Articles | Volume 7, issue 4
https://doi.org/10.5194/gmd-7-1451-2014
https://doi.org/10.5194/gmd-7-1451-2014
Methods for assessment of models
 | 
16 Jul 2014
Methods for assessment of models |  | 16 Jul 2014

Comparison of the ensemble Kalman filter and 4D-Var assimilation methods using a stratospheric tracer transport model

S. Skachko, Q. Errera, R. Ménard, Y. Christophe, and S. Chabrillat

Related authors

Weakly coupled atmosphere–ocean data assimilation in the Canadian global prediction system (v1)
Sergey Skachko, Mark Buehner, Stéphane Laroche, Ervig Lapalme, Gregory Smith, François Roy, Dorina Surcel-Colan, Jean-Marc Bélanger, and Louis Garand
Geosci. Model Dev., 12, 5097–5112, https://doi.org/10.5194/gmd-12-5097-2019,https://doi.org/10.5194/gmd-12-5097-2019, 2019
Short summary
Technical note: Reanalysis of Aura MLS chemical observations
Quentin Errera, Simon Chabrillat, Yves Christophe, Jonas Debosscher, Daan Hubert, William Lahoz, Michelle L. Santee, Masato Shiotani, Sergey Skachko, Thomas von Clarmann, and Kaley Walker
Atmos. Chem. Phys., 19, 13647–13679, https://doi.org/10.5194/acp-19-13647-2019,https://doi.org/10.5194/acp-19-13647-2019, 2019
Short summary
Harmonisation and diagnostics of MIPAS ESA CH4 and N2O profiles using data assimilation
Quentin Errera, Simone Ceccherini, Yves Christophe, Simon Chabrillat, Michaela I. Hegglin, Alyn Lambert, Richard Ménard, Piera Raspollini, Sergey Skachko, Michiel van Weele, and Kaley A. Walker
Atmos. Meas. Tech., 9, 5895–5909, https://doi.org/10.5194/amt-9-5895-2016,https://doi.org/10.5194/amt-9-5895-2016, 2016
Short summary
EnKF and 4D-Var data assimilation with chemical transport model BASCOE (version 05.06)
Sergey Skachko, Richard Ménard, Quentin Errera, Yves Christophe, and Simon Chabrillat
Geosci. Model Dev., 9, 2893–2908, https://doi.org/10.5194/gmd-9-2893-2016,https://doi.org/10.5194/gmd-9-2893-2016, 2016
Short summary

Related subject area

Atmospheric sciences
The MESSy DWARF (based on MESSy v2.55.2)
Astrid Kerkweg, Timo Kirfel, Duong H. Do, Sabine Griessbach, Patrick Jöckel, and Domenico Taraborrelli
Geosci. Model Dev., 18, 1265–1286, https://doi.org/10.5194/gmd-18-1265-2025,https://doi.org/10.5194/gmd-18-1265-2025, 2025
Short summary
An enhanced emission module for the PALM model system 23.10 with application for PM10 emission from urban domestic heating
Edward C. Chan, Ilona J. Jäkel, Basit Khan, Martijn Schaap, Timothy M. Butler, Renate Forkel, and Sabine Banzhaf
Geosci. Model Dev., 18, 1119–1139, https://doi.org/10.5194/gmd-18-1119-2025,https://doi.org/10.5194/gmd-18-1119-2025, 2025
Short summary
Identifying lightning processes in ERA5 soundings with deep learning
Gregor Ehrensperger, Thorsten Simon, Georg J. Mayr, and Tobias Hell
Geosci. Model Dev., 18, 1141–1153, https://doi.org/10.5194/gmd-18-1141-2025,https://doi.org/10.5194/gmd-18-1141-2025, 2025
Short summary
Sensitivity of predicted ultrafine particle size distributions in Europe to different nucleation rate parameterizations using PMCAMx-UF v2.2
David Patoulias, Kalliopi Florou, and Spyros N. Pandis
Geosci. Model Dev., 18, 1103–1118, https://doi.org/10.5194/gmd-18-1103-2025,https://doi.org/10.5194/gmd-18-1103-2025, 2025
Short summary
Explaining neural networks for detection of tropical cyclones and atmospheric rivers in gridded atmospheric simulation data
Tim Radke, Susanne Fuchs, Christian Wilms, Iuliia Polkova, and Marc Rautenhaus
Geosci. Model Dev., 18, 1017–1039, https://doi.org/10.5194/gmd-18-1017-2025,https://doi.org/10.5194/gmd-18-1017-2025, 2025
Short summary

Cited articles

Anderson, J. L.: Spatially and temporally varying adaptive covariance inflation for ensemble filters, Tellus A, 61, 72–83, 2009.
Bannister, R. N.: A review of forecast error covariance statistics in atmospheric variational data assimilation. I: Characteristics and measurements of forecast error covariances, Q. J. Roy. Meteorol. Soc., 134, 1951–1970, 2008.
Buehner, M., Houtekamer, P. L., Charette, C., Mitchell, H. L., and He, B.: Intercomparison of Variational Data Assimilation and the Ensemble Kalman Filter for Global Deterministic NWP. Part I: Description and Single-Observation Experiments, Mon. Weather Rev., 138, 1550–1566, 2010a.
Buehner, M., Houtekamer, P. L., Charette, C., Mitchell, H. L., and He, B.: Intercomparison of Variational Data Assimilation and the Ensemble Kalman Filter for Global Deterministic NWP. Part II: One-Month Experiments with Real Observations, Mon. Weather Rev., 138, 1567–1586, 2010b.
Constantinescu, E. M., Sandu, A., Chai, T., and Carmichael, G. R.: Ensemble-based chemical data assimilation. I: General approach, Q. J. Roy. Meteorol. Soc., 133, 1229–1243, 2007a.
Download
Share