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Abstract. An ensemble Kalman filter (EnKF) assimilation remarkably similar performance also shows that in the con-
method is applied to the tracer transport using the sameext of stratospheric transport, the choice of the assimilation
stratospheric transport model as in the four-dimensional varimethod can be based on application-dependent factors, such
ational (4D-Var) assimilation system BASCOE (Belgian As- as CPU cost or the ability to generate an ensemble of fore-
similation System for Chemical ObsErvations). This EnKF casts.

version of BASCOE was built primarily to avoid the large
costs associated with the maintenance of an adjoint model.

The EnKF developed in BASCOE accounts for two ad-

justable parameters: a parametezontrolling the model er- 1  Introduction

ror term and a parametercontrolling the observational er-

ror. The EnKF system is shown to be markedly sensitive toTWO of the most important and widely used data assimila-
these two parameters, which are adjusted based on the mokion methods are the four-dimensional variational method
itoring of a x 2 test measuring the misfit between the control (4D-Var: Talagrand and Courtierl987 and the ensem-
variable and the observations. The performance of the Enkfle Kalman filter (EnKF:Evensen 1994 Houtekamer and
and 4D-Var versions was estimated through the assimilatiodMitchell, 1998 Evensen2003. Although they solve simi-

of Aura-MLS (microwave limb sounder) ozone observations lar estimation problems, they are built around different con-
during an 8-month period which includes the formation of straints and thus have different strengths and weaknesses.
the 2008 Antarctic ozone hole. To ensure a proper compar) he BASCOE (Belgian Assimilation System for Chemical
ison, despite the fundamental differences between the tw&@PsErvations) system was originally developed with the 4D-
assimilation methods, both systems use identical and carevar assimilation method applied to a stratospheric chemi-
fully calibrated input error statistics. We provide the detailed ¢a@l transport model (CTM)Htrera et al. 2008 Errera and
procedure for these calibrations, and compare the two sets dflénard 2012. This variational method determines the ini-
analyses with a focus on the lower and middle stratospheréial conditions which optimize the fit between model forecast
where the ozone lifetime is much larger than the observa&nd observations over a period, i.e. an assimilation window.
tional update frequency. Based on the observation-minustn atmospheric chemistry, an assimilation window of 12h
forecast statistics, we show that the analyses provided byfFlemming et al.2009 or 24 h Errera et al.2008 Elbern

the two systems are markedly similar, with biases less tharet al» 2010 is typically used. The 4D-Var provides an accu-
5% and standard deviation errors less than 10 % in most ofate solution, but requires the development and maintenance
the stratosphere. Since the biases are markedly similar, the§f an adjoint model, which may be a time consuming task in
most probably have the same causes: these can be deficietie CTM context.

cies in the model and in the observation data set, but not in The most popular alternative to the 4D-Var is the EnKF

the assimilation algorithm nor in the error calibration. The Which consists in a Monte Carlo methoivensen 1994).
As the 4D-Var, the EnKF is built on the assumption of
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Gaussian-distributed observation errors to estimate the mindsing common background errors modelled by autoregres-
imum variance in the misfit between model forecast and obsive processes applied to a tropospheric chemistry model.
servations. But the EnKF computes this minimum varianceWu et al.(2008 presented an intercomparison of four assim-
estimate at each time step of the model by explicitly comput-ilation methods including the 4D-Var and the EnKF. The pa-
ing its error covariances. It does not require an adjoint modeper was organized as a sensitivity study with respect to dif-
but assumes that the forecast errors are Gaussian-distributeferent model and assimilation parameters. The experiments
In the 4D-Var scheme, the evolution of forecast error within were conducted over short periods of typically one or two
the assimilation window is computed by the model (whetherdays. One of their conclusions was that the EnKF is superior
it is accurate and appropriate or not) and is generally usedo the 4D-Var, but also that optimum interpolation is superior
as a strong constraint. By contrast, the EnKF relaxes thido the EnKF. However from the study, it was unclear whether
assumption into a weak constraint by adding a model errorach assimilation system was tuned to provide its best perfor-
covariance to the analysis error covariance which becomesmance. Hence, these conclusions were not entirely convinc-
dynamically propagated (for more details, s&eeng 2003 ing as the individual systems may have performed differently
Ménard and Daley1996. Hence, the model error covariance with different parameter values.
is of great importance for the filter performance. Moreover, In the present study, the EnKF and the 4D-Var are both
the uncertainty of the EnKF analysis is directly provided by tuned to provide their best performance while using the same
the spread of the ensemble of analyses. spectral formulation for the prescribed background error co-
The 4D-Var and the EnKF have comparable computationalvariance. First of all, the background error covariance is cal-
costs. The advantages and disadvantages of each methodibrated within the 4D-Var using the National Meteorologi-
the meteorological context have been discussed in several paal Center (NMC) methodRarrish and Derbefl992. The
pers (e.gHamill, 2006 Kalnay et al, 2007). A rigorous in-  calibrated errors are passed to the EnKF to generate the ini-
tercomparison was also presentedBuehner et al(20100 tial ensemble and the model error term. The EnKF is then
in the context of global NWP (numerical weather prediction) tuned to provide its best results wigt? diagnostics close
system with real observations. In this context, it was shownto one Ménard et al. 2000 by calibration of the observa-
that the EnKF error variance is larger than with the 4D-Var. tion and model error covariance. The 4D-Var uses the obser-
In their intercomparison papdBuehner et al(20103 also  vation covariance error calibrated within the EnKF experi-
conducted different variational experiments using static co-ments. We have not attempted to introduce a localization of
variances with horizontally homogeneous and isotropic cor-error covariances in the 4D-Var because the localizations in a
relations as well as flow-dependent EnKF covariances wittdD-Var and EnKF are not strictly equivale@ehner et aj.
spatial localization. The authors went further and made a hy20103. However, the prescribed correlation length-scales in
brid system called ensemble 4D-Var using flow-dependenthe EnKF were adjusted to match, after localization, those
EnKF covariances without the need of the tangent-linear omprescribed in the 4D-Var.
adjoint versions of the model. An overall conclusion obtained The next section describes the configurations of the EnKF
by Miyoshi et al. (2010 with the Japanese weather predic- and the 4D-Var data assimilation systems used in this study.
tion system is that both systems have essentially comparabl8ection3 describes the experimental set-up and specifically
performance. the calibration of the error variances in the two systems. Sec-
In the context of chemical modelling,ahoz and Errera tion 4 compares their results. Finally, some conclusions are
(2010 andSandu and ChgR011]) reviewed different assim-  given in Sectb.
ilation methods and challenges in chemical data assimilation.
Data assimilation systems based on a CTM are often devel-
oped within the variational approacKHattatov et al.1999 2 Description of the EnKF and 4D-Var data
Errera et al.2008, but also with sequential filteringlpatta- assimilation systems
tov et al, 200Q Ménard et al.200Q Miyazaki et al, 2012.
RecentlySekiyama et al(2011) constructed a total ozone 2.1 Configuration of the 3-D CTM
assimilation system on the basis of a four-dimensional local
ensemble transform Kalman filter (LETKMyakamuraetal. The comparison of EnKF and 4D-Var is performed using
(2013 applied the EnKF to stratospheric ozone data assim-a tracer version of the BASCOE CTM. The model in its
ilation using a multi-model approach. Meanwhile some de-usual configuration includes 57 chemical species with a full
velopments based on the EnKF have begun to address tropalescription of stratospheric chemistiigr(era et al. 2008.
spheric compositionGonstantinescu et ak007a Liu et al,, All species are advected via the flux-form semi-Lagrangian
2012. scheme I(in and Rood 1996. For the purposes of this
In the context of chemical data assimilation, few stud- study as well as to reduce the CPU time, the chemistry is
ies have been devoted to the comparison of the 4D-Var andurned off as inErrera and Ménarq2012, and only the
EnKF methods.Constantinescu et a(2007g have com-  advection of ozone (§) is considered. The CTM is driven
pared the EnKF with an operational-like 4D-Var setting by winds and temperatures obtained from the European
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Centre for Medium-Range Weather Forecasting (ECMWF)the adjustment of is described in Sec2.5. Note that the pa-
ERA-Interim reanalysisOee et al. 2011). The horizontal = rameterr governing the observational error matRy is in-
resolution of the model grid is.35° longitude by 25° lat- troduced into the BASCOE 4D-Var system to allow for com-
itude. Vertically, the model uses a subset of 37 levels ofparison with the EnKF.

the ERA-Interim 60 levels which excludes most tropospheric  The dimensiom of the matrixBg makes the computation
levels. The vertical domain extends from 0.1 hPa down to theof the background term of EqRunfeasible by current com-
surface. Hence, the model state is described by the vectgouters. To avoid the inversion 8, a control variable trans-
x € " of lengthn = 96 x 73x 37~ 2.6 x 10°. Finally, the  form is introduced:

model time step is set to 30 min. b
LE =x0—xgp=dxo, 4)

2.2 The 4D-Var system whereé is a new control variableixg is the analysis incre-

The detailed description of the BASCOE 4D-Var data as:sim-ment and. is the square root do:

ilation system is provided ikrrera and Ménar(2012. Here g, = 7. (5)
we give only the features relevant to the aims of this study.

The evolution of the model state vector between the time steffience, the cost function is then re-written as

k — 1 andk is computed by the model operator:

x(tx) = My—1x (x(tr—1)), k€e[0,K], 1)

wherek is the time indexM;_1 is the model operator be- Ryt (HiMox (L&) —dy). (6)
tweenr,_1 to#, andK is the number of time steps within the
assimilation window. In the 4D-Var experiments performed
in this study, the assimilation window is set to 24 h such that
considering the model time step of 30 mii,= 48.

4D-Var data assimilation is carried out by minimizing the

1 s
) = 58"+ 53 (HiMox(LE) —dy)”
k=0

The method used to formulate the operdtds discussed in
Sect.2.4and additional information of this incremental form
‘of 4D-Var may be found irErrera and Ménar@012. The
present study used BASCOE 4D-Var version b07.27.

so-called cost functioriT@lagrand and Courtiet987): 2.3 The EnKF system
1
J = E[X(to) —xb(to)]TBal[x(to) — x®(t0)] In this section, we describe a specific variant of the EnKF
s ; algorithm as implemented into the BASCOE system (BAS-
4= H, Mo« Ge () — xPo)) — d COE EnKF version b08.06). The general algorithm follows
2,;< eMox(x(o) (ro)) k> the theoretical formulation of the EnKF with perturbed ob-

1 b servationsifloutekamer and MitchelL 998 Evensen2003.
Ry (HkMO,k(x(fO) —x(10) — dk) ’ (2) Here, we provide only details that are essential to understand
the performed experiments.

An ensemble of initial states is produced by adding, to a
model state, a set of spatially correlated perturbations accord-
b . , ) ; ing to the prescribed initial error covariance. The details of
Hi Mo, x2(1o) s the first-guess innovation vector at time e rocedure are described in details in S2at. The en-
t_he y () € R an_d Ry € W.nkxmk represent _the observ_a- semble of model states is propagated forward in time using
tional vector and its associated error covariance matrix aly e same tracer version of the BASCOE CTM as used in the
time 1, respectivelyyn, is the number of observations as- 4D-Var system (see Se@.1). In a practical implementation,

similated during time step. the model error covariance is represented by the addition of a

T'he' BASCOE sy;tem has' been,.up to now, de3|gneql Qtochastic noisg; to each ensemble member at each model
assimilate observational profiles delivered by Ilmb-scannlngtime step:

instruments. Hence, the observation operbtpsimply con-

sists in a linear interpolation of the model value at the obser—xg(tk) = Mi—1x(xXtx—1) +m; (i), i €[L NI, )
vation tangent point. We assume that the observation errors h is the si £ th bl dth ints f
are uncorrelated both horizontally and vertically. The obser-WereN Is the size of the ensemble and the superscripts

vation error covariance matriy, is thus defined diagonal:

where xP(1g) € R" is the background model stat8&p <
R"*" is the background error covariance matri{y is
the observation operator at timg the vectord, = y(#) —

and a stand for model forecast and analysis, respectively. All
other symbols have the same meaning as in the previous sec-
tion, and the procedure to simulate the model ngjsis dis-
cussed in the next section.

To derive the analysis equation, we define first the matrix
holding the ensemble members at timgex; (1) € R":

(roy®|)%  ifi=j
wherer is anadjustable observation error parametand

ay(i)|tk is the measurement error at levednd timer;,. The
observations and their errors are described in Settvhile X)) = x1(t), x2(t), - . .. x N (1)) € RN, (8)

Re(i.j) = { @3)
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In practice, the ensemble si2é is much smaller than the
dimension of the model state vector The ensemble mean

is stored in the vectar (#;) € R":

) ==Y xit). 9

Let us note the perturbation of an ensemble member as

Xi(t) =xi(n) —X(%), i€[1N] (10)

The ensemble perturbation mat¥x(z;) is then written as
X' (1) = (F1(te). Za(t). ... Xy (1) € RN, (11)

The ensemble forecast error covariance maBix(#) €

R"*" js obtained from this ensemble perturbation matrix:

X (i) X' (11))”

Be(ti) = =~

(12)

The matrixBe(t;) can be also rewritten in terms of individual X2 —

perturbations as

1 - -
xixr.

Be= ——
€ N—14=""

(13)
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2001). To filter out this noise, we follow the method proposed
by S. E. Cohn and R. Ménard in 1997 and applied in many
EnKF systems (e.ddoutekamer and MitchelR00L Hamill
et al, 2001 Constantinescu et ak007h Fertig et al, 2007,
Sakov et al.2010. The method consists of using the Schur
(element-wise) product of the ensemble covariance matrix
with a compact support correlation function, here denoted
p. The functionp used in this study is the fifth-order piece-
wise rational function ofGaspari and Cohif1999 which
is isotropic and decreases monotonically with distance de-
pending on the correlation length scdlgc. The function
p is positive only for distances that are less thdnye and
zero otherwise. We applied this procedure to both horizontal
and vertical correlations, using the compact support correla-
tion functionsp, andp,,, with correlation length Sca|dS|hoc
andL ., respectively. The choice of these parameters is dis-
cussed in Sec8.2.2

The actual implementation of the analysis equation is thus
written as follows (omitting the time index):

(17)
f m_ . m T o_ .0 T -1
X' +p, 0p, 0BeH" [H(py, 0p, 0Be)H" +R| D,

where the notatiod o B denotes the Schur product between
two matricesA andB. The indexes m and o are introduced

Using the same notation as in the previous section, we defing; <how that the dimension of the matgixcorresponds to

the matrix of perturbed observations as

Y=y +erlty), ytx) +€2(t), ..., y(tr)

+en(tr)) € RN (14)

the model and observation space dimensions, when the Schur
product is applied to the matrBeH” andHBeH', respec-
tively. The observational operatbrrinvolves the vertical and
horizontal interpolations on the model grid. And the function

p has a length scale which is much broader than the interpo-

Wwheree (1) € " are observation perturbation vectors at lation distances. Hence, the order of the interpolation and the

F'mg tbk generated by rg.”‘t"‘?g" t_Gauss:;;m mtjml?jerz %har_af_terSchur product can be interchanged without significant loss of
ized by a zero mean distribution and a standard devia 'orhccuracy. So, Eq1{) is written approximately as

equal to the observational errofo (k)2 € ™ at timery:

-1
~ i
€;(1) ~N©, (ra, @)D, jelL NI (15) XX +plopfloBeH" o700 oHBH' +R| D, (18)

The observation error covariance matRy is defined as in The application of the Schur product to the ensemble co-
the 4D-Var version by Eq.J3. variances has several advantages. First, the correlation func-
The analysis equation in the ensemble Kalman fil-tion filters out small and noisy correlations related to obser-
ter stochastic formulation, i.e. with perturbed observationsvations at large distances. Second, it allows the EnKF to per-
(Houtekamer and MitchelP00L Evensen2003, is written ~ form reasonably well even with a small number of ensemble

as membersHoutekamer and Mitchel{200]) stated that the
use of the Schur product improves the conditioning of the
matricesBeH” andHBHT . They also argued that the Schur
product tends to reduce and smooth the effect of observations
at intermediate distances.

a,y — xf T T -1
X2(1) = X' (1) +Be(tOH] [ HiBe(tOH] +Ri| Dy, (16)

whereX?(#) is the analysis ensemble matrix'(z) is the
forecast ensemble matrix abg = Y — Hi X (%) is the en- In practice, the forecast error covariance malxs never
semble innovation matrix at timeg. computed explicitly. The ensemble representation (2jjis
A widely known issue with the EnKF method is its ten- used instead:

dency to produce analyses with noisy spatial correlations at
large distances in the analysis covariance. This is due to th&
finite and relatively small size of the ensemble compared to

the size of the model state vectétqutekamer and Mitchell

a=X"+pMo pMo X" (HX")T

o o} / NT -1
[pvopho(HX)(HX) 4—R] D. (19)
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In our system the number of observations per model time
step is rather small, allowing the inversion of the innovation
matrix [HBcH” + R] for a reasonable CPU cost.

Vertical profile of diag(2)

2.4 Ensemble initialization and model error
generation 10
Several authors have reported the problem of the EnKF di-
vergence: the decreasing ability of the filter to correct the
ensemble state towards the observations after a certain num- 100
ber of assimilation cycleHoutekamer and Mitchelll998
Hamill, 2006. The exact cause of this filter divergence is 002 006 010 014 0.8
not entirely clear, but two main reasons have been raised: 1 Vertical orofile of the back q dfor th
(i) the variance of the ensemble forecast error becomes to§'9u"e 1. Vertical profile of the background error as used for the
. C o standard deviation matriX.

small when the effect of model error in the prediction is not
considered l(oreng 2003; and (ii) the finite sample size
causes a mismatch between estimated and true error vanertical directions with correlation length scales fixed to
ance toutekamer and MitcheltL999. A common method ;% — 800 km horizontally and.§ = 1 level vertically. The
preventing the filter divergence is to increase artificially the vertical profile of the background standard deviation matrix
ensemble covariance. In our system, the error covariance i estimated using the NMC metho®4rish and Derber
increased by adding a state-wide model effp(Eq. 7) at 1992 and is shown in Figl. This profile is used for every
every model time step to each ensemble forecast. point of the horizontal grid.

Let us first provide a short description of the method to  The operatot is also used to generate the initial deviation
formulate the variational background error covariance ma-z, (1;) and the model erray; () of the EnKF system. In the
trix, as proposed bourtier et al(1998 and adopted to the  ¢case of the initial deviation, this ensures that at the initial

4D-Var version byErrera and Ménar@012). In this study,  time, both EnKF and 4D-Var systems have the same error
the method is used not only to compute the maigin the  statistics. For an initial deviation, we have:

4D-Var system (Eop), but also to compute the initial ensem-
ble and the model error in the EnKF system. The EnKF uses; (o) = L¢;(t0), i €[, N], (21)
flow-dependent ensemble forecast error covariance XBq.
evolving in time with the ensemble. On the contrary, 4D-Var while for a model error, we have
reinitializes the background error covariance every 24 h.

As stated inErrera and Ménarg@2012), the formulation (%) =L ¥; (%), i €[1,N], (22)
of the background error covariance matrix is crucial for any

variational data assimilation system. The maix should / . ) ,
be sufficiently compact to be implemented numerically and"Umbers with zero mean and variance equal to 1, defined in
the spectral space; and wherds amodel error parameter

sufficiently complex to represent adequately realistic error
covariances of the first guess field. To achieve this goal, ther§Maller than 1. o o

are several approaches. The proposed method expresses thd\ormalizing to a normal distributed random deviate is ex-
spatial correlations on a spherical harmonic ba€isuttier ~ 2ctly what should also be done for the simulation of the
etal, 1998. It is based on the fact that on such basis, homo-M0del error term. In the theory of the Kalman filté&a{man
geneous and isotropic horizontal correlations are representel?60: the model errop; is uncorrelated with the observa-

by a diagonal matrix with repeating values on the diagonaltion error and with the initial condition error. The model er-
(for the same zonal wave number) ror and the analysis error must remain uncorrelated at later

In this case, the operatbrintroduced in Eq.4) is defined times. Hence, the perturbatioghs should be different at each
by: model time step.
The algorithm to generate EnKF state perturbations is then
L =3%SAY2, (20) identical to the algorithm of the 4D-Var background error

) ) _ covariance generation. However, the operatas applied to
where X is the (diagonal) background error standard devi- e normally distributed random deviage (Eq. 21) rather
ation matrix; A2 is the spatial correlation matrix defined than to the control variablg (Eq. 4).

on a spherical harmonic basis hence diago8ad;the spec-
tral transform operator from the spectral space to the modep.5 Methodology of tuning the parameters: and «
space.
In the present study, the spatial correlation matrix con-As stated before, the EnKF system has two adjustable pa-
siders Gaussian correlations in the horizontal and in therametersi and «. The observation error parameterand

Pressure [hPa]

where ¢;(10) and ¢;(#x) are normally distributed random
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the model error parameter are adjusted statistically using 3.2 Calibration of the systems
a x?2 diagnostic introduced byénard and Chang2000

for the Kalman filter. This diagnostic compares the inno- 1, perform a proper comparison between the 4D-Var and

vation vectord with the innovation covariance matri&= EnKF, we must calibrate both systems in such a way that
HBeH' + R (Eq. 16) using a Mahalanobis norTglagrand  {hey use the same error statistics. Our starting point is the

2010. Specifically, at every analysis time stefthe value of  cgjipration of the error covariance mati used by the 4D-

x{ is computed as follows: Var system. This is realized through a calibration of the spa-
) Fel tial correlation operatot, i.e. the background error spatial
Xi = d; S dy. (23) correlation matrixA and the background error standard de-

o . ) ] . viation matrixX (Eq. 20). The calibrated operatdr is then
An assimilation system is said to be optimal wherf) is  sed in the EnKF system, where the model error parameter
equal to the number of observatioms at timer, where() — gnq the observation error parameteare estimated using the
denote the statistical expectation. Since the number of obkz diagnostic. Once the parameteis estimated, its value is
servations per time step is relatively large, i.e. about 1100 irbassed to the 4D-Var system for a final test of performance.
our case, we can approxima(i;gf) by a realization o§<k2 for
a given set of observed values (i.e. for a realization of the
observation error). 3.2.1 4D-Var
As shown byMénard and Chan@000, modifying the
model error parameter changes the trend (or slopg,f offer  The matrixX of the 4D-Var system has been calibrated using
time, while modifying the observational error parameter the NMC method Rarrish and Derbel992 Rabier et al.
changes the mean value ;@f. Since these two parameters 1998 Bannister 2008. For this purpose, a 6-month assimi-
have distinguishable effects on the time series(ﬁf(mean lation experiment (May—October 2008) has been performed
and trend), they can be tuned separately, as summarized @ssuming a matri¥ set-up as 30 % of the background field
Khattatov et al(2000: and a matrixA assuming Gaussian correlations with correla-
tion length scale!! = 800 km horizontally and.j = 1level
1. Run the assimilation system and monijgf/my. If its  vertically. The NMC method assumes that Bygmatrix may
value increases (decreases) consistently with time, inpe estimated by the difference between pairs of forecasts of
crease (decrease) This procedure is repeated until the ifferent lead times but same validity times. In meteorology,
mean value of¢Z/mi does not show a trend in its time  the forecast pairs have typically 24 and 48h lead times. In
Series. our case the forecast pairs have 0 and 24 h lead times, i.e.
the difference between the forecast pairs is equivalent to the
analysis increments of the 4D-Var system. Indeed contrary
Yo the meteorological case, there is no need in chemistry to

2. If the average value oi,f/mk is larger (smaller) than
1, increase (decrease) the observation error scaling fa

torr. perform a 24 h forecast to balance the model fields.
The calibration ofBg with the NMC method has been
3 Experimental set-up computed for several periods in 2008: May—July, August—
October and May—October. No significant differences in the
3.1 Observations estimatedX and A have been found. So the period May—

October is used in this study. Moreover, to parameterize the
The data used in this study are ozone profiles given bydiagonal values of the matri¥, two variants of it have
EOS (Earth Observing System) Aura-MLS (microwave limb been tested using the NMC method. They assume that the
sounder) version 2.ZF¢oidevaux et a).2009. The observa- background error standard deviations are defined by (1) a
tions of ozone cover the latitude range betweeri8and  one-dimensional pressure profile and (2) a two-dimensional
82°N with an along-track separation of around 165 km be- latitude—pressure field. The 4D-Var assimilation experiments
tween consecutive scans. Around 3500 vertical scans are peusing these two parameterizationsXfhave not shown im-
formed every day. Ozone profiles have a vertical resolution ofportant differences in results. So the one-dimensional profile
around 3 km in the stratosphere and they are valid for scienef X (see Fig.1l) has been used to compare the 4D-Var and
tific studies between 215 and 0.02 hPa. However, ozone datBnKF systems. We have also estimated the correlation matrix
are not assimilated above 1 hPa because the tracer assumfi-with the NMC method. But the differences between the
tion is not valid above this pressure level. The observationaD-Var assimilation considering the NM& and the Gaus-
errora, (Eq. 3) is set from the instrumental error provided sian A (where both experiments use the NMK) have not
with each observation and increased if necessary to represeshown an important difference in results. So the Gaus&ian
at least 5% of the observation value. This accounts for thehas been kept to ease its implementation in the EnKF system
representativeness error because smaller errors would givespecifically its explicit formulation of compact support cor-
too large a weight to observations. relation length scales.
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3.22 EnKF Zm>

Once the matriceA andX are calibrated in the 4D-Var sys- ‘ ‘ [a=0, rél]
tem, the resulting operatdr is passed to the EnKF system. - - -[0=0.025, r=1]
As explained in Sect2.3 the EnKF uses a Schur product S —[0=0.025, r=1.65]]
with a compact support correlation function as a localization
method. The use of Schur product reduces the resulting cor- 4t
relation length scales. In order to maintain the correlations of .
the EnKF analysis comparable to those of the 4D-Var system, )
a different setting of the correlation length scales is adopted wa
to generate the model error (E2R). Let C be a matrix re-
sulting from the Schur product of two matricés and B: 2
C = AoB. If the correlation length scales &f andB are,
respectivelyL 4 and L g, the correlation length scale @fis
given by Gaspari and Cohri999

W
K
-

)
3

.
U §,

o, QU o

Y, l..“u,.".‘ ‘,|' ) )

Y

1 1 1 ‘ ‘ ‘ ‘
Z=zt (24) oos  owo7  owoe  ovil  ovol
In our caseL, corresponds to the correlation length scale 79U 2- (X /m> evolution for the EnKF experiments usifg =

0, » = 1] (orange dashed line)y = 0.04, r = 1] (green dashed) and

Lioc Of the compact support correlation functipnand L g | - ‘
corresponds to the correlation length scale of the forecast el = 9-04 7 = 1.6] (red solid) for the period from 00:00UTC on

semble covariance matrBe, denoted in the following by.e. 1 May 2008 to 00:00 UTC on 1 January 2009.
Similarly, L¢ corresponds to the correlation length scale of
the analysis ensemble covariance matrix, denoted in the folf
lowing by the effective correlation length scdlgs. As we
would like to maintain the ¢ equal to the Gaussian correla-

t'?jn length scales used in the 4D-Var ('l‘% = 800km and tem for a final experiment to ensure the use of common ob-
Lg = 1level), we need to séioc andLe such thallett = Lo.  ganyation error statistics. Note that no significant differences
First, reasonable values for the localized correlation !engtnn the OmME statistics have been found between the 4D-Var
scales were choseiy;,. = 2000 km andLj,, = 1.5. In this analysis withr =1 andr = 1.65 (not shown). Thus, while

fhe 4D-var requires important work to develop an adjoint op-
erator, the tuning of error parameters does not require large
efforts in the context of stratospheric chemistry.

his illustrates an important sensitivity of the EnKF to the
adjustable error parameters.
The value ofr = 1.65 has been passed to the 4D-Var sys-

the model error in the EnKF are defined by = 872 km and
Lg = 1.3 model level.

The next step in the calibration of the EnKF is the tuning of
« andr using ax? diagnostic (see Se@.5). Figure2shows 33  Numerical performance
the time evolution okaz/mk for three EnKF runs. The first
run assumed = 1 anda = 0, resulting inxkz/mk at~2.8 We tried to configure the EnKF and 4D-Var systems to allow
initially and growing quickly during the following days. The comparable total CPU costs. Preliminary experiments with
model error parameter was then adjusted by trial and error the 4D-Var system show that the 4D-Var performs reason-
until the time series o,tkz/mk displayed no trend, a condition ably well using about 20 iterations. Accounting for the ad-
met by a run using = 0.025. This second run still resulted joint model integration in the 4D-Var, we have chosen for
ina too-IargeXkZ/mk, around 3. A second series of trial and the EnKF an ensemble size of 40 members.

error adjustments for the observation error parameted In terms of numerical performance, the 4D-Var requires
to the final run for the EnKF calibration: setting= 1.65 re-  about 750s on a single processor to integrate one assimila-
sulted in analyses Witb@kz/mk close to 1. tion window of 24 h. The EnKF algorithm consists of two

Figure 3 displays the observation-minus-forecast (OmF) separate phases: the ensemble propagation and the analysis
statistics, biases and standard deviations with respect to th@Eqg. 19). The analysis phase of the EnKF requires 550 to
assimilated MLS data, for these three EnKF experimentsperform 48 analyses, covering the period of 24 h, (48 anal-
with [0« =0,r =1], [« =0.025,r = 1] and[a = 0.025 r = yses correspond to the model time step of 0.5h) and 500s
1.65]. A clear improvement is found after the tuningegfi.e. to propagate the ensemble during the same period on a sin-
the presence of the model error term is essential for the EnKFRgle processor. The actual EnKF configuration allows solving
to function properly. The impact of the tuning ofis not so  Eg.19on multiple processors, which helps to gain an impor-
visibly marked; however, the final EnKF experiment using tant wall clock time: the analysis phase requires 100s on 16
o andr parameters both tuned shows systematically betteprocessors. Note that the computation of the Kalman gain in
results than the experiment where ondyis tuned. Overall,  our EnKF is performed using Cholesky decomposition where
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Figure 3. Observations-minus-forecast statistics, bias and standard deviation, with respect to the MLS data of the EnKF experiments using
[@ = 0,r = 1] (orange dashed line)e¢ = 0.025 r = 1] (green dashed) arfd = 0.025, r = 1.65] (red solid) for the period from 1 May to

31 June 2008.

the full observation vector is considered at a given time steptroposphere—lower stratosphere (UTLS), the limb sounding
No simplification is used to compute the inversion of the observations by Aura-MLS are less precise and less accurate
innovation matrixiHBeHT + R] or the matrixBeH”. The than in the mid-stratosphererpidevaux et a).2008 which

CPU cost of the EnKF can be improved using local domainexplains the increase in the bias and OmF standard deviation
decomposition and integration of the ensemble members obelow 50 hPa. According to theand F tests, the OmF of the
different processors in parallel. These two tasks will be a subEnKF and 4D-Var 24 h forecasts are statistically equivalent at
ject of our future work. almost all levels and in all latitude bands. We note however
that decreasing the value of the confidence interval from 95
to 90 %, for example, reveals that following thend F tests,

the OmF of the two systems are different at pressure levels
_ ) . around 4 and 70 hPa in the South Pole region. We note also
In this section, we discuss the performance of the EnKF ang, ot i, this same region the OmF bias is much larger for both
4D-Var after calibration as described in the previous sectiongystems in the lower and upper stratosphere (but still smaller
The performance is evaluated using standard OmF statisticgy, 4, 69%). The biases of two systems reach agreement with
i.e. the average of the differences (bias) between observgne same sign and roughly of the same magnitude. This indi-
tions and forecasts, as well as their standard deviation. Herg,tes that the origin of the bias is common for both systems.
we use 24 h forecasts and the assimilated MLSp@files Figure5 shows a time series of the OmF bias and stan-
as observation data. This statistical diagnostic is performed, 4 geviation in the upper stratosphere (1-10 hPa) above the
in five different latitudinal bands covering the globe. Fig- g th pole region. The bias and standard deviations of both
ure 4 shows the OmF statistics for the period of Septembergy stems are very similar and remain stable between June and
and October 2008. The OmF errors are computed in percentge yvomper, with a negligible bias and standard deviations

from the observation values. In or_der to evaluate if the dif- around 6-7 %. From September to November, these values
ference between OmF errors provided by EnKF and 4D-Vari e g6 up to 7% for the bias and 12 % for the standard de-
are statistically significant for a confidence interval of 95 %

, 7 ) ' viation. During that period, the dynamics becomes relatively
the Student's(test) and the Fisher's tesF(test) are com-  ,qtive in the upper stratosphere above the South Pole due to

puted for biases and standard deviation errors, respectively},o breakup of the vortex. The ERA-Interim wind fields used

The application of these statistical tests are explained in thgy, grive the transport model may be either insufficiently ac-
Appendix. Their results are depicted in Figby green/red o, ate or their update period (6 h) may be too long to allow
stars, which correspond to significant/not significant differ- 1, systems to provide accurate 24 h forecasts.

ences for the chosen confidence interval. Figure6 shows the time series of the OmF bias and stan-
~As seen from the figure, both systems exhibit a small OmFy, 4 geviation in the lower stratosphere (10-100 hPa) above

bias, generally less than 2 % in the pressure range 1-100 hPg,o gouth Pole region. Again, both systems have similar

The OmF standard deviations are generally less than 10 % igy ¢ departures. Between May and September, the biases

.the range ,1_50 hPa and increase to a maximuny 60 % are generally less than 2 % from the observation values, and
in the tropical upper troposphere (200hPa). In the upper

4 Results and discussion
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Figure 4. Observation-minus-forecast statistics for the EnKF (red lines) and the 4D-Var (blue lines) with respect to the assimilated EOS
(earth observing system) Aura-MLS data for the period of September and October 2008. Bias (top row) and standard deviation (bottom row)
for five different latitudinal bands. The green or red stars show the result of the Student’s and Fisher's tests of significance on the 95 % level
(see text).
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Figure 5. Observations-minus-forecast time series, bias (top row)Figure 6. As Fig.5 but between 10 and 100 hPa.
and standard deviation (bottom row), for the EnKF (red lines) and

the 4D-Var (blue lines) with respect to the assimilated EOS Aura-

MLS data between 1 and 10 hPa and betwe®&® and—60° for

the period May—December 2008. lower than—2 %. Since the months of September and Octo-

ber are precisely the period of photochemically driven ozone

destruction, we attribute these degradations in the OmF series
the standard deviations are less than 10 % until the end ofo the absence of chemistry in our simplified model: during
August. The standard deviations increase quickly during thehe ozone hole period, the tracer transport approximation is
first days of September and reach maximum values — aroundlearly not adequate. In this situation, the 4D-Var delivered
15-17 % — in mid-September, the 4D-Var providing valuesa slightly better performance than the EnKF. This may be
slightly lower than those from the EnKF. At the beginning due to the assimilation window of 24 h used by the 4D-Var,
of November, the standard deviations have decreased baatompared with the sequential assimilation of the EnKF.
to pre-September levels. In September, the bias of both ex- Outside the ozone hole period/region and based on
periments also slightly increases up to 4% where 4D-Varthe OmF statistics between MLS and the analysis, no
shows again values slightly lower that those by the EnKF.significant differences have been found between the
In mid-October, the bias becomes negative but with valuesystems. Observation-minus-forecast statistics have also
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Figure 7. Ozone at 54.6 hPa (model level 22) from 4D-Var (left), EnKF (middle) and their absolute differences (right). The upper row
corresponds to a snapshot on 15 September 2008 while the lower row corresponds to a monthly mean for the month of September 2008.

been computed against independent observations by Erecomplete yet), ozone depletion started during the first days
visat/MIPAS (Michelson Interferometer for Passive Atmo- of September, i.e. exactly during the sudden growtj fif
spheric Sounding)Raspollini et al. 2013. Although the this growth is really due to a missing process in our model
OmF statistics differ slightly, no statistical differences be- (in this case the ozone polar chemistry), theh may be
tween the EnKF and 4D-Var systems have been found eiused as a tool to monitor the model error. Note that although
ther (not shown). Hence, the slightly different OmF statisticsthe time series of the standard deviation in the OmF also in-
are only due to the differences between the MLS and MIPAScreases during the formation of the ozone hole (see6jig.
data sets. We thus conclude that both systems are statisticalthe growth in the standard deviation is smoother than dis-
equivalent in the observation space except during the ozonplayed by they? and thus provides a less clear signal. Future
hole period, where the 4D-Var delivers analyses with slightlywork will extend the comparison to the full BASCOE CTM
smaller OmF departures than the EnKF. including the ozone polar chemistry, and if our explanation
However, individual analyses provided by the two systemsis correct this sharp increase should disappear fromythe
can exhibit larger differences than those given by OmF statistime series.
tics. Figure7 (upper row) shows the ozone distribution at
54.6 hPa on 15 September 2008 by both systems and their _
differences. Although both analyses display similar patterns® Conclusions
they are clearly not identical. But looking at the monthly
averaged maps (Fig, lower row) these difference become
small. Hence, while there are some differences between th

The first aim of this paper was to present the implementa-
tion of the EnKF method in the BASCOE system. This sys-
fem was originally based on 4D-Var, and our motivation was
& bypass the development and maintenance of an adjoint
model. The new EnKF version of BASCOE was developed

Finally, let us come back to the time series of thedi- . . ]
. . . accounting for two adjustable parameters: the parameter
agnostic for the EnkF system (Fig). A small but sharp in- controlling the model error term of the EnKF and the pa-

crease occurs during the first days of September. We attributé : .
o ; . rameterr controlling the observational error. These two pa-
this jump to the onset of photochemically driven ozone de-

pletion. Figure8 shows the formation of the ozone hole rameters have been adjusted based on the monitoring ®f a

throuah ozone analvses delivered by the EnKE svstem a&est measuring the misfit between the control variable and the
g y y Y observations. In this study, we have turned off the chemistry

54.6 hPa (model level 22) in the Southern Hemisphere fromn the CTM of BASCOE and have considered only ozone

29 August to 20 September (one snapshot every two days). : : . :
oY ransport. This configuration allowed considerably faster ex-
While it takes several days to see a clear ozone hole above

Antarctica (even on 20 September ozone depletion is nogiggz?ng];g)th systems and a large number of assimilation

be attributed to noise in the analyses.
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Figure 8. Ozone distributions at 54.6 hPa (model level 22) for the Antarctic region. The snapshots are taken for the period between 29 August

and 20 September every two days. Contours are plotted for every 0.25 ppmv.

The second aim of this paper was to properly compare thevithout a model error, and the implementation of the model
EnKF and 4D-Var despite the fundamental differences be-error term was relatively fast. On the other hand, the effort re-
tween the two methods. To this end, we have used the samguired to implement a weak constraint in the 4D-Var seems
numerical model, an identical set of observations, an iden-quite large. We thus have considered both methods in their
tical observation operatdd and the same observation er- original form. Consequently, we have not attempted to in-
ror covariance matriR. Furthermore, the background error troduce the background error covariance localization within
covariances have been carefully calibrated in both systemsiD-Var. Such localization would have resulted in a compari-
First, the background error covariance maBixof the 4D-  son with a form of 4D-Var that is never used in practice.

Var system has been calibrated using the NMC method. Two The two systems were compared through the assimila-
components 0By, i.e. the background error spatial corre- tion of Aura-MLS ozone observations for the period May—
lation matrix A and the background error standard deviation December 2008, thus comprising the polar night and ozone
matrix ¥, have been transferred to the EnKF system to generhole periods. We focused our attention on the lower and mid-
ate the initial ensemble and the model error term. The backédle stratosphere where the ozone lifetime is much larger than
ground error statistics were then carefully designed to usehe observational update frequency.

the same correlation models and equivalent length-scales in We have assessed the performance primarily in terms of
both systems. The EnKF parameterandr have been cal- observation-minus-24 h-forecast statistics and found that the
ibrated using thec 2 test. The value of has been passed to analyses provided by the two systems are significantly simi-
the 4D-Var system to ensure that both systems use identicdhr for confidence interval of 95 %, with biases smaller than
observation error covariances. Despite a straightforward im5 % and standard deviation errors smaller than 10 % in most
plementation of the EnKF numerical algorithm, the resulting of the stratosphere. In September and October, the two sys-
EnKF version of BASCOE was shown to be extremely sen-tems display an increase in their OmF above the South Pole
sitive to the parameter values. Thus, an accurate adjustindgue to (1) the vortex breakup in the upper stratosphere and
procedure of these parameters is of great importance to th€) the ozone hole formation in the lower stratosphere. The
performance of the system. degradation of the OmF is these cases are attributed to (1)

We note that the EnKF has a model error term whereas thénaccuracies in the modelling of the dynamics and (2) the
4D-Var is considered as a strong constraint problem. It mayomission of ozone hole chemistry in the model.
thus be argued that their comparison cannot be totally fair. Since the biases are markedly similar, they most proba-
Note however that the EnKF is not able to work properly bly have the same causes: these can be deficiencies in the
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model and in the observation data set. The remarkably simpresented here accounts only for stratospheric transport, not
ilar performance also shows that in the context of strato-chemistry. The application of the EnKF method to the full-
spheric transport, the choice of the assimilation method carthemistry model may require a careful tuning procedure for
be based on application-dependent factors, such as CPU costch chemical species, a task that can be time consuming.
or the ability to generate an ensemble of forecasts. Hence, an adaptive calibration procedure of the error covari-
The BASCOE 4D-Var system can provide analyses tak-ances (similar téAnderson 2009 or Li et al., 2009 should
ing stratospheric chemistry explicitly into account, in the be implemented. The implementation of EnKF with chem-
forward as well as the adjoint model. The EnKF systemistry is ongoing and will be reported in future studies.
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Appendix A: Statistical tests to compare the OmF errors A2 Fisher’s Test

Al Student'st test The Fisher'sF test Snedecor and Cochrahi989 is used to
o compare two OmF standard deviations and determine if they
We use the two-sample significance Studentisst ¢ test;  are significantly different. For a two-tailed significance test it

see, e.gSnedecor and Cochrat989) to compare two mean  is supposed that? # 2. The F test statistics is computed
OmF residualg/ (/) computed by the EnKF and the 4D-Var, gzs at each levélas follows

where the bar denotes the time-averaged OmF residual value

at levell. This test is used in our case under the assumption ) = 012(1) (A3)
that the two samples have the same size and variance. The 022(1)'
t statistics is computed at each levels follows:
The more this ratio deviates from 1, the stronger the evidence

d1(l) —dy() 2 for unequal OmF standard deviations. The hypothesis that the

t() = PRI B0 (A1)  two OmF standard deviations are equal is rejected if
1a2

where n(l) is the size of the samplesSq,q,() = O > Fapana. (A4)

V 3(c2+02) is the grand or pooled standard deviation and or

o1(l) ando»(1) are the OmF standard deviations for the EnKF

and the 4D-Var at levdl respectively. J ) < Fias2.00) (A5)
Then, for a given value of significance level(typically

set to 5%), the hypothesis that two means are statistically hle:reF “’”(’I) ItS thz'crtr[.ltc):atl.vall:e oﬁ'; dIStr.'FJ t;on dcompute(:
equal is rejected if as F cumulative distribution function witt (/) degrees o

freedom and a significance level@fThe F cdf can be com-
1t > T1ay2.00)- (A2) puted using the same statistical packages as far ¢dé

whereT, () is a critical value oft () computed as the in-
verse of the Studentiscumulative distribution function (cdf)
for a givena andn(l). The well knowns tables provide the
values of7, ,) only for small sample sizes(l). In prac-
tice, the Student’scdf is easily computed by many statistical
packages like SciPy, the Matlab statistical toolbox, etc.
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