
Taneil Uttal, Leslie M. Hartten, Siri Jodha Khalsa, Barbara Casati, Gunilla Svensson, Jonathan Day, Jareth Holt, Elena Akish, Sara Morris, Ewan O'Connor, Roberta Pirazzini, Laura X. Huang, Robert Crawford, Zen Mariani, Øystein Godøy, Johanna A. K. Tjernström, Giri Prakash, Nicki Hickmon, Marion Maturilli, and Christopher J. Cox
Geosci. Model Dev., 17, 5225–5247, https://doi.org/10.5194/gmd-17-5225-2024, https://doi.org/10.5194/gmd-17-5225-2024, 2024
Short summary
Short summary
A Merged Observatory Data File (MODF) format to systematically collate complex atmosphere, ocean, and terrestrial data sets collected by multiple instruments during field campaigns is presented. The MODF format is also designed to be applied to model output data, yielding format-matching Merged Model Data Files (MMDFs). MODFs plus MMDFs will augment and accelerate the synergistic use of model results with observational data to increase understanding and predictive skill.
Chongzhi Yin, Shin-ichiro Shima, Lulin Xue, and Chunsong Lu
Geosci. Model Dev., 17, 5167–5189, https://doi.org/10.5194/gmd-17-5167-2024, https://doi.org/10.5194/gmd-17-5167-2024, 2024
Short summary
Short summary
We investigate numerical convergence properties of a particle-based numerical cloud microphysics model (SDM) and a double-moment bulk scheme for simulating a marine stratocumulus case, compare their results with model intercomparison project results, and present possible explanations for the different results of the SDM and the bulk scheme. Aerosol processes can be accurately simulated using SDM, and this may be an important factor affecting the behavior and morphology of marine stratocumulus.
Zichen Wu, Xueshun Chen, Zifa Wang, Huansheng Chen, Zhe Wang, Qing Mu, Lin Wu, Wending Wang, Xiao Tang, Jie Li, Ying Li, Qizhong Wu, Yang Wang, Zhiyin Zou, and Zijian Jiang
EGUsphere, https://doi.org/10.5194/egusphere-2024-1437, https://doi.org/10.5194/egusphere-2024-1437, 2024
Short summary
Short summary
We developed a model to simulate polycyclic aromatic hydrocarbons (PAHs) from global to regional scales. The model can well reproduce the distribution of PAHs. The concentration of BaP (indicator species for PAHs) could exceed the target values of 1 ng m-3 over some areas (e.g., in central Europe, India, and eastern China). The change of BaP is less than PM2.5 from 2013 to 2018. China still faces significant potential health risks posed by BaP although "the Action Plan" has been implemented.
Alberto Martilli, Negin Nazarian, E. Scott Krayenhoff, Jacob Lachapelle, Jiachen Lu, Esther Rivas, Alejandro Rodriguez-Sanchez, Beatriz Sanchez, and José Luis Santiago
Geosci. Model Dev., 17, 5023–5039, https://doi.org/10.5194/gmd-17-5023-2024, https://doi.org/10.5194/gmd-17-5023-2024, 2024
Short summary
Short summary
Here, we present a model that quantifies the thermal stress and its microscale variability at a city scale with a mesoscale model. This tool can have multiple applications, from early warnings of extreme heat to the vulnerable population to the evaluation of the effectiveness of heat mitigation strategies. It is the first model that includes information on microscale variability in a mesoscale model, something that is essential for fully evaluating heat stress.
Nathan P. Arnold
Geosci. Model Dev., 17, 5041–5056, https://doi.org/10.5194/gmd-17-5041-2024, https://doi.org/10.5194/gmd-17-5041-2024, 2024
Short summary
Short summary
Earth system models often represent the land surface at smaller scales than the atmosphere, but surface–atmosphere coupling uses only aggregated surface properties. This study presents a method to allow heterogeneous surface properties to modify boundary layer updrafts. The method is tested in single column experiments. Updraft properties are found to reasonably covary with surface conditions, and simulated boundary layer variability is enhanced over more heterogeneous land surfaces.
Cited articles
Agudelo, O. M., Barrero, O., Peter, V., and De Moor, B.: Assimilation of ozone measurements in the air quality model AURORA by using the Ensemble Kalman Filter, Decision and Control and European Control Conference (CDC-ECC), 2011 50th IEEE 12–15 December 2011, 4430–4435, https://doi.org/10.1109/CDC.2011.6160444, 2011.
Beekmann, M. and Derognat, C.: Monte Carlo uncertainty analysis of a regional-scale transport chemistry model constrained by measurements from the Atmospheric Pollution Over the Paris Area (ESQUIF) campaign, J. Geophys. Res., 108, 8559–8559, 2003.
Bell, M. L., Dominici, F., and Samet, J. M.: A Meta-Analysis of Time-Series Studies of Ozone and Mortality With Comparison to the National Morbidity, Mortality, and Air Pollution Study, Epidemiology, 16, 436–445, 2005.
Bessagnet, B., Hodzic, A., Vautard, R., Beekmann, M., Cheinet, S., Honoré, C., Liousse, C., and Rouil, L.: Aerosol modeling with CHIMERE – preliminary evaluation at the continental scale, Atmos. Environ., 38, 2803–2817, 2004.
Blond, N. and Vautard, R.: Three-dimensional ozone analyses and their use for short-term ozone forecasts, J. Geophys. Res., 109, D17303, https://doi.org/10.1029/2004JD004515, 2004.
Blond, N., Bel, L., and Vautard, R.: Three-dimensional ozone data analysis with an air quality model over the Paris area, J. Geophys. Res., 108, 4744, https://doi.org/10.1029/2003JD003679, 2003.
Boynard, A., Beekmann, M., Foret, G., Ung, A., Szopa, S., Schmechtig, C., and Coman, A.: An ensemble assessment of regional ozone model uncertainty with an explicit error representation, Atmos. Environ., 45, 784–793, 2011.
Brunner, D., Henne, S., Keller, C. A., Reimann, S., Vollmer, M. K., O'Doherty, S., and Maione, M.: An extended Kalman-filter for regional scale inverse emission estimation, Atmos. Chem. Phys., 12, 3455–3478, https://doi.org/10.5194/acp-12-3455-2012, 2012.
Burgers, G., Van Leeuwen, P. J. and Evensen, G.: Analysis scheme in the ensemble Kalman filter, Mon. Weather Rev., 126, 1719–1724, 1998.
Candille, G., Côt'e, C., Houtekamer, P. L., and Pellerin, G.: Verification of an Ensemble Prediction System against Observations, Mon. Weather Rev., 135, 2688–2699, https://doi.org/10.1175/MWR3414.1, 2007.
Carmichael, G. R., Chai, T., Sandu, A., Constantinescu, E. M., and Daescu, D.: Predicting air quality: Improvements through advanced methods to integrate models and measurements, J. Comp. Phys., 227, 3540–3571, 2008.
Chai, T., Carmichael, G. R., Tang, Y., Sandu, A., Hardesty, M., Pilewskie, P., Whitlow, S., Browell, E. V., Avery, M. A., Nédélec, P., Merrill, J. T., Thompson, A. M., and Williams, E.: Four-dimensional data assimilation experiments with International Consortium for Atmospheric Research on Transport and Transformation ozone measurements, J. Geophys. Res., 112, D12S15, https://doi.org/10.1029/2006JD007763, 2007.
Cheinet, S. and Teixeira, J.: A simple formulation for the eddy diffusivity parameterization of cloud-topped boundary layers, Geophys. Res. Lett., 30, 1930, https://doi.org/10.1029/2003GL017377, 2003.
Chevalier, A., Gheusi, F., Delmas, R., Ordóñez, C., Sarrat, C., Zbinden, R., Thouret, V., Athier, G., and Cousin, J.-M.: Influence of altitude on ozone levels and variability in the lower troposphere: a ground-based study for western Europe over the period 2001–2004, Atmos. Chem. Phys., 7, 4311–4326, https://doi.org/10.5194/acp-7-4311-2007, 2007.
Coman, A., Foret, G., Beekmann, M., Eremenko, M., Dufour, G., Gaubert, B., Ung, A., Schmechtig, C., Flaud, J.-M., and Bergametti, G.: Assimilation of IASI partial tropospheric columns with an Ensemble Kalman Filter over Europe, Atmos. Chem. Phys., 12, 2513–2532, https://doi.org/10.5194/acp-12-2513-2012, 2012.
Constantinescu, E. M., Sandu, A., Chai, T., and Carmichael, G.: Ensemble-based chemical data assimilation I: General approach, Q. J. Roy. Meteorol. Soc., 133, 1229–1243, https://doi.org/10.1002/qj.76, 2007a.
Constantinescu, E. M., Sandu, A., Chai, T., and Carmichael, G. R.: Ensemble-based Chemical Data Assimilation II: Covariance Localization, Q. J. Roy. Meteorol. Soc., 133, 1245–1256, 2007b.
Courtier, P. and Talagrand, O.: Variational assimilation of meteorological observations with the adjointvorticity equation, II: Numerical results, Q. J. Roy. Meteorol. Soc., 113, 1329–1347, 1987.
Curci, G., Beekmann, M., Vautard, R., Smiatek, G., Steinbrecher, R., Theloke, J., and Friedrich, R.: Modelling study of the impact of isoprene and terpene biogenic emissions on European ozone levels, Atmos. Environ., 43, 1444–1455, https://doi.org/10.1016/j.atmosenv.2008.02.070, 2009.
Curier, R. L., Timmermans, R., Calabretta-Jongen, S., Eskes, H., Segers, A., Swart, D., and Schaap, M.: Improving ozone forecasts over Europe by synergistic use of the LOTOS-EUROS chemical transport model and in-situ measurements, Atmos. Environ., 60, 217–226, 2012.
Desroziers, G., Berre, L., Chapnik, B., and Poli P.: Diagnosis of observation, background and analysis-error statistics in observation space, Q. J. Roy. Meteorol. Soc., 131, 3385–3396, 2005.
Elbern, H. and Schmidt, H.: Ozone episode analysis by four-dimensional variational chemistry data assimilation, J. Geophys. Res., 106,3569–3590, 2001.
Elbern, H., Schmidt, H., and Ebel, A.: Variational data assimilation for tropospheric chemistry modeling, J. Geophys. Res., 102, 15967–15985, 1997.
Elbern, H., Strunk, A., Schmidt, H., and Talagrand, O.: Emission rate and chemical state estimation by 4-dimensional variational inversion, Atmos. Chem. Phys., 7, 3749–3769, https://doi.org/10.5194/acp-7-3749-2007, 2007.
European Parliament: DIRECTIVE 2008/50/EC of the European Parliament and of the council of 21 May 2008 on ambient air quality and cleaner air for Europe.
Evensen, G.: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics, J. Geophys. Res., 99, 10143–10162, https://doi.org/10.1029/94JC00572, 1994.
Evensen, G.: The Ensemble Kalman Filter: Theoretical Formulation and Practical Implementation, Ocean Dynam., 53, 343–367, 2003.
Evensen G.: Sampling strategies and square root analysis schemes for the EnKF, Ocean Dynam., 54, 539–560, 2004.
Felzer, B., Kicklighter, D., Melillo, J., Wang, C., Zhuang, Q., and Prinn, R.: Effects of ozone on net primary production and carbon sequestration in the conterminous United States using a biogeochemistry model, Tellus B, 56, 230–248, 2004.
Flemming, J., Van Loon, M., and Stern, R.: Data assimilation for CTM based on optimum interpolation and Kalman filter, in: Air Pollution Modelling and its Application XVI, edited by: Borrego, C. and Incecik, S., Kluwer Academic/Plenum Publishers, New York, 373–383, 2004.
Flemming, J., Stern, R., and Yamartino, R. J.: A new air quality regime classification scheme for O3, NO2, SO2 and PM10 observations sites, Atmos. Environ., 39, 6121–6129, 2005.
Flemming, J., Inness, A., Flentje, H., Huijnen, V., Moinat, P., Schultz, M. G., and Stein, O.: Coupling global chemistry transport models to ECMWF's integrated forecast system, Geosci. Model Dev., 2, 253–265, https://doi.org/10.5194/gmd-2-253-2009, 2009.
Fowler, D., Pilegaard, K., Sutton, M., Ambus, P., Raivonen, M., Duyzer, J., Simpson, D., Fagerli, H., Fuzzi, S., Schjoerring, J., Granier, C., Neftel, A., Isaksen, I., Laj, P., Maione, M., Monks, P., Burkhardt, J., Daemmgen, U., Neirynck, J., Personne, E., Wichink-Kruit, R., Butterbach-Bahl, K., Flechard, C., Tuovinen, J., Coyle, M., Gerosa, G., Loubet, B., Altimir, N., Gruenhage, L., Ammann, C., Cieslik, S., Paoletti, E., Mikkelsen, T., Ro-Poulsen, H., Cellier, P., Cape, J., Horvath, L., Loreto, F., Niinemets, U., Palmer, P., Rinne, J., Misztal, P., Nemitz, E., Nilsson, D., Pryor, S., Gallagher, M., Vesala, T., Skiba, U., Bruggemann, N., Zechmeister-Boltenstern, S.,Williams, J., O'Dowd, C., Facchini, M., de Leeuw, G., Flossman, A., Chaumerliac, N., and Erisman, J.: Atmospheric composition change: Ecosystems-Atmosphere interactions, Atmos. Environ., 43, 5193–5267, 2009.
Frydendall, J., Brandt, J., and Christensen, J. H.: Implementation and testing of a simple data assimilation algorithm in the regional air pollution forecast model, DEOM, Atmos. Chem. Phys., 9, 5475–5488, https://doi.org/10.5194/acp-9-5475-2009, 2009.
Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I., and Geron, C.: Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature), Atmos. Chem. Phys., 6, 3181–3210, https://doi.org/10.5194/acp-6-3181-2006, 2006.
Hamill, T. M., Whitaker, J. S., and Snyder, C.: Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter, Mon. Weather Rev., 129, 2776–2790, 2001.
Hanea, R. G., Velders, G. J. M., and Heemink, A.: Data assimilation of ground-level ozone in Europe with a Kalman filter and chemistry transport, J. Geophys. Res., 109, D10302, https://doi.org/10.1029/2003JD004283, 2004.
Hanna, S. R., Zhigang, L., Frey C. H, Wheeler, N., Vukovich, J., Arunachalam, S., Fernau, M., and Hansen, A. D.: Uncertainties in predicted ozone concentrations due to input uncertainties for the UAM-V photochemical grid model applied to the July 1995 OTAG domain, Atmos. Environ., 35, 891–903, 2001.
Henne, S., Brunner, D., Folini, D., Solberg, S., Klausen, J., and Buchmann, B.: Assessment of parameters describing representativeness of air quality in-situ measurement sites, Atmos. Chem. Phys., 10, 3561–3581, https://doi.org/10.5194/acp-10-3561-2010, 2010.
Hollingsworth, A. and Lönnberg, P.: The statistical structure of short-range forecast errors as determined from radiosonde data, Part I: The wind field, Tellus A, 38A, 111–136, https://doi.org/10.1111/j.1600-0870.1986.tb00460.x, 1986.
Honoré, C., Rouil, L., Vautard, R., Beekmann, M., Bessagnet, B., Dufour, A., Elichegaray, C., Flaud, J.-M., Malherbe, L., Meleux, F., Menut, L., Martin, D., Peuch, A., Peuch, V.-H., and Poisson, N.: Predictability of European air quality : Assessment of 3 years of operational forecasts and analyses by the PREV'AIR system, J. Geophys. Res., D113, D04301, https://doi.org/10.1029/2007JD008761, 2008.
Hollingsworth, A., Engelen, R. J., Textor, C., Benedetti, A., Boucher, O., Chevallier, F., Dethof, A., Elbern, H., Eskes, H., Flemming, J., Granier, C., Kaiser, J. W., Morcrette, J.-J., Rayner, P., Peuch, V.-H., Rouil, L., Schultz, M. G., Simmons, A. J., and the GEMS Consortium: Toward a monitoring and forecasting system for atmospheric composition: The GEMS Project", B. Am. Meteorol. Soc., 89, 1147–1164, 2008.
Houtekamer, P. L. and Mitchell, H. L.: Data assimilation using an Ensemble Kalman Filter technique, Mon. Weather Rev., 126, 796–811, 1998.
Houtekamer, P. L. and Mitchell, H. L.: A Sequential Ensemble Kalman Filter for Atmospheric Data Assimilation, Mon. Weather Rev., 129, 123–137, 2001.
Huijnen, V., Eskes, H. J., Poupkou, A., Elbern, H., Boersma, K. F., Foret, G., Sofiev, M., Valdebenito, A., Flemming, J., Stein, O., Gross, A., Robertson, L., D'Isidoro, M., Kioutsioukis, I., Friese, E., Amstrup, B., Bergstrom, R., Strunk, A., Vira, J., Zyryanov, D., Maurizi, A., Melas, D., Peuch, V.-H., and Zerefos, C.: Comparison of OMI NO2 tropospheric columns with an ensemble of global and European regional air quality models, Atmos. Chem. Phys., 10, 3273–3296, https://doi.org/10.5194/acp-10-3273-2010, 2010.
Hunt, B. R., Kostelich, E. J., and Szunyogh, I.: Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter, Physica D: Nonlinear Phenomena, 230, 112–126, 2007.
Hunter, J. D.: Matplotlib: A 2D Graphics Environment, Comput. Sci. Eng., 9, 90–95, https://doi.org/10.1109/MCSE.2007.55, 2007.
Jaumouillé, E., Massart, S., Piacentini, A., Cariolle, D., and Peuch, V.-H.: Impact of a time-dependent background error covariance matrix on air quality analysis, Geosci. Model Dev., 5, 1075–1090, https://doi.org/10.5194/gmd-5-1075-2012, 2012.
Joly, M. and Peuch, V.-H.: Objective classification of air quality monitoring sites over Europe, Atmos. Environ., 47, 111–123, 2012.
Kinnison, D. E., Brasseur, G. P., Walters, S., Garcia, R. R., Marsh, D. R., Sassi, F., Harvey, V. L., Randall, C. E., Emmons, L., Lamarque, J. F., Hess, P., Orlando, J. J., Tie, X. X., Randel, W., Pan, L. L., Gettelman, A., Granier, C., Diehl, T., Niemeier, U., and Simmons, A. J.: Sensitivity of chemical tracers to meteorological parameters in the MOZART-3 chemical transport model, J. Geophys. Res., 112, D20302, https://doi.org/10.1029/2006JD007879, 2007.
Kukkonen, J., Olsson, T., Schultz, D. M., Baklanov, A., Klein, T., Miranda, A. I., Monteiro, A., Hirtl, M., Tarvainen, V., Boy, M., Peuch, V.-H., Poupkou, A., Kioutsioukis, I., Finardi, S., Sofiev, M., Sokhi, R., Lehtinen, K. E. J., Karatzas, K., San José, R., Astitha, M., Kallos, G., Schaap, M., Reimer, E., Jakobs, H., and Eben, K.: A review of operational, regional-scale, chemical weather forecasting models in Europe, Atmos. Chem. Phys., 12, 1–87, https://doi.org/10.5194/acp-12-1-2012, 2012.
Li, H., Kalnay, E., Miyoshi, T. and Danforth, C. M.: Accounting for model errors in ensemble data assimilation, Mon. Weather Rev., 137, 3407–3419, 2009a.
Li, H., Kalnay, E., and Miyoshi, T.: Simultaneous estimation of covariance inflation and observation errors within an ensemble Kalman filter, Q. J. Roy. Meteorol. Soc., 135, 523–533, 2009b.
Mallet, V. and Sportisse, B.: Ensemble-based air quality forecasts: A multimodel approach applied to ozone, J. Geophys. Res., 111, D18302, https://doi.org/10.1029/2005JD006675, 2006.
Massart, S., Piacentini, A., and Pannekoucke, O.: Importance of using ensemble estimated background error covariances for the quality of atmospheric ozone analyses, Q. J. Roy. Meteorol. Soc., 138, 889–905, 2012.
Menut, L., Bessagnet, B., Khvorostyanov, D., Beekmann, M., Blond, N., Colette, A., Coll, I., Curci, G., Foret, G., Hodzic, A., Mailler, S., Meleux, F., Monge, J.-L., Pison, I., Siour, G., Turquety, S., Valari, M., Vautard, R., and Vivanco, M. G.: CHIMERE 2013: a model for regional atmospheric composition modelling, Geosci. Model Dev., 6, 981–1028, https://doi.org/10.5194/gmd-6-981-2013, 2013.
Miyazaki, K.,Eskes, H. J., Sudo, K., Takigawa, M., van Weele, M., and Boersma, K. F.: Simultaneous assimilation of satellite NO2, O3, CO, and HNO3 data for the analysis of tropospheric chemical composition and emissions, Atmos. Chem. Phys., 12, 9545–9579, https://doi.org/10.5194/acp-12-9545-2012, 2012.
Rouil, L., Honore, C., Vautard, R., Beekmann, M., Bessagnet, B., Malherbe, L., Meleux, F., Dufour, A., Elichegaray, C., Flaud, J.-M., Menut, L., Martin, D., Peuch, A., Peuch, V.-H., and Poisson, N.: PREV'AIR: An Operational Forecasting and Mapping System for Air Quality in Europe, B. Am. Meteorol. Soc., 90, 73–83, 2009.
Sakov, P. and Bertino, L.: Relation between two common localisation methods for the EnKF, Comput. Geosci., 15, 225–237, 2010.
Schmidt, H., Derognat, C., Vautard, R., and Beekmann, M.: A comparison of simulated and observed ozone mixing ratios for the summer of 1998 in Western Europe, Atmos. Environ., 35, 6277–6297, 2001.
Schwinger, J. and Elbern, H.: Chemical state estimation for the middle atmosphere by four-dimensional variational data assimilation: A posteriori validation of error statistics in observation space, J. Geophys. Res., 115, D18307–D18307, 2010.
Semane, N., Peuch, V.-H., Pradier, S., Desroziers, G., El Amraoui, L., Brousseau, P., Massart, S., Chapnik, B., and Peuch, A.: On the extraction of wind information from the assimilation of ozone profiles in Météo-France 4-D-Var operational NWP suite, Atmos. Chem. Phys., 9, 4855–4867, https://doi.org/10.5194/acp-9-4855-2009, 2009.
Solazzo, E., Bianconi, R., Vautard, R., Appel, K. W., Moran, M. D., Hogrefe, C., Bessagnet, B., Brandt, J., Christensen, J. H., Chemel, C., Coll, I., van der Gon, H. D., Ferreira, J., Forkel, R., Francis, X. V., Grell, G., Grossi, P., Hansen, A. B., Jericevic, A., Kraljevic, L., Miranda, A. I., Nopmongcol, U., Pirovano, G., Prank, M., Riccio, A., Sartelet, K. N., Schaap, M., Silver, J. D., Sokhi, R. S., Vira, J., Werhahn, J., Wolke, R., Yarwood, G., Zhang, J., Rao, S., and Galmarini, S.: Model evaluation and ensemble modelling of surface-level ozone in Europe and North America in the context of AQMEII, Atmos. Environ., 53, 60–74, https://doi.org/10.1016/j.atmosenv.2012.01.003, 2012b.
Spangl, W., Schneider, J., Moosmann, L., and Nagl, C.: Representativeness and classification of air quality monitoring stations, Umweltbundesamt report, 2007.
Talagrand, O. and Courtier, P.: Variational assimilation of meteorological observations with the adjointvorticity equation. I: Theory, Q. J. Roy. Meteorol. Soc., 113, 1311–1328, 1987.
Tang, X., Zhu, J., Wang, Z. F., and Gbaguidi, A.: Improvement of ozone forecast over Beijing based on ensemble Kalman filter with simultaneous adjustment of initial conditions and emissions, Atmos. Chem. Phys., 11, 12901–12916, https://doi.org/10.5194/acp-11-12901-2011, 2011.
Tarasova, O. A., Brenninkmeijer, C. A. M., Jöckel, P., Zvyagintsev, A. M., and Kuznetsov, G. I.: A climatology of surface ozone in the extra tropics: cluster analysis of observations and model results, Atmos. Chem. Phys., 7, 6099–6117, https://doi.org/10.5194/acp-7-6099-2007, 2007.
Tippett, M. K., Anderson, J. L., Bishop, C. H., Hamill, T. M., and Whitaker J. S.: Ensemble Square Root Filters*, Mon. Weather Rev., 131, 1485–1490, 2003.
Troen, I. and Mahrt, L.: A simple model of the atmospheric boundary layer: Sensitivity to surface evaporation, Bound.-Lay. Meteorol., 37, 129–148, 1986.
Valari, M. and Menut, L.: Does an Increase in Air Quality Models Resolution Bring Surface Ozone Concentrations Closer to Reality?, J. Atmos. Ocean. Technol., 25, 1955–1968, 2008.
Van Loon, M., Builtjes, P. J. H., and Segers, A. J.: Data assimilation of ozone in the atmospheric transport chemistry model LOTOS, Environ. Model. Softw., 15, 603–609, 2000.
Vautard, R., Builtjes, P., Thunis, P., Cuvelier, K., Bedogni, M., Bessagnet, B., Honoré, C., Moussiopoulos, N., Schaap, M., Stern, R., Tarrason, L., and van Loon, M.: Evaluation and intercomparison of Ozone and PM10 simulations by several chemistry-transport models over 4 European cities within the City-Delta project, Atmos. Environ., 41, 173–188, 2007.
Vautard, R., Schaap, M., Bergström, R., Bessagnet, B., Brandt, J., Builtjes, P., Christensen, J., Cuvelier, C., Foltescu, V., Graff, A., Kerschbaumer, A., Krol, M., Roberts, P., Rouil, L., Stern, R., Tarrason, L., Thunis, P., Vignati, E., and Wind, P.: Skill and uncertainty of a regional air quality model ensemble, Atmos. Environ., 43, 4822–4832, 2009.
Visschedijk, A. J. H., Zandveld, P. Y. J., and Denier Van Der Gon, H. A. C.: A high resolution gridded European emission database for the EU Integrate Project GEMS, TNO, Apeldoorn, Netherlands, TNO report, 2007.
Whitaker, J. S. and Hamill, T. M.: Ensemble Data Assimilation without Perturbed Observations, Mon. Weather Rev., 130, 1913–1924, 2002.
World Health Organization (WHO): Health aspects of air pollution with particulate matter, ozone and nitrogen dioxide, Report on a WHO Working Group, Regional Office for Europe; Bonn, Germany, EUR/03/5042688, 13–15 January 2003.
Wu, L., Mallet, V., Bocquet, M., and Sportisse, B.: A comparison study of data assimilation algorithms for ozone forecasts, J. Geophys. Res., 113 D20310, https://doi.org/10.1029/2008JD009991, 2008.
Zhang, Y., Bocquet, M., Mallet, V., Seigneur, C., and Baklanov, A.: Real-time air quality forecasting, part II: State of the science, current research needs, and future prospects, Atmos. Environ., 60, 656–676, https://doi.org/10.1016/j.atmosenv.2012.02.041, 2012.
Zyryanov, D., Foret, G., Eremenko, M., Beekmann, M., Cammas, J.-P., D'Isidoro, M., Elbern, H., Flemming, J., Friese, E., Kioutsioutkis, I., Maurizi, A., Melas, D., Meleux, F., Menut, L., Moinat, P., Peuch, V.-H., Poupkou, A., Razinger, M., Schultz, M., Stein, O., Suttie, A. M., Valdebenito, A., Zerefos, C., Dufour, G., Bergametti, G., and Flaud, J.-M.: 3-D evaluation of tropospheric ozone simulations by an ensemble of regional Chemistry Transport Model, Atmos. Chem. Phys., 12, 3219-3240, https://doi.org/10.5194/acp-12-3219-2012, 2012.