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Abstract. Fires play an important role in the Earth system but
remain complex phenomena that are challenging to model
numerically. Here, we present the first version of BuRNN,
a data-driven model simulating burned area on a global
0.5° x 0.5° grid with a monthly time resolution. We trained
Long Short-Term Memory networks to predict satellite-
based burned area (GFEDS) from a range of climatic, vegeta-
tion and socio-economic parameters. We employed a region-
based cross-validation strategy to account for the high spatial
autocorrelation in our data. BURNN outperforms the process-
based fire models participating in ISIMIP3a on a global scale
across a wide range of metrics. Regionally, BURNN outper-
forms almost all models across a set of benchmarking metrics
in all regions. Through explainable Al we unravel the differ-
ence in regional drivers of burned area in our models, show-
ing that the presence/absence of bare ground and Cy4 grasses
along with the fire weather index have the largest effects on
our predictions of burned area. Lastly, we used BuRNN to
reconstruct global burned area for 1901-2019 and compare
the simulations against independent long-term historical fire
observation databases in five countries and the EU. Our ap-
proach highlights the potential of machine learning to im-
prove burned area simulations and our understanding of past
fire behaviour.

1 Introduction

Fire plays an important role in the Earth system by influ-
encing ecosystem dynamics, biogeochemical cycles and at-
mospheric composition (Bowman et al., 2020). Fires drive
ecosystem dynamics by affecting plant evolution (Simon
et al., 2009), vegetation species composition and the phys-
ical, chemical and biological properties of soils (McLauch-
lan et al., 2020). Many of these ecosystem characteristics in
turn also shape fire behaviour (Archibald et al., 2018). Emis-
sions from vegetation fires affect the radiative balance of the
Earth as the gases (H,O, COy) trap energy through the green-
house effect, while the aerosols reduce the amount of solar
radiation that reaches Earth’s surface (Bowman et al., 2009;
Ward et al., 2012). Smoke of fires affects a wide range of
systems including the radiative balance (Hodzic et al., 2007;
Chakrabarty et al., 2023), plant fertilization (Fritze et al.,
1994; Bauters et al., 2021), albedo (Beck et al., 2011; Ver-
averbeke et al., 2012) and air quality (Carvalho et al., 2011;
Chen et al., 2017). Fires act as a big natural hazard and can
also precondition post-fire hazards such as floods, landslides
and large-scale erosion (Zscheischler et al., 2020; Jacobs
et al., 2016; Girona-Garcia et al., 2021; Brogan et al., 2017;
Shakesby, 2011). Global observations of fire activity are typ-
ically provided by satellite products. However, these obser-
vations contain substantial uncertainties due to their spa-
tial resolution, cloud cover and temporal resolution affect-
ing their ability to detect small and short-lived fires. More-
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over, smoke, rapid regrowth and obscuration by unburned
vegetation further complicates satellite-based fire detection.
Nonetheless, satellites provide the most reliable estimates
of global fire activity to date. Vegetation fires burn approx-
imately 3.5-4.5 million km? of surface area per year (Giglio
et al., 2018; Lizundia-Loiola et al., 2020) and emit between
1.8 and 3.0Pg Cyr’1 (Lizundia-Loiola et al., 2020; van der
Werf et al., 2017). More recent estimates from the 5th ver-
sion of the Global Fire Emissions Database (GFEDS5) how-
ever suggest the amount of surface area burned per year to
be around 6.5-9.5 million km? (Chen et al., 2023b) with an
emission of 2.9-3.7 Pg Cyr~! (Chen et al., 2023b), compara-
ble to around 20 %-30 % of the annual emissions from an-
thropogenic greenhouse gases (Friedlingstein et al., 2025).
Fires thus play an active role in our Earth system. Yet, de-
spite their key role, it is not fully understood and quantified
how socio-economical development and climate change have
affected fire occurrence in the past, and how these will affect
future fire dynamics. Moreover, satellite observations suffer
uncertainties due to (i) cloud cover, (ii) limited spatial reso-
lution, which affects the detection of small fires, (iii) rapid
regrowth and (iv) obscuration by unburned vegetation (Chen
et al., 2023b). All of these uncertainties are propagated fur-
ther into modelling efforts.

To understand how climate change and socio-econmic
conditions affect vegetation fires, researchers typically model
fire activity with fire-coupled Dynamic Global Vegetation
Models (DGVMs; e.g., Burton et al., 2024; Park et al., 2024).
These process-based fire models simulate vegetation fires
as a function of vegetation characteristics, weather, socio-
economic conditions, lightning and land use (Hantson et al.,
2016). Vegetation dynamics are typically supplied by the
DGVM, while the other factors are provided as inputs de-
rived from climate and integrated assessment models (Frieler
et al., 2024). From these drivers, most fire models simu-
late ignitions (natural 4+ anthropogenic), fuel (dry vegeta-
tion), fire spread and fire suppression, which are then trans-
formed to fire characteristics such as burned area, fire in-
tensity and fire emissions (Rabin et al., 2017; Li et al.,
2019; Hantson et al., 2020). However, this extensive pro-
cessing chain requires fine-tuning many parameterizations
and formulae, each of which has the potential to alter the
outcome substantially. As a result, current state-of-the-art
process-based fire models are not always able to reproduce
observed fire events (Burton et al., 2024; Park et al., 2024),
and their projections contain substantial spread (Teckentrup
et al., 2019; Lange et al., 2020; Thiery et al., 2021; Grant
et al., 2025). Moreover, (sub)national fire databases are of-
ten incomplete and inconsistent (Bowman, 2018; Gincheva
et al., 2024)

Machine learning algorithms have the advantage of be-
ing able to fit (non-linear) functions to data rather than pre-
scribing them manually. In complex tasks, such as fire mod-
elling, where the real world relations and interactions are
hard or near-impossible to pin down mathematically, ma-
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chine learning can provide a valuable solution (Qi and Ma-
jda, 2020; Bracco et al., 2025). At the same time, machine
learning often lacks interpretability (Rudin, 2019; Yang et al.,
2024; Bracco et al., 2025), which can be a disadvantage com-
pared to process-based models when process understanding
or fine-grained control is the primary objective. Thus, ma-
chine learning can serve as a complementary rather than a
substitutive approach to process-based fire modelling.

Here we present a data-driven fire model “Burned area
modelling through Recurrent Neural Networks (BuRNN)”.
BuRNN combines traditional fire model inputs and inter-
mediary DGVM outputs such as Gross Primary Productiv-
ity (GPP) with machine learning to predict burned area. We
first describe the architecture and training process of the
model. Then, we evaluate the skill of BuRNN against satel-
lite data, using state-of-the-art process-based wildfire mod-
els as benchmark. Next, we attempt to understand the inner
workings of BuRNN through eXplainable Al (XAI) meth-
ods. Finally, we apply BURNN to generate a monthly gridded
burned area reconstruction from 1901 to 2019 at 0.5° x 0.5°
spatial resolution and evaluate this new dataset against re-
gional wildfire records.

2 Materials & Methods
2.1 Data

To train BURNN, we make use of five different data sources.
BuRNN is trained on a monthly timescale and receives 24
features as input, each providing information on (i) climate,
(i) land or vegetation properties or (iii) socio-economic con-
ditions (Table 1). Climate-related variables are: (i) monthly
mean of the daily maximum temperature, mean monthly
precipitation and mean monthly wind speed from the daily
NOAA-CIRES-DOE 20th Century Reanalysis version 3
homogenized to WSES (20CRv3-WS5ES) product (Compo
et al., 2011; Slivinski et al., 2021; Lange, 2019; Lange et al.,
2021), (ii) monthly mean Fire Weather Index (FWI) calcu-
lated from 20CRv3-WS5ES and (iii) lightning density. The
land and vegetation characteristics are (i) land cover from
the Community Land Model (CLM), which are generated
based on Land Use Harmonization phase 2 (LUH2; Hurtt
et al., 2020), (ii) land use provided by the Inter-Sectoral
Impact Model Intercomparison Project (ISIMIP) also based
on LUH2 and (iii) intermediate DGVM outputs (ensemble
mean) from the ISIMIP biome sector for GPP (n = 7), Car-
bon mass in Vegetation (CVeg; n =3) and Leaf Area In-
dex (LAIL; n =15) (Table Al). Lastly, socio-economic con-
ditions are provided by ISIMIP in terms of population den-
sities and Gross Domestic Product (GDP; Table 1). The
LUH?2 derived data from ISIMIP and CLM was linearly in-
terpolated from a yearly to monthly timescale. Moreover,
we removed and grouped a number of related land use/land
cover classes in order to bring the total number of features
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down. We chose these input variables as all are available
on a monthly timescale from 1901 onwards at a 0.5° x 0.5°
spatial resolution (or higher) and represent many drivers, or
proxies thereof, of fire behaviour. To train BuRNN, we use
GFEDS as target data (Chen et al., 2023b), we remapped
the original 0.25° x 0.25° grid to 0.5° x 0.5° using area-
weighted regridding from the Python Package Iris — Sci-
Tools. GFEDS derives burned area estimates for 2001-2020
from the Moderate Resolution Imaging Spectroradiometer
(MODIS) MCD64A1 product (Giglio et al., 2018), applying
region-, land cover-, and tree cover-specific corrections for
commission and omission errors based on spatiotemporally
aligned Landsat and Sentinel-2 burned area observations.
Burned area in croplands, peatlands, and deforestation re-
gions is separately estimated using MODIS active fire detec-
tions (Giglio et al., 2016). To extend the record back to 1997,
active fire data from the Along-Track Scanning Radiometer
(ATSR) and the Visible and Infrared Scanner (VIRS) were
used, which carry higher uncertainties (Chen et al., 2023b).
Although GFEDS almost doubles the observed burned area
compared to other satellite products, we consider it most suit-
able for ground truth as it matches high-resolution burned
area observations for Africa (Chuvieco et al., 2022). More-
over, literature suggests that “traditional” burned area prod-
ucts, such as FireCCI51 severely underestimate actual burned
area (Zhu et al., 2017; Franquesa et al., 2022; Khairoun et al.,
2024), supporting our choice for GFEDS as target dataset.

2.2 Model Description

We aim to design a machine learning model that is able to
learn the lagged and cumulative effects of climate variabil-
ity, land use and socio-economic conditions on fire dynam-
ics. Unlike traditional machine learning algorithms, which
often treat each observation independently, Long Short-Term
Memory networks (LSTMs) are capable to capture non-
linear temporal dependencies in sequential data (Hochreiter
and Schmidhuber, 1997), making them ideal for our use case.
Although LSTMs were originally designed for natural lan-
guage processing (Gers et al., 2000), LSTMs have also suc-
cessfully been applied in a number of climate related ap-
plications such as modelling vegetation dynamics (Reddy
and Prasad, 2018), predicting river streamflow (Hunt et al.,
2022), weather forecasting (Karevan and Suykens, 2020) and
even detection of forest fires (Cao et al., 2019). Therefore, we
chose the LSTM as main component of BuRNN. The LSTM
maintains its own hidden states acting as memory, which is
updated dynamically in interaction with the input features.
The hidden state at each time step is mapped to three out-
puts using a dense neural layer. The first of the outputs is be
used as a binary classifier, determining whether it burns or
not. The second and third represent parameters (mean and
variance) of the modelled burned area distribution. Predicted
burned area is constructed via Eq. (1), assuming a normal dis-
tribution. Despite the simple model architecture, a couple of
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Figure 1. Structure of BURNN. The top row denotes the origin of
all the features supplied to our model, split into the main sources.
The red rectangle reflects the architecture of BuRNN.

hyperparameters have to be chosen. To automate the search
for optimal hyperparameters, we used the Optuna framework
(Akiba et al., 2019). We used the Tree-structured Parzen Es-
timator sampler inside the framework to find appropriate val-
ues for the learning rate, number of LSTM layers, hidden size
of the LSTM layer(s), activation functions, number of dense
neural layers, size of the dense neural layers and dropout
fraction (Bergstra et al., 2011). Currently, BuRNN is a sin-
gle layered LSTM with a hidden size of 64 connected to a
dense neural layer (see also Fig. 1).

1
5=1{p>05} (u + 502) (1)

Given the nature of our data, our input variables (and tar-
gets) contain a high degree of spatial autocorrelation. Ap-
plying a traditional random train-test split or random train-
test folds would likely lead to an overestimation of perfor-
mance and poor predictive power (Diniz-Filho et al., 2008;
Le Rest et al., 2014; Meyer et al., 2019). Therefore, we
trained our LSTM networks according to a region-based
cross-validation. We split our data according to the 43 In-
tergovernmental Panel on Climate Change (IPCC) land re-
gions (we removed the two Antarctic regions and Greenland)
and manually grouped these regions into 11 folds (Fig. Al),
whereby we made sure that the 3—4 regions in each fold rep-
resent different continents and biomes (Iturbide et al., 2020).
For each fold, we use two different folds as validation set and
the remaining 8 folds as training set. We repeat this five times
for each fold, each time with two different folds as validation
set. For example, when fold 1 is chosen as test fold, we first
select folds 2 and 3 as validation set and folds 4-11 as train-
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Table 1. List of the 24 features provided to BuRNN along with their origin.

Type Source

Description

Number of Features

Climate 20CRv3-W5ES

We aggregate the daily values for daily maximum temperature (tas-
max; in K), precipitation (pr; in kg m~2s~!) and near-surface wind
speed (sfcWind; in m s~Hto monthly means.

3

Canadian FWI calculated on a daily timescale from tasmax, pr, tas-
max and near-surface relative humidity (hurs; in %) (van Wagner,
1987). These daily values are then aggregated to monthly means
through Climate Data Operators (CDO).

HistLight & WGLC

Lightning density provided by combining HistLight (1901-2009)
and WGLC (2010-2019) (Kaplan and Lau, 2022a, b).

Land & vegetation CLM

Land cover maps originating from LUH2 (Hurtt et al., 2020) and
processed for use as input to the Community Land Model (CLM,
Lawrence and Chase, 2007; Lawrence et al., 2019). We regrouped
the original 17 land cover types into 11 groups (all represented
as fraction of grid cell area): Urban, Lake, Crop, Bare Ground,
Needleleaf tree, Broadleaf evergreen tree, Broadleaf deciduous tree,
Broadleaf shrub — temperate, Broadleaf deciduous shrub — boreal,
C3 grass and Cy4 grass.

11

ISIMIP

Land use maps originating from LUH2 and processed for use in
ISIMIP (Volkholz and Ostberg, 2022). Given the similarity between
the land cover and land use datasets, only the grid cell fractions
managed pastures and rangeland were added to the feature list.

ISIMIP ensemble mean of Leaf Area Index (LAI; n =5), Gross
Primary Production (GPP; n = 7) and Carbon stored in Vegetation
(CVeg; n = 3).

Socio-economic ISIMIP

Rural and urban population along with GDP from ISIMIP3a
(Volkholz et al., 2024; Sauer et al., 2024).

ing set. Then we choose folds 4 and 5 as validation set and
folds 2-3 and 6-11 as training set, etc. This results in a total
of 55 (11 times 5) models. Then, when we make predictions
with our model for an IPCC region, it is the mean estimate
of five LSTMs which have never seen data for that IPCC re-
gion before. The validation folds are used to monitor model
convergence and overfitting by using the early stopping al-
gorithm; As soon as model performance on these validation
folds started to decrease after a given set of training itera-
tions, training was stopped and the best model was restored.
This model was then used to make predictions on the inde-
pendent test set.

Before training, we combine the data from all different
sources, convert the time dimension to have identical units
and split them into the 11 pre-defined folds. We normalize
the training data and use the mean and standard deviation
of the training set to normalize the validation folds (and the
test fold during prediction). Each time we change the training
folds, we undo the normalization operation, and redo it based
on the mean and standard deviation of the new training set.
Additionally, we log-transform the target variable (GFED5
percentage burned area) as the original data is strongly right-
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skewed We do this by applying the natural logarithm of one
plus the target (loglp). After this, we normalise the targets
by subtracting the mean and dividing by the standard devi-
ation. Pre-processing of our data happens through a combi-
nation of Xarray and NumPy. We use PyTorch and PyTorch
Lightning to build our model architecture and to handle train-
ing and validation (Paszke et al., 2019; Falcon and The Py-
Torch Lightning team, 2019). In the training phase the LSTM
layer is followed by batch normalization. During training, we
provide the samples in batches of 32, an error is calculated
based on the cumulative error of the predictions for these 32
samples (see further) after which the model is updated/im-
proved. Batch normalization normalizes the features of each
batch (based on the batch’s mean and standard deviation) and
results in faster and more stable training (Santurkar et al.,
2018). This layer is followed by a dropout layer for which the
optimal dropout fraction was found to be 0.2. This randomly
ignores, on average, 20 % of the connections between the
LSTM and dense layer, which has been proposed to improve
generalisation and reduce overfitting (Srivastava et al., 2014).
During training we ignore the first 36 predictions (3 years) to
allow the LSTM’s memory state to spin up and then evaluate
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the predictions of the following 3 years using a custom loss
function. In each epoch, we pass each gridcell in the train-
ing set once and randomly select a 6 year time slice. The
spinup period of 3 years was chosen based on fire-process
understanding and the prediction length of 3 years was cho-
sen in function of model convergence speed. The loss func-
tion expects three outputs from the model, the first is used as
a binary classifier (will it burn or not) and is scored through
binary cross entropy (Eq. 2), the second represents the mean
(log-transformed and normalised) burned area and the third
is the (log-transformed and normalised) variance. This mean
and variance are used in a Gaussian negative log likelihood
loss (Eq. 3). Then, the Gaussian negative log likelihood loss
is multiplied by 1000 so it reaches a similar magnitude as
the binary cross entropy loss, after which both loss terms are
added up. After training, the normalisation and log-transform
can be inverted to obtain predictions in fraction of burned
area per cell again.

Lpce(y, p) = —[ ylog(p) + (1 - y)log(1 - p) |. @

Here, y € {0, 1} is the binary target (fire occurrence) and p €
(0, 1) is the predicted probability of fire occurrence.

1 (v —w?
LNy, 1, 0%) = 5 [logw% | 3)
Here, y is the observed value, u is the predicted mean, and
o2 is the predicted variance of a Gaussian distribution.

2.3 Model Evaluation

We evaluate our predictions for 2003-2019, the common pe-
riod between the full availability of Terra/Aqua in MODIS
and the ISIMIP fire sector simulations (forced with the
GSWP3-W5ES reanalysis). We evaluate our 3D (time, lat-
itude, longitude) data cubes for several metrics in differ-
ent dimensions (spatial, temporal and spatio-temporal). By
calculating the Root Mean Squared Error (RMSE) between
the modelled and observed 3D cubes, we obtain an error
expressed in % burned area. Similarly, by calculating the
Pearson correlation we obtain a metric that informs on spa-
tial and temporal patterns, ignoring the mean and scale bias
the process-based models and BuRNN have (Hantson et al.,
2020; Burton et al., 2024). The spatial pattern is evaluated by
computing the mean over time, resulting in a 2D data cube
(latitude, longitude), and we calculate both spatial RMSE
and correlation. Similarly, by taking the sum over the spa-
tial domain (latitude and longitude), we arrive at a monthly
and yearly time series of global burned area. We calculate
yearly correlation, which assesses the interannual variability,
and monthly correlation, which represents seasonality.

2.4 Driver Analysis

To better understand the inner workings of BuRNN, which
is in se a black box model, we employ an explainable Al
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method. Integrated Gradients (IG) is an attribution method
for differentiable models, like LSTMs, that quantifies the
contribution of each input feature to a specific prediction. IG
compares the prediction at an input x to the prediction with
a reference baseline input xo and integrates the model’s gra-
dients along a straight-line path between them (Sundararajan
et al., 2017). Here, we applied the global mean for each fea-
ture as baseline. Thus, the IG results need to be interpreted
as “How strong does each feature affect burned area in this
region compared to the global mean of this feature”. A caveat
of this approach is that when a feature in a region tends to be
close to the global mean, then attribution for that feature will
be low as the integration between sample and baseline will
be performed over a short path. Moreover, our approach does
not inform on the direction of influence as the direction can
vary based on the timing of the feature. For example, precip-
itation a year before a fire can actually increase burned area
by stimulating vegetation growth and increasing future fuel
loads, but precipitation right before a fire typically negatively
affects burned area. As to not average these two effects out,
we take the absolute value of each attribution and thus only
look at how important each feature is, not at the actual ef-
fect (positive or negative) of each feature. Lastly, highly cor-
related features will have their attributed importance spread
across each other and hence be lower than if only a single of
these features was provided. For each of the 55 LSTMs, we
pass it the test data of 2002-2008 and attribute the predic-
tions of 2005-2008 (using 2002-2004 as spinup period; see
Sect. 2.2) and store this per GFED region. The total number
of attributions is the multiplication of the number of mod-
els per gridcell (n =5) by the number of land gridcells in
the dataset (n = 65 797) by each predicted timestep (n = 48,
since we don’t attribute the 3 years spinup i.e., 2002-2004)
by the number of features (n = 24) and by each considered
timestep in the attribution. For the latter, we consider the pre-
vious 3 years and the features of the predicted timestep itself
(n =37). Resulting in a total of 14 billion attributions, or
around 580 million attributions per feature. We take the abso-
lute value of these attributions and average this per region per
feature. We note here upfront that IG does not provide causal
insights into the real-world processes underlying the data. In-
stead, IG offers a post hoc explanation of the model’s internal
logic by attributing contributions to input features in a way
that reflects the model’s learned associations. When applied
to structured or interdependent data, IG values can be diffi-
cult to interpret because feature dependencies may obscure
how importance is distributed, and the method may not cap-
ture the full complexity of how the model uses such inputs.
Nevertheless, IG can still provide a useful high-level view of
the patterns and dependencies the model has learned. Thus,
our analysis aims to characterize the statistical associations
encoded by the model rather than to infer mechanistic rela-
tionships in the underlying system.

Geosci. Model Dev., 19, 955-988, 2026
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2.5 Burned Area Reconstruction

After training, we use the models to simulate burned area
for the period 1901-2019. During training we employed a 3
year spinup period (see Sect. 2.2). Therefore, we add 1901—
1903 in front of the dataset so this can be used as spinup. We
analyse this full reconstruction per region and also compare it
against a 1997-2019 run to verify the stability of the model.
Moreover, we compare the reconstruction to the FireC-
CiLT11 product, which is based on the Advanced Very-High-
Resolution Radiometer (AVHRR; Otén et al., 2021). FireC-
CiLT11 is available from 1982-2018, with the exception
of 1994. We calculate the regional 1982—-1993 correlations
for annual burned area between BuRNN and FireCCiLT11
and compare those to the 1997-2018 correlations between
BuRNN and FireCCiLT11 and between GFEDS and FireC-
CiLT11. Ideally, the latter values are high, indicating both
observational products are in agreement. If this is the case,
then a good reconstruction (1982-1993) should have a simi-
lar correlation (to FireCCiLT11) for both periods.
Additionally, we compare the reconstruction to regional
datasets where available (see Sect. 3.3). For Canada, we as-
sess the National Burned Area Composite (NBAC) and Na-
tional Fire Database (NFDB) datasets. NBAC is fire polygon
database from Landsat (30 m) starting from 1972 and con-
tains data on ~ 35 000 fires (Canadian Forest Service, 2024).
NFDB combines data from various Canadian agencies and
contains data for over 700 000 fires between 1959 and 2022
(Hanes et al., 2019). For the Unites States, we compare our
reconstruction to the Monitoring Trends in Burn Severity
(MTBS) dataset and the Fire Occurrence Database (FOD).
MTRBS estimates burned area from Landsat and provides data
on fires > 2km? since 1984 (Picotte et al., 2020). FOD en-
compasses fire records from several US agencies for 1992
to 2020 and excludes prescribed burning (Short, 2022). For
Brazil we use data from the MapBiomas project, which pro-
duces gridded burned area over Brazil from 1985 to 2023
based on Landsat (Souza et al., 2020). For Chile, the database
is managed by the Chilean Forest Service (CONAF) and
is also based on Landsat, it contains information on over
200000 fires from 1985 to 2021. We obtained the Chilean
data from Gincheva et al. (2024). The European Forest Fire
Information System (EFFIS) provides us with country-level
data on non-agricultural fires for 21 countries in the EU (ex-
cluding Austria, Belgium, Denmark, Ireland, Luxembourg
and Malta). The data comes from the individual EU countries
and is available for different time periods for each country,
the earliest is 1980 for Portugal. Lastly, we also asses fires
over Australia, making use of data from over 75 % of the
Australian surface area. Data was provided by different state
and territory agencies and was combined by Gincheva et al.
(2024) and is available from 1950 to 2021. All these datasets
come with a number of caveats, especially in the earlier peri-
ods. They are (i) often incomplete, (ii) use different protocols
between products, but also for different time periods within

Geosci. Model Dev., 19, 955-988, 2026

S. Lampe et al.: BuRNN (v1.0)

a dataset and (iii) they report different things (some exclude
agricultural and/or managed fires, others exclude small fires)
(Gincheva et al., 2024). Nonetheless, they are the best inde-
pendent reference data we have available.

3 Results
3.1 Model Evaluation

Our global-scale evaluation results highlight that BuRNN
outperforms all process-based fire models on each of the
skill metrics we consider (Table 2) with respect to GFEDS
and in all but one metric with respect to FireCCI51 (Ta-
ble A7). Moreover, for spatial RMSE, spatial correlation
and monthly correlation its performance falls in the inter-
observational uncertainty. This implies that BURNN’s perfor-
mance for these metrics is indiscernible from observational
products and that further improvement is meaningless until
inter-observational uncertainty is decreased. BuRNN has a
RMSE of 1.59, while the process-based fire models fall be-
tween 1.92 and 3.00 and inter-observational uncertainty is
1.18. Similarly, the correlation factor is 0.70 between 0.01
and 0.51 for the FireMIP models and 0.85 between GFEDS5
and FireCCI51. The spatial RMSE of BuRNN is 0.49, the
process-based models fall between 0.82 and 1.32 and the
inter-observational spatial RMSE is 0.49. The spatial cor-
relation is 0.88 for BuRNN, between —0.01 and 0.67 for
the FireMIP models and 0.90 for GFEDS and FireCCI51.
Monthly correlation, representing seasonality, is 0.86 for
BuRNN, between —0.12 and 0.73 for the FireMIP models
and 0.87 for FireCCI51 and GFEDS. BuRNN’s yearly cor-
relation, representing interannual variability, is 0.87, while
it is between —0.37 and 0.76 for the process-based models
(Table 2) and 0.94. Three example maps of burned area pre-
diction by BuRNN are shown alongside those of GFEDS5 and
the two best-performing process-based models in Figs. A4,
A5 and A6. Hence BuRNN scores better than any other fire
model for each considered performance metric (total of 54
model-metric combinations). These evaluation results thus
overall indicate that at the global scale, BURNN largely out-
performs state-of-the-art global wildfire models. Figure 4 de-
picts the mean monthly burned area from GFEDS5 (upper
left), BuRNN (upper right) and the nine FireMIP models.
In general, the spatial pattern of BuRNN matches closely
the pattern of GFEDS. This is made further clear in Fig. 5,
which shows the difference in mean monthly burned area be-
tween BuRNN and GFEDS (upper right) and between the
FireMIP models and GFEDS. The density plot in the upper
left depicts the distribution of the error over all land pixels
for BURNN and the FireMIP models, where the difference
between GFEDS5 and each of the models is considered the
error. The distribution of BuRNN falls more closely around
zero than any of the FireMIP models, indicating again better
spatial performance.
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Figure 2. Global evaluation scores of BuRNN and the FireMIP models for 2003-2019. Colour scaling has been done based on the normalized
values (value — row mean)/(row standard deviation) with the minimum and maximum values set to —2 and 2, respectively. Better scores
(lower for RMSE and higher for Pearson correlation) are marked in blue, while worse performance is in red.

We also evaluate our results across 14 fire regions defined
by Giglio et al. (2010) in Figs. 6 and 7. Interannual vari-
ability is relatively well modelled, although the amplitude is
lower than observed for some regions. However, there are
differences in performance across regions. Regions such as
Temperate North America (TENA), Northern Hemishphere
South America (NHSA) and Southern Hemisphere Africa
(SHAF) are excellently modelled by BuRNN. In the major-
ity of the regions, BURNN captures the pattern of the inter-
annual variability well. In the Middle East (MIDE), BuRNN
simulates the mean annual burned area well, while the inter-
annual variability and long-term trend are off. In Boreal Asia
(BOAS), our model simulates too little burned area, which is
likely due to having a similar environmental setting as Bo-
real North America (BONA) where annual burned area is
much lower. In Central Asia (CEAS) and Australia and New
Zealand (AUST), interannual variability is reasonably mod-
elled, but the highest burning years are underestimated e.g.,
2001-2008 in CEAS and 1998-2002 in AUST. Global an-
nual burned area is mostly dominated by the (African) savan-
nah regions; therefore the ability of BuRNN to capture mean
burned area, interannual variability and long-term trend is re-
flected in the good global performance Table A2. In most
regions BURNN outperforms the process-based fire models
over most metrics (Table 3). Lastly, we compare the distri-
butions of observed and modelled burned area Fig. A23. We
note that the rare high burned areas (> 50 % of land surface
area) are generally not modelled by BuRNN.

https://doi.org/10.5194/gmd-19-955-2026

Next, we repeat this evaluation procedure using the 2001—
2019 FireCCI51 observational dataset as reference. We do
this because our model is specifically trained to predict
GFEDS burned area, while the process-based models are
not. Although the absolute values between FireCCI51 and
GFEDS differ, a similar pattern as Table 3 is observed when
comparing BuRNN and the process-based models against
FireCCI51 (Table AS8). BuRNN tends to outperform the
process-based models, although less strongly than before.
Especially the in the 3D RMSE BuRNN is often not the
best performing model anymore. This makes sense as to-
tal burned area in FireCCI51 is about half of GFEDS so
BuRNN is expected to make larger errors. In the correla-
tion metrics however, BuRNN still clearly outperforms the
process-based models most of the time. There are two re-
gions/metrics for which the FireCCIS1 and GFEDS obser-
vational products show notable differences (Table A3). First
the yearly correlation for Southeast Asia (SEAS) between the
two observational products is only 0.42. Second, the 3D cor-
relation in Central America (CEAM) is only 0.58, notably
lower than all other regions and similar to the 3D correlation
in Equatorial Asia (EQAS). Therefore, any (dis)similarity of
any model with any observational product should be taken
with relatively large observational uncertainty in mind.

RMSE metrics vary in magnitude across different regions
as they have different total burned areas. However, also the
correlation metrics show large inter-regional differences. For
example, in the MIDE, BuRNN has a very low yearly corre-
lation of 0.13. However, only a single process-based model

Geosci. Model Dev., 19, 955-988, 2026
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Figure 3. Regional evaluation scores of BURNN. Colour scaling has been done based on the ranked values compared to the nine process-
based fire models, with the minimum RMSE and maximum correlations coloured blue (best) and the highest RMSE and lowest correlation
coloured red (worst).
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Figure 4. Mean monthly burned area (in % land surface area) over 1997-2019 for the GFEDS satellite product, BuRNN and the nine FireMIP
models.
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Figure 5. Spatial difference in mean monthly burned area (in % land surface area) over 1997-2019 between GFEDS5 and the model simu-
lations (including BuRNN). The left upper panel shows the distribution of pixel values per model, the more closely centered around 0, the

better the modelled burned area pattern.

scores better in this metric. In SEAS, four out of the nine
fire models outperform BuRNN in yearly correlation, but
BuRNN still has a high correlation of 0.73 in this region.
Similar observations can be made over the spatial correla-
tion, where Northern Hemisphere Africa (NHAF) and SHAF
are the regions with the best modelled spatial burned area and
BONA and TENA the two regions where the spatial pattern
is least well modelled of all regions. The likely reason for the
lower spatial correlation (both for BURNN and the process-
based models) in these regions is the stochastic nature of fires
on these spatial and temporal scales. For example, large re-
gions (many pixels) of Canadian forest are quasi-identical
in terms of how their monthly input features look like. In
these regions large fires are associated with periods of high
fire weather danger, which usually occurs over many pixels

https://doi.org/10.5194/gmd-19-955-2026

on this scale. However, when a large fire event happens only
a few pixels will see very high burned areas, where exactly
these will occur is difficult to predict. Therefore, BuRNN and
many process-based models do not predict these large fires
in specific pixels but spread out the burned area over a larger
area. This in turn leads to lower spatial predictive power in
these regions.

3.2 Drivers of BuRNN

We find that the climatic variables FWI and monthly mean
of daily maximum temperature (temp) are the most impact-
ful features across all regions (Fig. 8). This suggests that al-
though the Canadian FWI was originally designed to be used
in Canadian forests, it can provide relevant information for
many, if not all, regions in the world. However, important

Geosci. Model Dev., 19, 955-988, 2026
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to consider here is that vegetation characteristics are spread
across many more variables, giving each individual vegeta-
tion feature a lower importance. Moreover, we see that GDP,
a variable often neglected in process-based fire models (Bur-
ton et al., 2024), often shows up high in the importance list.
We also see bare ground as important indicator in all but one
region (EQAS), which is to be expected as a high value of
bare ground fraction should immediately render all other fea-
tures for that grid cell irrelevant. Several regional differences
in feature importance can be observed. For example, C4
grasses show up in regions with considerable grassland/sa-
vannah coverage e.g., SHAF, Southern Hemishphere South
America (SHSA) and AUST. Needleleaf trees (needletree)
only show up in BONA and BOAS, and broadleaf evergreen
trees are important in regions with important rainforests e.g.,
in South-America (NHSA and SHSA) and EQAS. Croplands

Geosci. Model Dev., 19, 955-988, 2026

show up in regions with noteable agricultural burning such
as SEAS, EQAS and the MIDE (Hall et al., 2024). Interest-
ingly enough, in Europe (EURO) croplands also are an im-
portant indicator, yet Europe does not have as extensive crop-
land fires as many other regions (Hall et al., 2024). Lastly,
monthly average daily wind speed is often not present in the
top indicators regionally. Even though wind speed is incred-
ibly important for fire spread, it might (i) be averaged out by
the spatial (0.5 by 0.5) and temporal (monthly) scale we are
working at, and (ii) it only affects burned area in the month
it is actually burning. This is important as we take the av-
erage feature importance over many timesteps and hence is
likely reduced by this aggregating operation. All of this indi-
cates that BURNN tends to prioritize specific features in their
expected places.
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Figure 7. Monthly burned area (in mHa) per region by BURNN (orange) and the GFEDS satellite observations (blue) for 2010-2015.

3.3 Application: a burned area reconstruction for the
20th Century

Figure 9 shows the global and regional annual burned area
as modelled by BuRNN for the period 1901-2019. BuRNN
simulates that globally, from 1901-1960 there has been a
slight increase in burned area, which is mainly attributed to
an increase in burned area in SHAF in that same period.
In TENA BuRNN simulates an increasing trend in burned
area from 1901 until ~ 1955 after which a decline is ob-
served from ~ 1960 until ~1990. In EURO a first period
of high burned area with large interannual variability is mod-
elled from 1901 until ~ 1950, after which a stark declining
trend is modelled by BuRNN. The latter, more recent declin-
ing trend is also observed in the EFFIS database. Lastly, for
SHAF a positive burned area trend is modelled for the 1901—
2010 period, after which burned area again decreases in the
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last ~ 10 years. Next, we also want to compare the 1982—
1997 part of the BuRNN reconstruction to FireCCiLT11. Fi-
gure A2 shows the 1982-2017 regional annual burned area
from BuRNN and FireCCiLT11. The annual burned area
correlations for 1982-1993 and 1997-2017 between FireC-
CiLT11 and BuRNN are listed in Table A4 along with the
1997-2017 annual burned area correlations between GFEDS5
and FireCCiLT11. The annual correlation between the two
products is relatively low (0.29). However, the uncertainty in
burnt area estimates for this period is relatively high, and on
average the correlation between BuRNN and FireCCiLT11
for the early period is higher than between the two observa-
tional products themselves for 1997-2017 (Table A4).
Additionally, we compare our reconstruction to region-
ally available burned area databases. Figure 10 shows the
burned area from EFFIS reported by 21 countries in the EU.
Both correlation and bias between this EFFIS database and

Geosci. Model Dev., 19, 955-988, 2026
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BuRNN is generally high, with BuRNN simulating higher
burned areas than EFFIS. We note however that the reported
burned area by EFFIS does not include cropland fires, as op-
posed to BuRNN, explaining part of the absolute bias. In
Fig. A3, a further comparison is made for 5 more regions
(Canada, US, Brazil, Chile and Australia) where the correla-
tion between national databases and BuRNN is only high in
Brazil. The likely explanation for this discrepancy lies in the
data collection. Correlation between BuRNN and EFFIS is
high for individual countries, but is close to 0 when assessed
over the 21 European countries combined for the entire pe-
riod. As each national dataset inside the EFFIS database has
a different start and end date, it makes calculating interan-
nual variability inconsistent (unless we restrict the database
to only those years available in all countries, which is 2017—
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2019). Similarly, many of the other national databases, like
those in Canada, US and Australia, are composed of regional
data sources that come available in different time periods
mixed in with satellite images (usually LandSat) when avail-
able. In contrast, MapBiomas in Brazil has a single data
source (LandSat) and thus does not suffer from this, there
correlation (1985-1996) with BuRNN is high (0.74). There-
fore, we believe BURNN shows a good correlation with these
independent data sources whenever the data sources have
consistent reporting of burned area. Moreover, in Europe a
decreasing trend in annual burned area has been reported, es-
pecially in the Mediterranean (Rodrigues et al., 2013; Turco
et al., 2016; Chen et al., 2023b). This is in line with the re-
construction of BuRNN.
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Figure 9. BuRNN’s simulation of total annual burned burned area (in Mha) from 1901 to 2019 (orange) for each of the fourteen GFED5
regions and globally, along with the 1997-2019 GFEDS satellite-based burned area.

4 Discussion

Scientific performance aside, BuRNN has a second benefit
compared to process-based models i.e., speed and cost of
running the model. Running the full 1901-2019 reconstruc-
tion (for all the 55 models) takes approximately an hour in
total on a single CPU core on our HPC cluster. This is in
stark contrast to the computational cost required to run fire-
coupled DGVMs, which require hundreds up to tens of thou-
sands of CPU hours. Of course, the major cost of running
BuRNN is in the training phase, which typically takes around
10h on a single GPU (NVIDIA GeForce 1080Ti). Although
the speed and performance of this first version of BuRNN
are excellent, it does come at the expense of interpretability.
As with most deep learning architectures, BURNN does not
physically relate drivers to responses. We have done effort
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to alleviate this through our XAI analysis, which approxi-
mates feature importance, but this understanding is not on
par with our knowledge of the mechanisms in process-based
models. Conversely, data-driven models can potentially con-
tribute to improved process understanding: if we can un-
ravel why and how BuRNN outperforms these process-based
fire models, we can leverage that knowledge to improve the
process-based models.

During training, we explicitly aimed to prevent overfit-
ting and maximize generalisability in several ways. We em-
ployed a region-based cross validation to counteract the high
spatial autocorrelation in our data, we used early stopping,
applied normalization during preprocessing on the training
data, batch normalization after the LSTM layer and dropout
after the linear layer. We subsequently evaluated BuRNN
in multiple ways over a number of metrics against multi-
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ple products. First, we evaluated the performance of BuRNN
by assessing its error scores to GFEDS, taking into account
that for any region in the world, BuRNN has never seen data
from that region before. Then we calculated spatiotemporal,
spatial and temporal error scores and correlation of BuRNN
to GFEDS and FireCCI51. We repeated this for the process-
based fire models participating in ISIMIP3a and compared
the relative performances, showing that in most regions over
most metrics BURNN outperforms state-of-the-art fire mod-
els. Our burned area reconstruction holds major promise for
assessing spatial fire patterns in the pre-satellite era. To as-
sess its quality, we compared our 1982-1993 reconstruc-
tion to the FireCCiLT11 remote sensing product and national
census data. However, the low correlation between GFED5S
and FireCCiLT11, highlights important observational uncer-
tainty in the early satellite record, calling for caution when
interpreting our Al-based reconstruction relative to FireC-
CiLT11 in this period. By comparing our reconstruction of
BuRNN to national databases wherever available, we can
potentially obtain a sense of regional product quality. We
find particularly good correlation with national databases in
the EU and Brazil. Databases from Canada, US, Chile and
Australia showed poor correlation to the BURNN reconstruc-
tion, likely caused by the heterogenous nature of these ref-
erence datasets. However, three main sources of uncertainty
and drawbacks need to be raised. First, our model will learn
relationships between population densities, GDP and fire oc-
currence. These might have changed over the last 120 years
and nor BuRNN, nor the process-based models can account
for this currently. Secondly, BuRNN also relies on three in-
puts from DGVMs, which are of course reliant on the per-
formance of the model ensembles for these variables. Lastly,
in BuRNN there are currently no fire-vegetation feedbacks,
which are present in most process-based models.
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5 Conclusions

Compared to process-based fire models, BURNN pushes the
state of the art in terms of simulation quality of burned
area, demonstrating the potential for machine learning to im-
prove the predictive capabilities in regional-to-global scale
fire modelling. As fire behaviour is expected to have changed
and continue to change due to climate change, understanding
how they have evolved and will evolve is important for un-
derstanding our ecosystems, emissions and land use changes.
BuRNN substantially improves our capabilities for simulat-
ing fire behaviour in all regions of the world compared to
state-of-the-art process-based fire models. However, as a ma-
chine learning model its interpretability remains below that
of conventional fire models. To address this limitation, we ap-
plied XAI to unravel some of the inner workings of BuRNN.
From this, we conclude that in most regions, BuRNN pri-
oritizes features that are relevant for that region. This in-
cludes, for example, FWI and temperature in all regions,
Cy4 grasses in regions with notable savannah areas and tree
subtypes in regions with extensive forests. As an applica-
tion, we apply BuRNN to reconstruct global monthly burned
area at 0.5° x 0.5° spatial resolution over the period 1901-
2019. While a valuable dataset for studying historical burned
area patterns, it is a challenge to assess the quality of the
product, given considerable discrepancy between different
satellite-based burned area products and between the satel-
lite products and national inventories. As the effects of cli-
mate change and socio-economic drivers on fire behaviour
are largely unknown (quantitavely), BURNN can aid in bet-
ter unravelling past burned area patterns, which can improve
carbon cycle modelling, help fire risk prevention and inform
policy makers.

Geosci. Model Dev., 19, 955-988, 2026
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Appendix A

Figure Al. Division of the 43 regions into 11 folds, used for training the models. The regions marked in yellow represent the 3—4 AR6
regions in that fold. During training we set each fold aside once, then train 5 models on the remaining 10 folds, each time with 8 folds as
training and 2 folds as validation. E.g., Fold 1 is set aside as testing fold, then folds 2-3 are used as validation and folds 4-11 as training.
Then, folds 4-5 are used as validation and folds 2-3 and 6—11 as training. This is followed by folds 6-7 as validation and folds 2-5 and 8-11
as training, etc.”
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Figure A2. Annual sums of regional burned area by BuRNN (orange) and the FireCCiLT11 observations (blue) for 1982-2018.
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Figure A3. Comparison of BURNN to regional burned area databases. Note that in some regions managed and/or agricultural fires are not

reported.
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Figure A4. Comparison of BURNN to GFEDS along with two process-based models (SSiB4 and CLASSIC) for April 2007.
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Figure AS. Comparison of BURNN to GFEDS5 along with two process-based models (SSiB4 and CLASSIC) for August 2008.
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Figure A6. Comparison of BURNN to GFEDS5 along with two process-based models (SSiB4 and CLASSIC) for December 2009.
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Figure A7. Global evaluation scores of BURNN and the FireMIP models compared to FireCCI51 for 2003-2019. Colour scaling has been
done based on the normalized values (value — row mean)/(row standard deviation) with the minimum and maximum values set to —2 and
2, respectively. Better scores (lower for RMSE and higher for Pearson correlation) are marked in blue, while worse performance is in red.
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Figure A8. Regional evaluation scores of BURNN compared to FireCCI51 for 2003-2019. Colour scaling has been done based on the ranked
values compared to the nine process-based fire models, with the minimum RMSE and maximum correlations coloured blue (best) and the
highest RMSE and correlation coloured red (worst).
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Yearly Correlation 0.50 -0.12
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Figure A9. Evaluation scores of BURNN and the FireMIP models in AUST. Colour scaling is based on the normalized values with the

minimum and maximum values set to —2 and 2 (o). Better scores are marked in blue, while worse performance is in red.
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Figure A10. Evaluation scores of BURNN and the FireMIP models in BOAS. Colour scaling is based on the normalized values with the

minimum and maximum values set to —2 and 2 (o). Better scores are marked in blue, while worse performance is in red.
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Figure A1l. Evaluation scores of BURNN and the FireMIP models in BONA. Colour scaling is based on the normalized values with the
minimum and maximum values set to —2 and 2 (o). Better scores are marked in blue, while worse performance is in red.
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Figure A12. Evaluation scores of BuRNN and the FireMIP models in CEAM. Colour scaling is based on the normalized values with the
minimum and maximum values set to —2 and 2 (o). Better scores are marked in blue, while worse performance is in red.
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Figure A13. Evaluation scores of BURNN and the FireMIP models in CEAS. Colour scaling is based on the normalized values with the

minimum and maximum values set to —2 and 2 (o). Better scores are marked in blue, while worse performance is in red.
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Figure A14. Evaluation scores of BURNN and the FireMIP models in EQAS. Colour scaling is based on the normalized values with the

minimum and maximum values set to —2 and 2 (o). Better scores are marked in blue, while worse performance is in red.
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Figure A15. Evaluation scores of BuRNN and the FireMIP models in EURO. Colour scaling is based on the normalized values with the
minimum and maximum values set to —2 and 2 (o). Better scores are marked in blue, while worse performance is in red.
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Figure A16. Evaluation scores of BURNN and the FireMIP models in MIDE. Colour scaling is based on the normalized values with the
minimum and maximum values set to —2 and 2 (o). Better scores are marked in blue, while worse performance is in red.
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Figure A17. Evaluation scores of BuRNN and the FireMIP models in NHAF. Colour scaling is based on the normalized values with the
minimum and maximum values set to —2 and 2 (o). Better scores are marked in blue, while worse performance is in red.
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Figure A18. Evaluation scores of BURNN and the FireMIP models in NHSA. Colour scaling is based on the normalized values with the
minimum and maximum values set to —2 and 2 (o). Better scores are marked in blue, while worse performance is in red.

https://doi.org/10.5194/gmd-19-955-2026

Geosci. Model Dev., 19, 955-988, 2026



980 S. Lampe et al.: BuRNN (v1.0)
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Figure A19. Evaluation scores of BURNN and the FireMIP models in SEAS. Colour scaling is based on the normalized values with the
minimum and maximum values set to —2 and 2 (o). Better scores are marked in blue, while worse performance is in red.
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Figure A20. Evaluation scores of BuRNN and the FireMIP models in SHAF. Colour scaling is based on the normalized values with the
minimum and maximum values set to —2 and 2 (o). Better scores are marked in blue, while worse performance is in red.
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Figure A21. Evaluation scores of BURNN and the FireMIP models in SHSA. Colour scaling is based on the normalized values with the

minimum and maximum values set to —2 and 2 (o). Better scores are marked in blue, while worse performance is in red.
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Figure A22. Evaluation scores of BURNN and the FireMIP models in TENA. Colour scaling is based on the normalized values with the

minimum and maximum values set to —2 and 2 (o). Better scores are marked in blue, while worse performance is in red.

https://doi.org/10.5194/gmd-19-955-2026

Geosci. Model Deyv., 19, 955-988, 2026



982 S. Lampe et al.: BuRNN (v1.0)

BONA EURO MIDE BOAS
10° 1 10° 105 4
10° 10° 10°1 iy !
o gl
alih b il b ol i,
0 20 40 60 0 10 20 30 0 20 40 0 20 40 60 80
Burned Percentage Burned Percentage Burned Percentage Burned Percentage
TENA GLOBAL CEAS
105 4
[ GFED5
1034
10" 1
0 10 20 30 40 0 20 40 60 80 100 0 20 40 60 80
Burned Percentage Burned Percentage Burned Percentage
CEAM SEAS
105 4

1031

1014

g

0 25 50 75 100

0 20 40 60
Burned Percentage Burned Percentage
NHSA EQAS
0 10 20 30 0 10 20 30 40
Burned Percentage Burned Percentage
SHSA NHAF SHAF AUST

0 20 40 60 0 25 50 75 100 0 25 50 75 0 20 40 60 80
Burned Percentage Burned Percentage Burned Percentage Burned Percentage

Figure A23. Histograms of the observed (blue) and modelled (orange) burned area (in % land surface area) for 1997-2019.

Table A1. Models used for the calculation of the ISIMIP Biome characteristics.

CLASSIC ELM-ECA DLEM JULES-ES-VN6P3 ORCHIDEE-MICT SSiB4-TRIFFID-Fire  VISIT

CVeg X X X
GPP X X X X X X X
LAI X X X X X
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Table A2. Theil-Sen slopes of observed and modelled annual burned area for 2003-2019. The cells depict mean £2 SD of annual burned

area trend in Mha yr_] .

GFEDS BuRNN

Global —8.45+3.09 —4.78£2.21
BONA —-0.01%£0.12 —0.00£0.08
TENA  —-0.05£0.10 —-0.11£0.17
CEAM —-0.08+0.25 —0.09+0.25
NHSA —-0.09+£0.20 —-0.09£0.16
SHSA  —1.81%+1.17 —0.36+£0.95
EURO -0.12+£0.09 -0.07+0.10
MIDE 0.05+£0.09 —0.01+£0.04
NHAF -3.70+£2.24 —-124+1.64
SHAF —059+1.15 —-157+144
BOAS —-120+1.02 —-0.05+0.36
CEAS  —-125+091 —-0.42+0.30
SEAS —0.08+£0.98 —0.30+0.52
EQAS —-0.11£0.24 —-0.03£045
AUST  —0.10£2.09 —0.04+1.07

Table A3. Regional comparison of the observational products GFEDS and FireCCI5S1.

BONA TENA CEAM NHSA SHSA EURO MIDE NHAF SHAF BOAS CEAS SEAS EQAS AUST

RMSE 0.29 0.30 0.96 0.53 0.73 0.25 0.20 2.40 2.37 0.86 0.82 2.61 0.36 1.08
Correlation 0.77 0.77 0.58 0.82 0.74 0.79 0.81 0.88 0.88 0.76 0.76 0.55 0.71 0.92
Spatial RMSE 0.05 0.09 0.44 0.21 0.31 0.08 0.07 1.09 1.12 0.21 0.22 1.05 0.12 0.21
Spatial Correlation 0.65 0.69 0.65 0.89 0.72 0.92 0.90 0.91 0.88 0.85 0.80 0.62 0.81 0.98
Monthly Correlation 0.86 0.77 0.93 0.94 0.93 0.86 0.92 0.98 0.99 0.95 0.81 0.85 0.95 0.98
Yearly Correlation 0.96 0.90 0.88 0.94 0.80 0.85 0.97 0.94 0.68 0.94 091 0.42 0.98 0.98

Table A4. Regional correlation of annual burned area of BuRNN and FireCCiLT11 (1982-1993 and 1997-2018) and between FireCCiLT11
and GFEDS5 (1997-2018).

BuRNN-FireCCiLT11: BuRNN-FireCCiLT11: GFED5-FireCCiLT11:

1982-1993 1997-2018 1997-2018
BONA 0.52 —0.01 —0.07
EURO 0.67 0.18 0.05
MIDE —0.08 —0.41 0.29
BOAS 0.15 —0.19 —0.04
TENA 0.32 0.05 —-0.23
CEAS —0.28 0.26 0.29
CEAM 0.61 0.07 0.12
SEAS —0.01 —0.59 0.32
NHSA —0.01 0.25 0.24
EQAS -0.17 —0.10 —0.06
SHSA 0.27 —-0.25 0.23
NHAF 0.26 0.47 0.52
SHAF 0.55 0.53 —0.06
AUST —0.01 —0.06 0.19
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Code and data availability. All code for the pre-processing, train-
ing and post-processing of BuRNN is openly accessible on GitHub
(https://github.com/VUB-HYDR/BuRNN, last access: 5 December
2025) and is archived on Zenodo under copyright license CC BY
4.0 (https://doi.org/10.5281/zenodo.17834206; Lampe, 2025a).
The 1901-2019 burned area simulation of BuRNN is available
on Zenodo as well along with all raw and pre-processed data to
train BuRNN (https://doi.org/10.5281/zenodo.17778519; Lampe,
2025b). GFEDS, HistLight and WGLC can be retrieved orig-
inally from Zenodo (https://doi.org/10.5281/zenodo.7668424,
https://doi.org/10.5281/zenodo.6405396 and
https://doi.org/10.5281/zenodo.15215319; Chen et al., 2023a;
Kaplan and Lau, 2022b; Kaplan, 2025). The original ISIMIP
data is also available through the ISIMIP data repository
(https://data.isimip.org/, last access: 5 December 2025). The CLM
data is automatically generated during the pre-processing for a
CLM model run.
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