Articles | Volume 6, issue 5
Methods for assessment of models
21 Oct 2013
Methods for assessment of models |  | 21 Oct 2013

The potential of an observational data set for calibration of a computationally expensive computer model

D. J. McNeall, P. G. Challenor, J. R. Gattiker, and E. J. Stone

Related authors

Constraining the carbon cycle in JULES-ES-1.0
Douglas McNeall, Eddy Robertson, and Andy Wiltshire
Geosci. Model Dev. Discuss.,,, 2023
Revised manuscript accepted for GMD
Short summary
Correcting a bias in a climate model with an augmented emulator
Doug McNeall, Jonny Williams, Richard Betts, Ben Booth, Peter Challenor, Peter Good, and Andy Wiltshire
Geosci. Model Dev., 13, 2487–2509,,, 2020
Short summary
The impact of structural error on parameter constraint in a climate model
Doug McNeall, Jonny Williams, Ben Booth, Richard Betts, Peter Challenor, Andy Wiltshire, and David Sexton
Earth Syst. Dynam., 7, 917–935,,, 2016
Short summary
The mechanisms of North Atlantic CO2 uptake in a large Earth System Model ensemble
P. R. Halloran, B. B. B. Booth, C. D. Jones, F. H. Lambert, D. J. McNeall, I. J. Totterdell, and C. Völker
Biogeosciences, 12, 4497–4508,,, 2015
Short summary
The impact of climate mitigation on projections of future drought
I. H. Taylor, E. Burke, L. McColl, P. D. Falloon, G. R. Harris, and D. McNeall
Hydrol. Earth Syst. Sci., 17, 2339–2358,,, 2013

Related subject area

Climate and Earth system modeling
A sub-grid parameterization scheme for topographic vertical motion in CAM5-SE
Yaqi Wang, Lanning Wang, Juan Feng, Zhenya Song, Qizhong Wu, and Huaqiong Cheng
Geosci. Model Dev., 16, 6857–6873,,, 2023
Short summary
Technology to aid the analysis of large-volume multi-institute climate model output at a central analysis facility (PRIMAVERA Data Management Tool V2.10)
Jon Seddon, Ag Stephens, Matthew S. Mizielinski, Pier Luigi Vidale, and Malcolm J. Roberts
Geosci. Model Dev., 16, 6689–6700,,, 2023
Short summary
A diffusion-based kernel density estimator (diffKDE, version 1) with optimal bandwidth approximation for the analysis of data in geoscience and ecological research
Maria-Theresia Pelz, Markus Schartau, Christopher J. Somes, Vanessa Lampe, and Thomas Slawig
Geosci. Model Dev., 16, 6609–6634,,, 2023
Short summary
Monte Carlo drift correction – quantifying the drift uncertainty of global climate models
Benjamin S. Grandey, Zhi Yang Koh, Dhrubajyoti Samanta, Benjamin P. Horton, Justin Dauwels, and Lock Yue Chew
Geosci. Model Dev., 16, 6593–6608,,, 2023
Short summary
Improvements in the Canadian Earth System Model (CanESM) through systematic model analysis: CanESM5.0 and CanESM5.1
Michael Sigmond, James Anstey, Vivek Arora, Ruth Digby, Nathan Gillett, Viatcheslav Kharin, William Merryfield, Catherine Reader, John Scinocca, Neil Swart, John Virgin, Carsten Abraham, Jason Cole, Nicolas Lambert, Woo-Sung Lee, Yongxiao Liang, Elizaveta Malinina, Landon Rieger, Knut von Salzen, Christian Seiler, Clint Seinen, Andrew Shao, Reinel Sospedra-Alfonso, Libo Wang, and Duo Yang
Geosci. Model Dev., 16, 6553–6591,,, 2023
Short summary

Cited articles

Bamber, J., Layberry, R. L., and Gogineni, P.: A new ice thickness and bed data set for the Greenland ice sheet 1. Measurement, data reduction, and errors, J. Geophys. Res., 106, 33–773, 2001.
Craig, P., Goldstein, M., Seheult, A., and Smith, J.: Bayes linear strategies for history matching of hydrocarbon reservoirs, in: Bayesian Statistics 5, edited by: Bernardo, J., Berger, J., Dawid, A., and Smith, A., 69–95, Clarendon Press, Oxford, UK, 1996.
Craig, P., Goldstein, M., Seheult, A., and Smith, J.: Pressure matching for hydrocarbon reservoirs: a case study in the use of Bayes linear strategies for large computer experiments, in: Case studies in Bayesian statistics, edited by: Gatsonis, C., Hodges, J., Kass, R., McCulloch, R., Rossi, P., and Singpurwalla, N., vol. 3, 36–93, Springer-Verlag, New York, USA, 1997.
Craig, P., Goldstein, M., Rougier, J., and Seheult, A.: Bayesian forecasting for complex systems using computer simulators, J. Am. Stat. Assoc., 96, 717–729, 2001.
Hankin, R.: Introducing BACCO, an R package for Bayesian analysis of computer code output, J. Stat. Softw., 14, 1–21, 2005.