Articles | Volume 7, issue 3
https://doi.org/10.5194/gmd-7-1197-2014
https://doi.org/10.5194/gmd-7-1197-2014
Methods for assessment of models
 | 
25 Jun 2014
Methods for assessment of models |  | 25 Jun 2014

Estimating soil organic carbon stocks of Swiss forest soils by robust external-drift kriging

M. Nussbaum, A. Papritz, A. Baltensweiler, and L. Walthert

Related authors

Using surface drifters to characterise near-surface ocean dynamics in the southern North Sea: a data-driven approach
Jimena Medina-Rubio, Madlene Nussbaum, Ton S. van den Bremer, and Erik van Sebille
EGUsphere, https://doi.org/10.5194/egusphere-2025-3287,https://doi.org/10.5194/egusphere-2025-3287, 2025
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary
OpenLandMap-soildb: global soil information at 30 m spatial resolution for 2000–2022+ based on spatiotemporal Machine Learning and harmonized legacy soil samples and observations
Tomislav Hengl, Davide Consoli, Xuemeng Tian, Travis W. Nauman, Madlene Nussbaum, Mustafa Serkan Isik, Leandro Parente, Yu-Feng Ho, Rolf Simoes, Surya Gupta, Alessandro Samuel-Rosa, Taciara Zborowski Horst, José Lucas Safanelli, and Nancy Harris
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-336,https://doi.org/10.5194/essd-2025-336, 2025
Preprint under review for ESSD
Short summary
Improving forecasts of snow water equivalent with hybrid machine learning
Oriol Pomarol Moya, Madlene Nussbaum, Siamak Mehrkanoon, Philip D. A. Kraaijenbrink, Isabelle Gouttevin, Derek Karssenberg, and Walter W. Immerzeel
EGUsphere, https://doi.org/10.5194/egusphere-2025-1845,https://doi.org/10.5194/egusphere-2025-1845, 2025
Short summary
Mapping soil micronutrient concentration at national-scale: an illustration of a decision process framework
Christopher Chagumaira, Joseph G. Chimungu, Patson C. Nalivata, Martin R. Broadley, Madlene Nussbaum, Alice E. Milne, and R. Murray Lark
EGUsphere, https://doi.org/10.5194/egusphere-2022-583,https://doi.org/10.5194/egusphere-2022-583, 2022
Preprint archived
Short summary
Uncertainty indication in soil function maps – transparent and easy-to-use information to support sustainable use of soil resources
Lucie Greiner, Madlene Nussbaum, Andreas Papritz, Stephan Zimmermann, Andreas Gubler, Adrienne Grêt-Regamey, and Armin Keller
SOIL, 4, 123–139, https://doi.org/10.5194/soil-4-123-2018,https://doi.org/10.5194/soil-4-123-2018, 2018
Short summary

Related subject area

Biogeosciences
Spatially varying parameters improve carbon cycle modeling in the Amazon rainforest with ORCHIDEE r8849
Lei Zhu, Philippe Ciais, Yitong Yao, Daniel Goll, Sebastiaan Luyssaert, Isabel Martínez Cano, Arthur Fendrich, Laurent Li, Hui Yang, Sassan Saatchi, and Wei Li
Geosci. Model Dev., 18, 4915–4933, https://doi.org/10.5194/gmd-18-4915-2025,https://doi.org/10.5194/gmd-18-4915-2025, 2025
Short summary
Simulating the drought response of European tree species with the dynamic vegetation model LPJ-GUESS (v4.1, 97c552c5)
Benjamin F. Meyer, João P. Darela-Filho, Konstantin Gregor, Allan Buras, Qiao-Lin Gu, Andreas Krause, Daijun Liu, Phillip Papastefanou, Sijeh Asuk, Thorsten E. E. Grams, Christian S. Zang, and Anja Rammig
Geosci. Model Dev., 18, 4643–4666, https://doi.org/10.5194/gmd-18-4643-2025,https://doi.org/10.5194/gmd-18-4643-2025, 2025
Short summary
pyVPRM: a next-generation vegetation photosynthesis and respiration model for the post-MODIS era
Theo Glauch, Julia Marshall, Christoph Gerbig, Santiago Botía, Michał Gałkowski, Sanam N. Vardag, and André Butz
Geosci. Model Dev., 18, 4713–4742, https://doi.org/10.5194/gmd-18-4713-2025,https://doi.org/10.5194/gmd-18-4713-2025, 2025
Short summary
Emulating grid-based forest carbon dynamics using machine learning: an LPJ-GUESS v4.1.1 application
Carolina Natel, David Martín Belda, Peter Anthoni, Neele Haß, Sam Rabin, and Almut Arneth
Geosci. Model Dev., 18, 4317–4333, https://doi.org/10.5194/gmd-18-4317-2025,https://doi.org/10.5194/gmd-18-4317-2025, 2025
Short summary
ELM2.1-XGBfire1.0: improving wildfire prediction by integrating a machine learning fire model in a land surface model
Ye Liu, Huilin Huang, Sing-Chun Wang, Tao Zhang, Donghui Xu, and Yang Chen
Geosci. Model Dev., 18, 4103–4117, https://doi.org/10.5194/gmd-18-4103-2025,https://doi.org/10.5194/gmd-18-4103-2025, 2025
Short summary

Cited articles

Adams, W. A.: The effect of organic matter on bulk and true densities of some uncultivated podzolic soils, J. Soil Sci., 24, 10–17, https://doi.org/10.1111/j.1365-2389.1973.tb00737.x, 1973.
Arrouays, D., Deslais, W., and Badeau, V.: The carbon content of topsoil and its geographical distribution in France, Soil Use Manage., 17, 7–11, 2001.
Baritz, R., Seufert, G., Montanarella, L., and Ranst, E. V.: Carbon concentrations and stocks in forest soils of Europe, Forest Ecol. Manag., 260, 262–277, https://doi.org/10.1016/j.foreco.2010.03.025, 2010.
BFS: GEOSTAT Benützerhandbuch, Bundesamt für Statistik, Bern, 2001.
Blaser, P., Kernebeek, P., Tebbens, L., van Breemen, N., and Luster, J.: Cryptopodzolic soils in Switzerland, Eur. J. Soil Sci., 48, 411–423, https://doi.org/10.1111/j.1365-2389.1997.tb00207.x, 1997.
Download
Share