Articles | Volume 18, issue 23
https://doi.org/10.5194/gmd-18-9257-2025
https://doi.org/10.5194/gmd-18-9257-2025
Model description paper
 | 
01 Dec 2025
Model description paper |  | 01 Dec 2025

Hybrid Lake Model (HyLake) v1.0: unifying deep learning and physical principles for simulating lake-atmosphere interactions

Yuan He and Xiaofan Yang

Related authors

A dataset of energy, water vapor, and carbon exchange observations in oasis–desert areas from 2012 to 2021 in a typical endorheic basin
Shaomin Liu, Ziwei Xu, Tao Che, Xin Li, Tongren Xu, Zhiguo Ren, Yang Zhang, Junlei Tan, Lisheng Song, Ji Zhou, Zhongli Zhu, Xiaofan Yang, Rui Liu, and Yanfei Ma
Earth Syst. Sci. Data, 15, 4959–4981, https://doi.org/10.5194/essd-15-4959-2023,https://doi.org/10.5194/essd-15-4959-2023, 2023
Short summary

Cited articles

Albergel, C., Dutra, E., Munier, S., Calvet, J.-C., Munoz-Sabater, J., de Rosnay, P., and Balsamo, G.: ERA-5 and ERA-Interim driven ISBA land surface model simulations: which one performs better?, Hydrol. Earth Syst. Sci., 22, 3515–3532, https://doi.org/10.5194/hess-22-3515-2018, 2018. 
Almeida, M. C., Shevchuk, Y., Kirillin, G., Soares, P. M. M., Cardoso, R. M., Matos, J. P., Rebelo, R. M., Rodrigues, A. C., and Coelho, P. S.: Modeling reservoir surface temperatures for regional and global climate models: a multi-model study on the inflow and level variation effects, Geosci. Model Dev., 15, 173–197, https://doi.org/10.5194/gmd-15-173-2022, 2022. 
Bai, S., Kolter, J. Z., and Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modelling, arXiv [preprint], https://doi.org/10.48550/arXiv.1803.01271, 2018. 
Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., and Tian, Q.: Accurate medium-range global weather forecasting with 3-D neural networks, Nature, 619, 533–538, https://doi.org/10.1038/s41586-023-06185-3, 2023. 
Carpenter, S. R., Stanley, E. H., and Vander Zanden, M. J.: State of the world's freshwater ecosystems: physical, chemical and biological changes, Annu. Rev. Environ. Resour., 36, 75–99, https://doi.org/10.1146/annurev-environ-021810-094524, 2011. 
Download
Short summary
This study introduces HyLake, a hybrid lake model that embeds a deep-learning surrogate for the water temperature module within a process-based backbone. HyLake simulates lake surface temperature and the latent and sensible heat fluxes in Lake Taihu more accurately than traditional process-based models and other hybrid experiments across different forcing datasets. The proposed coupling strategy provides a reliable tool for quantifying the impacts of climate change on aquatic ecosystems.
Share