Articles | Volume 19, issue 2
https://doi.org/10.5194/gmd-19-955-2026
https://doi.org/10.5194/gmd-19-955-2026
Model description paper
 | 
29 Jan 2026
Model description paper |  | 29 Jan 2026

BuRNN (v1.0): a data-driven fire model

Seppe Lampe, Lukas Gudmundsson, Basil Kraft, Stijn Hantson, Douglas Kelley, Vincent Humphrey, Bertrand Le Saux, Emilio Chuvieco, and Wim Thiery

Viewed

Total article views: 1,997 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
1,719 235 43 1,997 30 28
  • HTML: 1,719
  • PDF: 235
  • XML: 43
  • Total: 1,997
  • BibTeX: 30
  • EndNote: 28
Views and downloads (calculated since 01 Sep 2025)
Cumulative views and downloads (calculated since 01 Sep 2025)

Viewed (geographical distribution)

Total article views: 1,997 (including HTML, PDF, and XML) Thereof 1,912 with geography defined and 85 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 29 Jan 2026
Download
Short summary
We introduce BuRNN (BUrned area modelling by Recurrent Neural Networks), a model which estimates monthly burned area based on satellite observations and climate, vegetation, and socio-economic data using machine learning. BuRNN outperforms existing process-based fire models, which improves our capabilities of modelling past and future burned areas.
Share