Articles | Volume 5, issue 2
https://doi.org/10.5194/gmd-5-277-2012
© Author(s) 2012. This work is distributed under the Creative Commons Attribution 3.0 License.
Verification of SpacePy's radial diffusion radiation belt model
Related subject area
Solar-terrestrial science
Physics-motivated cell-octree adaptive mesh refinement in the Vlasiator 5.3 global hybrid-Vlasov code
Daily INSOLation (DINSOL-v1.0): an intuitive tool for classrooms and specifying solar radiation boundary conditions
SSolar-GOA v1.0: a simple, fast, and accurate Spectral SOLAR radiative transfer model for clear skies
Application of CCM SOCOL-AERv2-BE to cosmogenic beryllium isotopes: description and validation for polar regions
Geosci. Model Dev., 17, 6401–6413, 2024
Geosci. Model Dev., 16, 2371–2390, 2023
Geosci. Model Dev., 15, 1689–1712, 2022
Geosci. Model Dev., 14, 7605–7620, 2021
Cited articles
Baker, D.: The Occurrence of Operational Anomalies in Spacecraft and Thei Relationship to Space Weather, IEEE Transactions on Plasma Science, 28, 2007–2016, 2000.
Beutier, T. and Boscher, D.: A three-dimensional analysis of the electron radiation belt by the Salammb{ô code}, J. Geophys. Res., 100, 14853–14862, https://doi.org/10.1029/94JA03066, 1995.
Brautigam, D. H. and Albert, J. M.: Radial diffusion analysis of outer radiation belt electrons during the October 9, 1990, magnetic storm, J. Geophys. Res., 105, 291–310, https://doi.org/10.1029/1999JA900344, 2000.
Carpenter, D. L. and Anderson, R. R.: An ISEE/Whistler model of equatorial electron density in the magnetosphere, J. Geophys. Res., 97, 1097–1108, https://doi.org/10.1029/91JA01548, 1992.
Crank, J. and Nicolson, P.: A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type, Proc. Cambridge Philos. Soc., pp. 50–67, 1947.