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Abstract. Lake-atmosphere interactions play a critical role
in Earth systems dynamics. However, accurately modelling
key indicators of these interactions remains challenging due
to their oversimplified physics in traditional process-based
models or the limited interpretability of purely data-driven
approaches. Hybrid models, which integrate physical prin-
ciples with sparse observations, offer a promising path for-
ward.

This study introduces the Hybrid Lake Model v1.0 (Hy-
Lake v1.0), a novel framework that combines physics-based
surface energy balance equations with a Bayesian Opti-
mized Bidirectional Long Short-Term Memory-based (BO-
BLSTM-based) surrogate to approximate lake surface tem-
perature (LST) dynamics. The model was trained using data
from the Meiliangwan (MLW) site in Lake Taihu. We evalu-
ate HyLake v1.0 against the Freshwater Lake (FLake) model
and other hybrid benchmarks (Baseline and TaihuScene)
across multiple sites in Lake Taihu using both eddy flux co-
variance observations and ECMWF Reanalysis v5 (ERA5)
data.

Results show that HyLake v1.0 outperformed all compar-
ative models at the MLW site and demonstrated strong ca-
pability in simulating lake-atmosphere interactions. In ex-
periments assessing generalization and transferability in un-
gauged lake sites, HyLake v1.0 consistently exhibited supe-
rior performance over FLake and TaihuScene across all Lake
Taihu sites using both observation- and ERA5-based forc-
ing. It also maintained excellent skill when applied to the
ungauged Chaohu, confirming its robustness even with un-
learned forcing datasets. This study underscores the poten-

tial of hybrid modeling to advance the representation land-
atmosphere interaction in Earth system models.

1 Introduction

Lakes constitute a critical component of the Earth system
and serve as sensitive indicators of climate-land surface in-
teractions (O’Reilly et al., 2015; Wang et al., 2024a). Lake
surface temperature (LST) is a central variable in lake-
atmosphere systems, governing key hydro-biogeochemical
processes such as evaporation rates, ice cover duration, mix-
ing regimes, and thermal storage (Culpepper et al., 2024;
Tong et al., 2023; Woolway et al., 2020). Globally, LST has
been increasing at a rate of 0.34 °C per decade, contributing
to shifts in aquatic biodiversity and alterations in ecosystem
services (Wang et al., 2024a; Woolway et al., 2020). These
observed trends underscore the significant threats that cli-
mate change poses to global lake ecosystems (Carpenter et
al., 2011; Woolway et al., 2020).

Accurate prediction of LST is fundamental for assess-
ing physical and biogeochemical changes in lakes, includ-
ing phenomena like algal blooms, lake heatwaves and cold
spells (O’Reilly et al., 2015; Wang et al., 2024b, c; Wool-
way et al., 2024). Existing lake thermodynamics models can
be categorized into process-based, statistical, and machine
learning (ML) approaches. Process-based lake models, such
as the Freshwater Lake model (Flake; Mironov et al., 2010),
the General Lake Model (GLM; Hipsey et al., 2019), and
the lake model within the Weather Research & Forecasting
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Model (WRF-Lake; Gu et al., 2015), are built upon sim-
plified assumptions derived from empirical physical princi-
ples. They typically do not incorporate data-driven informa-
tion and can be challenging to apply in data-scarce regions
(Piccolroaz et al., 2024; Shen et al., 2023; Xu et al., 2016;
Mironov et al., 2010). In contrast, statistical models, such
as the Air2Water model, establish mathematical relationships
between forcing variables and LST in well-mixed lakes, re-
lying on extensive high-quality observational data but of-
ten lacking explicit mechanistic linkages (Piccolroaz et al.,
2020; Wang et al., 2024a; Huang et al., 2021). ML models,
such as Artificial Neural Networks (ANNs) and Long Short-
Term Memory (LSTM) networks, often viewed as a subset of
statistical models, offer greater complexity and automation
by leveraging large datasets (Piccolroaz et al., 2024; Wikle
and Zammit-Mangion, 2023) and have demonstrated supe-
rior performance in reconstructing LST globally (Almeida et
al., 2022; Willard et al., 2022). However, their dependence
on substantial training datas, high computational demands,
and inherent “black-box” nature can limit model transferabil-
ity and explainability (Piccolroaz et al., 2024; Korbmacher
and Tordeux, 2022). These limitations highlight the poten-
tial of hybrid approaches that integrate the strengths of both
process-based and data-driven models.

Hybrid models integrate physical principles with data-
driven techniques, often featuring a multi-output structure
that enhances explainability and transferability while pre-
serving flexibility and accuracy (Piccolroaz et al., 2024; Shen
et al., 2023; Kurz et al., 2022). For example, Read et al.
(2019) developed a hybrid deep learning framework that em-
bedded an energy balance-guided loss function from GLM
into a Recurrent Neural Network (RNN) to reconstruct LST,
outperforming process-based models when applied to un-
monitored lakes (Willard et al., 2021). Despite their promise,
such hybrid models can still face challenges related to com-
putational cost, explainability, and transferability, particu-
larly for ungauged lakes and periods (Raissi et al., 2019;
Willard et al., 2023). To mitigate these issues, Feng et al.
(2022) embedded neural networks into the Hydrologiska
Byråns Vattenbalansavdelning (HBV) hydrological model to
predict multiple physical variables, achieving performance
comparable to purely data-driven models. Similarly, Zhong
et al. (2024) developed a distributed framework integrating
ML and traditional river routing models for streamflow pre-
diction. By incorporating physical constraints, these hybrid
models typically outperform traditional process-based mod-
els and require less training data than purely ML-based ap-
proaches, thereby providing a powerful tool for elucidating
previously unrecognized physical relationships (Shen et al.,
2023). Given that lake-atmosphere interactions represent a
tightly coupled system where LST modulates latent heat (LE)
and sensible heat (HE) fluxes (Wang et al., 2019a; Woolway
et al., 2015), hybrid modeling represents a promising way
for advancing our understanding of these complex physical
processes.

Predicting key indicators of lake-atmosphere interactions
in Lake Taihu, a large and eutrophic lake in China, remains
challenging for traditional lake models due to its significant
regional heterogeneity in biological characteristics (Table 1;
Zhang et al., 2020b; Yan et al., 2024). The lake benefits from
extensive observational data collected through field investi-
gations. To advance hybrid modeling techniques and improve
the accuracy of simulating lake-atmosphere interactions, this
study aims to: (1) develop a novel hybrid lake model, Hy-
Lake v1.0, by embedding an LSTM-based surrogate into a
process-based lake model; (2) validate the performance of
HyLake v1.0 in simulating LST, LE, and HE against observa-
tions from the Taihu Lake Eddy Flux Network; and (3) evalu-
ate the transferability of HyLake v1.0 to ungauged sites with
varying biological characteristics using ECMWF Reanalysis
v5 (ERA5) forcing datasets. The results of this research are
expected to enhance the representation of lake-atmosphere
interactions by synergistically unifying physical principles
with deep learning, particularly in data-sparse regions.

2 Materials and Methodology

2.1 Study area and datasets

Lake Taihu (30.12–32.22° N, 119.03–121.91° E), located in
the Yangtze Delta, is the third-largest freshwater lake in
China, covering an area of 2400 km2 with an average depth
of 1.9 m, with a rapid increasing rate of∼ 0.37 °C per decade
in LST (Yan et al., 2024; Zhang et al., 2020b, 2018). As
a typical urban lake, Lake Taihu is situated in one of the
most densely populated regions of China. It has experienced
significant eutrophication, characterized by recurrent algae
blooms that threaten local drinking water security (Yan et
al., 2024). Given the pressing need to understand the chal-
lenges surrounding water quality improvement and hydro-
biogeochemical processes in Lake Taihu, this study employs
the lake models to assess these issues across 5 distinct sites
from the Taihu Lake Eddy Flux Network (Zhang et al.,
2020b): Meiliangwan (MLW), Dapukou (DPK), Bifenggang
(BFG), Xiaoleishan (XLS), and Pingtaishan (PTS) (Fig. 1,
Table 1). These sites span varying biological characteristics
and eutrophication gradients, offering a comprehensive view
on lake ecological diversity (Zhang et al., 2020b), providing
a solid data base for evaluating the generalizability and trans-
ferability of lake models. Specifically, MLW (31.4197° N,
120.2139° E) as the first lake site in Lake Taihu Eddy Flux
Network, located at the northern shore of the lake in MLW
Bay, has a biological characteristic of eutrophication. BFG
(31.1685° N, 120.3972° E) is located in the eastern shore of
Lake Taihu, features a submerged macrophyte community
and relatively clean water. PTS (31.2323° N, 120.1086° E),
situated centrally in the lake, has experienced significant al-
gae blooms and lacks aquatic vegetation. DPK (31.2661° N,
119.9312° E), located on the western shore of Lake Taihu,
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Table 1. Overview of selected lake sites in Lake Taihu, including their geographic coordinates, observation start dates, biological character-
istics, and roles in model development. The MLW site was used for model training, while the remaining sites served for validation.

Site MLW DPK BFG XLS PTS

Lat. (° N) 31.4197 31.2661 31.1685 30.9972 31.2323
Lon. (° E) 120.2139 119.9312 120.3972 120.1344 120.1086
Start date June 2010 August 2011 December 2011 November 2012 June 2013
Biology Eutrophic Super eutrophic Submerged macrophyte Transitional Mesotrophic
Purpose Train Validation Validation Validation Validation

Figure 1. The locations of Lake Taihu and the five eddy covariance
lake sites (MLW, DPK, BFG, XLS, and PTS) are shown in cyan and
red bubbles, overlaid on a true-color image from Landsat 8. MLW
as a training site was used to train BO-BLSTM-based surrogate,
while the other validation sites were adapted as ungauged sites to
validate the HyLake v1.0 performance.

is marked by severe eutrophication and deeper water; while
XLS (30.9972° N, 120.1344° E), located on the southern
shore of Lake Taihu, is a vegetation-free, clean water site
(Zhang et al., 2020b).

The datasets included two parts: (1) hydrometeorologi-
cal variables observed from the Taihu Lake Eddy Flux Net-
work to force and validate the models, and (2) meteorolog-
ical variables from ERA5 datasets to fill the gaps of obser-
vations and force the models. Within the network, each site
is equipped with an eddy covariance system that continu-
ously monitors LE and HE using sonic anemometers and
thermometers (Model CSAT3A; Campbell Scientific, Logan,
UT, USA) positioned 3.5 to 9.4 m above the lake surface.
Hydrometeorological variables, including air humidity and
temperature (Model HMP45D/HMP155A; Vaisala, Helsinki,
Finland), wind speed (Model 03002; R.M. Young Co., Tra-
verse City, MI, USA), and net radiation components (Model
CNR4; Kipp & Zonen, Delft, the Netherlands), are also mea-
sured. These meteorological variables were used to force lake
models while LE, HE and LST from observations were used
to validate the results of each numerical experiment, on top

of which, the inferred radiative LST, were collected at 30 min
intervals that are publicly accessible via Harvard Data-
Verse (Lee, 2004; https://doi.org/10.7910/DVN/HEWCWM,
Zhang et al., 2020b, c). The dataset spans from 2012 to 2015
and contains several data gaps across these lake sites. Specifi-
cally, 475 time steps (∼ 1.36 %) of observed surface pressure
were found missing at the DPK site during 2012 and 2015;
7959 time steps (∼ 22.71 %) of all observed variables were
missing at the XLS site; 12,539 time steps (∼ 35.78 %) of
all observed variables were missing at the PTS site. Obser-
vations at the MLW and BFG sites were complete during the
entire study periods. In the evaluation of all observations-
forced experiments, the data gaps of observed variables in
these lake sites were directly filled by ERA5 datasets at
the corresponding time steps to predict lake-atmosphere in-
teractions. In this study, observed meteorological variables
from the MLW site, an eutrophic lake site that presents the
trophic status of Lake Taihu (Table 1, Wang et al., 2019b),
are used to train the Long Short-Term Memory (LSTM)-
based surrogates (Sect. 2.2), while data from the remain-
ing sites serve to evaluate the generalization of HyLake v1.0
and train the LSTM-based surrogates. To further address the
generalization and transferability of HyLake v1.0 across dif-
ferent forcing datasets, this study utilized 8 meteorological
variables that where obtained from hourly ERA5 datasets
from 2012 to 2015, with a spatial resolution of 0.25° at
a single level to force HyLake v1.0. These datasets, avail-
able from the Climate Data Store (Hersbach et al., 2020;
https://cds.climate.copernicus.eu, last access: 25 December
2024), include variables such as air temperature, dew point
temperature, surface pressure, wind speed, and surface net
longwave and shortwave radiation, which has similar proba-
bility distribution to observations across Lake Taihu (Fig. S1
in the Supplement). The ERA5 datasets are also individually
used to force FLake and TaihuScene for comparison and pre-
dict lake-atmosphere interactions in Lake Taihu, providing
insights into the model’s generalization, transferability and
performance using different climatic forcing datasets.

2.2 Model architecture of HyLake v1.0

HyLake v1.0 is based on the backbone of physical principles
from process-based lake models and then couple to a LSTM-
based surrogate for LST approximation to further solve the
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Figure 2. Conceptual model of HyLake v1.0. The LSTM-based sur-
rogates were added to approximate the LST based on the surface
conditions that calculated from Monin-Obukhov similarity theory,
which further correct the LST in surface flux solution at the next
time step.

untrained variables (e.g., LE, HE), as schematically shown in
Fig. 2. The following sections will introduce the architecture
of HyLake v1.0 from the physical principles, LSTM-based
surrogates and their training strategies, respectively.

2.2.1 Physical principles for lake-atmosphere modeling
systems

A process-based backbone lake model (PBBM) is separately
constructed to serve as the backbone of HyLake v1.0, which
referred to the process-based lake models based on the gov-
erning equations and parameterization schemes of previously
validated lake physical processes (Šarović et al., 2022). The
conceptual model of PBBM is depicted in Fig. 2 and Table 2.
Specifically, the lake-atmosphere modeling system in PBBM
primarily involves energy balance equations for solving LE
and HE at the lake-atmosphere interface and the 1-D vertical
lake water temperature transport equations within the water
column for solving LST (Piccolroaz et al., 2024).

The changes in LST are primarily driven by the net heat
fluxes entering the lake surface. Therefore, the net heat flux
is imposed as a Neumann boundary condition at the upper
boundary of the water column. Following Piccolroaz et al.
(2024), the net heat flux G(0) (W m−2) into the lake surface
can be expressed by the energy balance equation:

G(0)= (1− rs)Hs+ (1− ra)Ha+Hc+He+Hp (1)

whereHs (W m−2) andHa (W m−2) represent net downward
shortwave and longwave radiation (also referred to the net
solar and thermal radiation in ERA5), respectively; rs and
ra account for the shortwave and longwave albedos of water;
the HE and LE are denoted byHc (W m−2) andHe (W m−2);
Hp represent the heat flux (W m−2) brought from precipita-

tion, often calculated via an empirical equation to quantify
(Šarović et al., 2022). All heat fluxes are considered posi-
tive in downward direction. The net shortwave and longwave
radiation are derived from observation in Lake Taihu Eddy
Flux Network and ERA5 reanalysis datasets.

The sensible (HE, Hc) and latent (LE, He) heat fluxes fol-
lows the scheme by Verburg and Antenucci (2010) (Figs. 2–
3):

Hc =−ρacaCHUZ (Ts− Ta) (2)
He =−ρaLvCEUz (qs− qa) (3)

where ρa (kg m−3) donated air density; ca =

1005 J kg−1 K−1 is the specific heat of air; Lv ≈

2500 kJ kg−1 is the LE of vaporization; CE and CH are
transfer coefficients for HE and LE derived iteratively with
the Monin–Obukhov length based on bulk flux algorithms;
UZ (m s−1) is the wind speed at observed height; Ts (°C)
accounts for LST solved by 1-D vertical lake water temper-
ature (LWT) transport equation; and Ta (°C) present the air
temperature. Further details on the heat flux calculations can
be found in Verburg and Antenucci (2010) and Woolway et
al. (2015).

At the bottom boundary of the 1-D lake model, the zero-
temperature-gradient boundary and the zero-flux boundary
are imposed as shown in Fig. 2, which can be expressed as:

∂Tz/∂z= 0 (4)
G(zmax)= 0 (5)

where Tz (°C) present the lake water temperature; z means
the mean lake depth; G(zmax) (W m−2) account for the heat
exchange between water column and sediment, which is set
to 0 at the bottom boundary.

To simulate vertical temperature profiles in the water col-
umn (Fig. 2), PBBM solves a 1-D vertical lake water temper-
ature transport equation within a cylindrical water column
assumption of constant surface area as follows:

cpρ
∂T

∂t
=
∂

∂z

[
md (km+ kt)

∂T

∂z

]
−
∂φ

∂z
(6)

where cp is the specific heat capacity of water, which is set
to 1006 J kg−1 K−1; ρ (kg m−3) present water density, which
can be calculated from lake water temperature (T , °C) at dif-
ferent depths; t (s) and z (m) is simulated time and depth of
water column respectively; md is the enlarge coefficient of
thermal conductivity, which is also set to 5 in PBBM; km and
kt (W m−1 K−1) are the molecular and turbulent thermal con-
ductivity, respectively; φ (W m−2) is defined by the heat flux
that penetrate into the lake from net solar radiation. The spe-
cific parameterization of PBBM follows the lake module in
CLM v5.0 (Subin et al., 2012). The PBBM provides a back-
bone for HyLake v1.0, which adapted a LSTM-based sur-
rogate to solve the LST instead of solving 1-D vertical lake
water temperature transport equations by the implicit Euler
scheme (Fig. 3a).
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Table 2. Specification of each model for intercomparison.

Model Forcing datasets Surrogate Training datasets Description

PBBM – – – Backbone for HyLake v1.0

FLake ERA5; observations – – A process-based freshwater lake model
for intercomparison

Baseline MLW LSTM PBBM outputs A baseline experiment using PBBM
outputs for model intercomparison

TaihuScene ERA5; observations BO-BLSTM All observations A numerical experiment using large train
dataset to train surrogate

HyLake v1.0 ERA5; observations BO-BLSTM MLW observations Proposed hybrid lake model in this study

2.2.2 LST approximation using LSTM-based
surrogates

In PBBM, LST along with the LWT in the 1-D vertical lake
water temperature transport equations (Eq. 6) are typically
solved simultaneously using an implicit Euler scheme for nu-
merical stability (Šarović et al., 2022). This can be expressed
in matrix form as:

MT n+1
= AT n+B (7)

where, M , A and B jointly form the tridiagonal system of
equations based on implicit Euler scheme, which can be fur-
ther decomposed into Eqs. (8) to (10):

M =


−km−kt,j−1/2
zj−zj−1

, z= j − 1
1zj cpρj
1t
+

km+kt,j+1/2
zj+1−zj−1

+
km+kt,j−1/2
zj−zj−1

, z= j
−km−kt,j+1/2
zj+1+zj

, z= j + 1

(8)

A=
1zj cpρj

1t
(9)

B = φnj+1/2−φ
n
j−1/2 (10)

where j denotes the index of each water-column layer (from
1 to 10 in this study); n represents the time step. 1zj and
ρj are the thickness and density at j th water column, respec-
tively. The terms kt,j−1/2 and φnj−1/2 refer to the molecular
diffusivity and residual radiation at middle location between
j−1th and j th at n step. All other variables in these equations
follow the same notations and definitions as given previously.

It has been demonstrated that LSTM could capture histor-
ical time-step dependencies and handle variable-length input
sequences using gradient optimization combined with back-
propagation in hydrological applications (Liu et al., 2024a).
Bayesian LSTM (as an improved LSTM) adapts probabil-
ity distributed weight parameters, which reduces the model
overfitting, thereby providing robust predictions in hydrol-
ogy (Li et al., 2021a; Lu et al., 2019). The development
of LSTM-based surrogates offers the possibility of accu-
rate predictions in addressing the critical processes in lake-
atmosphere modeling systems. HyLake v1.0 and other hy-

brid lake models, including Baseline and TaihuScene, em-
ployed LSTM-based surrogates rather than the implicit Euler
scheme in process-based models to solve LST for each time
step (Fig. 3a). Specifically, several sequence-to-one LSTM-
based surrogates are adapted to be trained to approximate
1LST (the difference of LST between two time steps) based
on dynamic inputs, including time series of historical 24-step
variables of LST, friction velocity (u∗, m s−1), surface rough-
ness length (z0 m, m), and G(0). These dynamic parameters
were calculated from the outputs of surface flux solutions
based on the observations. Thus, to address the numerical
stability of autoregressive prediction in iterations, the LST
increments can be expressed by:

Ts,t+1 = Ts,t +1T = Ts,t +NN
(
u∗,Sn,Qn,z0 m,Ts

)
(11)

where NN(·) donates different LSTM-based surrogates
within HyLake v1.0, Baseline and TaihuScene, which will
activate to approximate the increment of lake surface temper-
ature for each time step. Such LSTM-based surrogates have
shown stable autoregressive prediction capabilities in hydro-
logical modeling (Liu et al., 2024a) and can readily be cou-
pled with PBBM to provide numerically robust predictions of
lake surface temperature. The other untrained variables, such
as LE, and HE, were derived from the module of surface flux
solutions (Eqs. 1–3).

2.2.3 Training strategy of LSTM-based surrogates

The LSTM-based surrogates in HyLake v1.0 are composed
by the stacked LSTM or Bayesian LSTM (BLSTM) units and
fully-connected layers (Fig. 3b), including two different units
to separately construct LSTM-based surrogates in HyLake
v1.0 that trained on observations. LSTM units are a type of
Recurrent Neural Network (RNN) designed to avoid vanish-
ing gradients problem, making them particularly suited for
time series forecasting (Sherstinsky, 2020). Here, this study
constructed a LSTM surrogate for Baseline and a BLSTM
surrogate for HyLake v1.0 to couple in PBBM (Table 2).
Specifically, the LSTM unit comprises three gates: the for-
get gate, the input gate and the output gate, which controls
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Figure 3. The general architecture of HyLake v1.0. (a) Coupling strategy of physical principles and LSTM-based surrogates and (b) training
strategy of LSTM-based surrogates in HyLake v1.0. Xn

i
, θi , and Yi represent dynamic inputs for forcing surface flux solution in PBBM,

surface conditions calculated from surface flux solution, and the outputs calculated from HyLake v1.0, respectively.

whether information should be retained or updated (Hochre-
iter, 1997). The forget gate was firstly introduced by Gers et
al. (2000), which can be expressed as follow:

f t = σ (Wfxt +Ufht−1+ bf) (12)
c̃t = tanh(Wc̃xt +Uc̃ht−1+ bc̃) (13)

where f t is a resulting vector of the forget gate; σ(·) and
tanh(·) are the logistic sigmoid and hyperbolic tangent func-
tions;Wf, Uf and bf represent the trainable parameters in two
weight matrices and a bias vector of the forget gate; Wc̃, Uc̃
and bc̃ are another set of trainable parameters to calculate
the next hidden state in LSTM unit. xt and ht−1 are the cur-
rent input and last hidden state, respectively, to calculate a
potential update vector c̃t . The input gate determines which

Geosci. Model Dev., 18, 9257–9277, 2025 https://doi.org/10.5194/gmd-18-9257-2025
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information of c̃t will be used to update the cell state in the
current time step:

it = σ(Wixt +Uiht−1+ bi) (14)
ct = f t � ct−1+ it � c̃t (15)

where it is a resulting vector in the input gate, determining
which new information will store in c̃t (Kratzert et al., 2018);
Wi, Ui and bi are trainable parameters in input gate. The out-
put vector of the input gate ct is updated by Eq. (15). Specifi-
cally,� represents element-wise multiplication. The last gate
is the output gate controlling the information of ct that flows
into the new hidden state ht , which can be calculated from:

O t = σ(Woxt +Uoht−1+ bo) (16)
ht = tanh(ct )�O t (17)

where O t is a resulting vector; Wo, Uo and bo are the train-
able parameters for the output gate. The new hidden state
ht is calculated by combining the results from Eqs. (14)–
(15), allowing for an effective learning from long-term de-
pendencies in historical time series (Kratzert et al., 2018). By
stacking multiple LSTM layers on the top of the neural net-
works, LSTM-based surrogates used a fully-connected layer
or Bayesian fully connected layer to connect the results from
the last hidden state in LSTM to a single output neuron to ac-
quire the final prediction. The basic formula of these layers
is given by the following equation:

y =Wdhn+ bd (18)

where y is the prediction variable, which is LST in this
study; hn is the output from the last LSTM layer. In the
fully-connected layer, Wd and bd are deterministic con-
stants learned during training, while in the Bayesian fully-
connected layer, Wd and bd are instead modeled as random
variables from Gaussian distribution to capture uncertainty
of parameters.

The hyperparameters of these LSTM-based surrogates are
both adjusted to be optimal. Specifically, the LSTM-based
surrogate in Baseline that was trained with an Adam Op-
timizer consists of two layers with 256 LSTM units and 1
fully-connected layer, with a batch size of 32, and a learn-
ing rate of 0.01. This surrogate was adjusted manually to
achieve the optimal performance. The BLSTM-based surro-
gate was composed by 4 layers with 467 LSTM units and
1 Bayesian fully-connected layer, with a batch size of 64,
a learning rate of 0.00096, and an optimizer of RMSprop.
The BLSTM surrogate in HyLake v1.0 was adjusted using
Bayesian Optimization (BO-BLSTM), which is a powerful
tool for the joint optimization of design choices using less
computational power to compute better solution (Shahriari
et al., 2016), with a hyperparameter space of the number of
layers and units, learning rate and optimizer to search for
the optimal group of hyperparameters (Fig. 3b). The BO-
BLSTM-based surrogate in TaihuScene comprised 7 lay-
ers with 836 BLSTM units and 1 Bayesian fully-connected

layer, with a batch size of 145, a learning rate of 0.2538,
and an optimizer of AdamW using Bayesian Optimization
to search for the optimize group of hypermeters. The hy-
perparameter space included the number of hidden layers
(ranging from 1 to 8), neurons per layer (ranged from 16 to
1024), optimizer (Adam, or RMSprop), batch size (ranging
from 8 to 256), and learning rate (ranging from 1× 10−6 to
1× 10−2). The hyperparameters in BO-BLSTM-based sur-
rogates were optimized using BO with a maximum of 100
iterations, 1000 epochs for each iteration, and 50 patience in
an EarlyStopping strategy. A Tree-structured Parzen Estima-
tor (TPE) is adopted in BO, performing 20 to 100 iterations
of surrogate training and updates. Training, validation, and
test datasets for each lake site were divided by 80 %, 10 %
and 10 % of the length of time series (2013–2015), respec-
tively. They are divided into 1 January 2013 00:00:00 to 26
May 2015 04:00:00, 26 May 2015 04:00:00 to 12 Septem-
ber 2015 14:00:00, and 12 September 2015 14:00:00 to 30
December 2015 23:00:00 (UTC+ 08:00).

2.3 Numerical experiments design and evaluation
metric

2.3.1 Numerical experiments for model
intercomparison

To address the generalization and transferability of HyLake
v1.0 in studied (MLW) and ungauged lake sites (DPK, BFG,
XLS, and PTS) (Table 1), this study further conducted three
numerical experiments, including MLW experiment, Taihu-
obs experiment, Taihu-ERA5 experiment, and Chaohu exper-
iment, using distinct models and forcing datasets (Tables 2
and 3), including FLake, Baseline, and TaihuScene to inter-
compare. Baseline and TaihuScene serve as extended models
of HyLake v1.0 that are composed of the same physical prin-
ciples and distinct LSTM-based surrogates using different
training strategies were used to intercompare with HyLake
v1.0. The descriptions of these models are listed as follows:

– PBBM as a backbone of HyLake v1.0 is a simplified
process-based lake model and was constructed based on
the energy balance equations and the 1-D vertical lake
water temperature transport equations.

– FLake is a bulk model based on a two-layer paramet-
ric representation of the evolving temperature profile
and on the integral budgets of heat and of kinetic en-
ergy for the layers, which is widely used as a lake mod-
ule for simulating lake-atmosphere interactions in Earth
System Models (ESMs) (Huang et al., 2021; Mironov
et al., 2010). FLake served as a well-known traditional
process-based lake model and is suitable for model in-
tercomparison.

– Baseline is a hybrid lake model that is coupled to an
LSTM-based surrogate trained on outputs of PBBM,

https://doi.org/10.5194/gmd-18-9257-2025 Geosci. Model Dev., 18, 9257–9277, 2025



9264 Y. He and X. Yang: Hybrid Lake Model (HyLake) v1.0

Table 3. Intercomparison of model performance across different experiments conducted in diverse regions with different forcing datasets.
Observations from all lake sites (MLW, DPK, BFG, XLS, and PTS) on Lake Taihu, were used to drive models in the Taihu-obs experiment.
Bold values in the table present the best-performing model with each group of experiments. Computational efficiency is reported as the
runtime for a single simulation.

Exp Model Forcing R RMSE MAE Efficiency

LST LE HE LST LE HE LST LE HE (s)

MLW PBBM MLW 0.98 0.85 0.89 1.78 38.34 9.37 1.38 23.54 6.22 189.49
FLake MLW 0.98 0.82 0.84 1.76 42.73 7.24 1.35 24.76 5.01 16.40
Baseline MLW 0.96 0.74 0.75 2.71 51.77 14.63 2.11 33.52 9.30 151.46
HyLake v1.0 MLW 0.99 0.94 0.93 1.08 24.65 7.15 0.85 15.18 4.73 270.21

Taihu-obs FLake All sites 0.97 0.61 0.74 2.24 15.46 69.11 1.69 41.95 10.44 89.00
TaihuScene All sites 0.99 0.82 0.89 1.52 14.93 43.49 1.23 29.53 10.63 6928.44
HyLake v1.0 All sites 0.99 0.81 0.90 1.36 11.19 39.20 1.03 24.79 7.88 2693.23

Taihu-ERA5 FLake ERA5 0.98 0.63 0.69 1.82 12.31 67.24 1.46 50.94 9.68 19.60
TaihuScene ERA5 0.99 0.68 0.73 1.60 13.00 64.83 1.29 47.78 10.11 652.25
HyLake v1.0 ERA5 0.99 0.71 0.78 1.12 11.05 49.48 0.90 35.02 7.97 236.78

Chaohu FLake ERA5 0.97 – – 2.28 – – 1.76 – – 70.40
HyLake v1.0 ERA5 0.97 – – 2.07 – – 1.57 – – 972.83

which is used to intercompare the performance with Hy-
Lake v1.0.

– TaihuScene is another hybrid lake model that is coupled
to a BO-BLSTM-based surrogate trained on observa-
tions from all sites (MLW, BFG, DPK, PTS, and XLS)
in Lake Taihu, which is different from the HyLake v1.0.
The purpose of TaihuScene is to compare the perfor-
mance of using a larger training dataset to train a sur-
rogate model with that of using a small dataset from
HyLake v1.0.

The PBBM performed like FLake in MLW site, indicat-
ing a high reliability and accuracy (Fig. S2). Except for
PBBM, the LST, LE and HE calculated from models in
all experiments were initially intercompared in each lake
site from Lake Taihu. FLake and TaihuScene were addi-
tionally intercompared using the ERA5 datasets in Taihu-
ERA5 experiment. The specification of the datasets used,
surrogate, and the descriptions for each model can be found
in Table 2. Furthermore, this study implemented the Hy-
Lake v1.0 into Lake Chaohu, the 5th-largest shallow fresh-
water lake in China, with a deeper lake depth of 3.06 m
and lake area of 760 km2 (Fig. S6, Jiao et al., 2018), which
has experienced heavy eutrophication and harmful algal
blooms (Yang et al., 2020), to assess its transferability to
other lakes (Chaohu experiment). A LST dataset in Lake
Chaohu was obtained from MODIS/Terra Land Surface Tem-
perature/Emissivity Daily L3 Global 1km SIN Grid V061
imageries (MYD11A1, https://www.earthdata.nasa.gov/data/
catalog/lpcloud-mod11a1-061, last access: 23 June 2025),
which were used to validate the performance of LST derived
from HyLake v1.0. The computational efficiency for each 1-

time prediction was recorded using a 16G 10-Core Apple M4
processor based on the established HyLake v1.0 model in this
study. The training of the above-mentioned surrogates was
run using a 24G NVIDIA GeForce RTX 4090 GPU.

2.3.2 Metrics for model evaluation and
intercomparison

To evaluate the performance of these numerical experiments,
the Pearson correlation coefficient (R), Root Mean Square
Error (RMSE), and Mean Absolute Error (MAE) was used
in this study to compare the accuracy of LST and heat fluxes
between simulations and observations. Specifically, the R is
proposed to measure the linear correlation of the observed
and modeled values, RMSE and MAE assess if the models
over or underestimate the observations with the same data
units (Piccolroaz et al., 2024). The calculation of R, RMSE,
and MAE can be expressed by:

R =

∑
(xi − xi)

(
yi − yi

)√∑
(xi − xi)

2∑(
yi − yi

)2 (19)

RMSE=

√
1
n

∑n

i=1

(
yi − yi

)2 (20)

MAE=
1
n

∑n

i=1

∣∣yi − yi∣∣ (21)

where xi and xi are the observations and its average; while yi
and yi are the results of model and its average; n represents
the length of time series.
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Figure 4. The validation of BO-BLSTM-based surrogate in HyLake
v1.0 for (a) training, (b) validation and (c) test datasets.

3 Results

3.1 Validation of HyLake v1.0 in MLW experiment

The PBBM, a backbone of HyLake v1.0, has already been
validated in Fig. S2 by comparing with FLake model and
observations from MLW site, indicating a robust predic-
tion with a R of 0.98 and RMSE of 1.78 °C in LST, a
R of 0.85 and RMSE of 38.34 W m−2 in LE and a R

of 0.89 and RMSE of 9.37 W m−2 in HE. FLake demon-
strated a slightly better performance to PBBM in LST
and HE while performed poorer in LE (LST: R= 0.98,
RMSE= 1.76 °C; LE: R= 0.82, RMSE= 42.73 W m−2;
HE: R= 0.84, RMSE= 7.24 W m−2). These results fully in-
dicated that the backbone provided from PBBM for HyLake
v1.0 is reasonable for all variables.

This study separately validated Baseline, TaihuScene, Hy-
Lake v1.0 and their adapted LSTM-based surrogates using
MLW observations to address the performance of integrated
models (Figs. 4–5 and S3). Firstly, the results from Hy-
Lake v1.0 and its BO-BLSTM-based surrogate was individu-
ally validated based on MLW observations. Specifically, this
study separately assessed the accuracy of the BO-BLSTM-
based surrogate of HyLake v1.0 in the training, validation,
and test sets, aiming to evaluate their ability to describe the
physical principles between climate change and LST (Fig. 4).
The1LST obtained from observations was used to train sur-
rogate in HyLake v1.0. For the BO-BLSTM-based surrogate
in HyLake v1.0, a higher consistency between predictions
and observations was observed (Fig. 4). Specifically, the
1LST results for the BO-BLSTM-based surrogate showed
RMSE values of 0.1945 °C and MAE of 0.1306 °C in the
training dataset, RMSE of 0.3359 °C and MAE of 0.1925 °C
in the validation dataset, and RMSE of 0.2271 °C and MAE
of 0.1461 °C in the test dataset, respectively.

Considering the model intercomparison, the LSTM-based
surrogate-derived 1LST in Baseline model, which is trained
from process-based simulations of PBBM, also performed
superior performance, indicating a great capacity for learn-
ing physical principles (Fig. S3a–c). The results indicated a
RMSE of 0.0580 °C and a MAE of 0.0112 °C in the train-
ing dataset, RMSE of 0.0079 °C and MAE of 0.0058 °C in
the validation dataset, and RMSE of 0.0161 °C and MAE

Figure 5. Comparison of predicted (a) LST, (b) LE and (c) HE
by using FLake (red points), Baseline (blue points), HyLake v1.0
(green points) and observations in MLW experiments.

of 0.0094 °C in the dataset. These results suggest that the
LSTM-based surrogate can capture approximately about
90 % of the physical principles even during validation and
testing. When applied to Lake Taihu, another BO-BLSTM-
based surrogate in TaihuScene was used to train with obser-
vations from all lake sites. It demonstrated a close match to
observations, with RMSE values of 0.2363 °C and MAE of
0.1537 °C in the training dataset, RMSE of 0.3342 °C and
MAE of 0.1880 °C in the validation dataset, and RMSE of
0.2281 °C and MAE of 0.1480 °C in the test dataset. These
results were somewhat lower than HyLake v1.0 due to the
larger dataset size in training for1LST. Therefore, these sur-
rogates, improved on the basis of purely LSTM-based surro-
gates, ensure robust capacity for autoregressive prediction of
1LST while maintaining numerical stability, laying a solid
foundation for algorithms coupled to HyLake v1.0 backbone.

After validating the accuracy of all LSTM-based surro-
gates in Baseline, TaihuScene and HyLake v1.0, this study
conducted MLW experiment, which forced and validated by
the hydrometeorological variables in MLW observations, to
predict the LST, LE and HE by using Baseline and Hy-
Lake v1.0 that integrated these surrogates, then compared
with the outputs of traditional process-based FLake model
using MLW observations (Fig. 5 and Table 3). Compared to
FLake, Baseline which utilized the LSTM-based surrogate
trained on outputs from PBBM performed slightly poorer,
with an R of 0.96 and RMSE of 2.71 °C for LST, an R of
0.74 and RMSE of 51.77 W m−2 for LE, and an R of 0.75
and RMSE of 14.63 W m−2 for HE. The physical principles
learned from these simulations is limited but enabled the sur-
rogate to provide predictions similar to those of PBBM. For
LST, HyLake v1.0 outperformed both FLake and Baseline,
with an R of 0.99 and RMSE of 1.08 °C (Fig. 5a). For heat
fluxes calculated from the energy balance equations of sur-
face flux solution, HyLake v1.0 also outperformed FLake
and Baseline, with an R of 0.94 and RMSE of 24.65 W m−2

for LE and an R of 0.93 and RMSE of 7.15 W m−2 for HE
(Fig. 5b–c). These results demonstrate the HyLake v1.0 that
using BO-BLSTM-based surrogate as a module of the Hy-
Lake backbone to solve LST and thereby compute LE and
HE in the subsequent time step offers numerical stability and
predictability. Furthermore, HyLake v1.0 proves capable of
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Figure 6. Comparison of observations and predictions by FLake,
Baseline, and HyLake v1.0 in temporal trends of LST. Comparison
of (a) the full time series and (b–c) partial time series of models de-
rived LST and observations from 2013 to 2015. All results in panel
(a) were presented at a daily-average scale by resampling. Blue, red,
and yellow regions represent the period for the train, validation, and
test datasets, respectively. Black solid, brown dashed, red dashed,
and blue solid lines represent LST from observations, FLake, Base-
line, and HyLake v1.0, respectively.

estimating lake-atmosphere interactions, surpassing FLake
in the integration of deep-learning-based and process-based
models, which offered a robust way for applying in ungagged
locations. TaihuScene was used to intercompare with Hy-
Lake v1.0 in model generalization and transferability across
all lake sites and different forcing datasets, which will be dis-
cussed in Sect. 3.3.

3.2 Intercomparisons of LST, LE and HE from 2013 to
2015

This study conducted a comprehensive intercomparison of
daily and hourly trends in LST, LE and HE from MLW ex-
periment in the MLW site during the period from 2013 to
2015, including FLake, Baseline, and HyLake v1.0 (Figs. 6–
8).

As shown in Fig. 6, the temporal changes in LST for
the period of surrogates training (1 January 2013 00:00:00
to 26 May 2015 04:00:00 UTC+08:00), validation (26 May
2015 04:00:00 to 12 September 2015 14:00:00 UTC+08:00),
and test datasets (12 September 2015 14:00:00 to 30 De-
cember 2015 23:00:00 UTC+08:00) were compared. For
daily changes in LST, HyLake v1.0 and FLake showed a
closer match to observations, whereas Baseline, trained with
process-based simulations, exhibited a larger error in com-
parison to the observed values (R= 0.96, RMSE= 2.71 °C,
Fig. 6a). HyLake v1.0 demonstrated a greater capability in
capturing the daily changes in LST, particularly in mid-
winter for each dataset, thus indicating long-term stabil-
ity in LST modeling (R= 0.99, RMSE= 1.08 °C, Fig. 6a).
Specifically, FLake provided a good match to observations

Figure 7. Comparisons of observations and predictions by FLake,
Baseline, and HyLake v1.0 in temporal trends for LE. Comparison
of (a) full and (b–c) partial time series of model derived LE and
observations from 2013 to 2015.

at a daily-average scale, which, however, showed poorer per-
formance in capturing diurnal variations of LST (R= 0.98,
RMSE= 1.76 °C, Fig. 6a). This study randomly selected two
subperiods from the training, validation, and test periods
(Fig. 6b and c), where the diurnal variations of LST obser-
vations exhibited a significant bias compared to FLake, in-
dicating that FLake is not able to accurately describe vari-
ations at the diurnal scale. Meanwhile, Baseline primarily
captured the long-term trends of LST from PBBM but did
not effectively represent diurnal variations due to the limi-
tations of the datasets and physical principles provided by
PBBM. In contrast, HyLake v1.0 was able to capture more
information about the diurnal variations of LST from the ob-
servations, thereby outperforming both FLake and Baseline.
Overall, HyLake v1.0, coupled with the BO-BLSTM-based
surrogates trained on observations, offers a robust way for
predicting LST trends at a finer temporal resolution.

The LE and HE were calculated using the energy balance
equations, where the LST, updated by LSTM-based surro-
gates in HyLake, served as an essential input. Consequently,
it is necessary to validate the variations in these heat fluxes
outputted by HyLake v1.0 to assess its capacity for modeling
lake-atmosphere interactions. This study validated the ob-
served LE and HE at the MLW site on both daily and hourly
scales (Figs. 7–8).

Regarding the changes in LE (Figs. 5b and 7), HyLake
v1.0, which used LST calculated from the BO-BLSTM-
based surrogate, demonstrated a minor bias in estimating LE
(R= 0.94, RMSE= 24.65 W m−2, Fig. 5b), outperforming
both FLake (R= 0.82, RMSE= 42.73 W m−2, Fig. 5b) and
Baseline (R= 0.74, RMSE= 51.77 W m−2, Fig. 5b). No-
tably, using an improved LSTM-based surrogate resulted in
a slightly and significant improvement of LE compared to
the FLake and Baseline. Specifically, Baseline showed more
similar performance to FLake, capturing the major trends of
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Figure 8. Comparisons of observations and predictions by FLake,
Baseline, and HyLake v1.0 in temporal trends for HE. Comparison
of (a) full and (b–c) partial time series of model derived HE and
observations from 2013 to 2015.

these heat fluxes. The LE predicted by HyLake v1.0 repro-
duces both the peak and trough magnitudes more closely
to the MLW observations than FLake and Baseline models
(Fig. 7b–c), indicating its overall superior capacity for de-
scribing the diurnal variations. Still, some biases persisted in
the validation and test periods. For example, HyLake v1.0
overestimated to the observations during 20 and 23 August
2015 (Fig. 7c).

For HE (Figs. 5c and 8), which exhibited rela-
tively insignificant diurnal and seasonal variations
during the studied period, HyLake v1.0 (R= 0.93,
RMSE= 7.15 W m−2, Fig. 5c) outperformed both FLake
(R= 0.84, RMSE= 7.24 W m−2, Fig. 5c) and Baseline
(R= 0.75, RMSE= 14.63 W m−2, Fig. 5c) in simulating
variations of both hourly and daily trends. The results
were found that Hylake v1.0 is capable of correcting some
of the partial biases in HE estimation by integrating the
BO-BLSTM-based surrogate (Fig. 8b–c), leading to more
accurate simulations of these heat fluxes. Besides that,
the HE calculated from both FLake and Baseline was
difficult to accurately estimate the minor variations in hourly
scale during simulations, which could accumulate bias in
subsequent time steps. This issue was especially evident in
the validation and test datasets (Fig. 8c), whereas HyLake
v1.0 showed minimal bias due to its improved representation
of LST. In summary, HyLake v1.0 that coupled PBBM to
a BO-BLSTM-based surrogate provided a more robust and
reasonable prediction of LST, leading to better corrections
for untrained variables (LE and HE) produced by the other
modules. This improvement ensures HyLake v1.0’s capa-
bility in accurately describing lake-atmosphere interactions
with improved performance.

3.3 Validation across observational sites in Lake Taihu

A successful hybrid model that unified physical principles
and deep learning techniques requires strong generalization,
evidenced by a remarkably small gap between its perfor-
mance on training and test datasets (Zhang et al., 2021),
and strong transferability, defined as the ability to gener-
alize well to a novel task for domain adaptation (Long et
al., 2015). The transferability and generalization of tradi-
tional deep-learning-based models remain challenging (Xu
and Liang, 2021). However, integrating process-based mod-
els with deep learning-based models can mitigate these issues
to some degree. To address these challenges with HyLake
v1.0, this study specially developed a TaihuScene (Table 2),
another hybrid lake model which enlarges the size of train-
ing datasets by incorporating data from 5 lake sites in Lake
Taihu to train its BO-BLSTM-based surrogates and evaluate
the potential difference from HyLake v1.0. The primary ob-
jectives of TaihuScene are to (1) offer a theoretically optimal
coupled model (previous studies allocated that larger train
datasets improve deep-learning-based models’ performance;
Halevy et al., 2009) for simulating lake-atmosphere interac-
tions in Lake Taihu, and (2) compare with HyLake v1.0 in
generalization and transferability for ungauged regions.

Given to the Taihu-obs experiment which was forced
and validated by hydrometeorological observed variables
from five lake sites in Lake Taihu, HyLake v1.0 still
performed the best in predicting LST (MAE= 1.03 °C),
HE (MAE= 24.79 W m−2), and LE (MAE= 7.88 W m−2)
among FLake and TaihuScene (Fig. 9). While FLake per-
formed the worst in each variable, with a MAE of 1.69 °C
in LST, a MAE of 41.95 W m−2 in LE and a MAE of
10.44 W m−2 in HE, respectively. TaihuScene performed
moderately, with a MAE of 1.23 °C in LST, a MAE of
29.53 W m−2 in HE and a MAE of 10.63 W m−2 in LE, re-
spectively.

Involving the relative bias (the difference between simu-
lation and observation), the median biases (the dashed lines)
and distribution of outputs by TaihuScene indicated an over-
estimation of LST (Fig. 9a), which may contribute to the un-
derestimation of heat fluxes derived from the common phys-
ical principles learned from large datasets during step-by-
step iterative calculations (Fig. 9b–c). While HyLake v1.0
exhibited an opposite estimation, with a slightly underesti-
mation in LST and overestimation in HE and LE. This sug-
gests that BO-BLSTM-based surrogates trained with obser-
vations from MLW site provide more reliable results than
those trained with data from all sites due to the more clearly
physical principles for training. But it is worthy to note that
TaihuScene still far outperformed FLake, as evidenced by
a denser distribution of biases. These results challenge the
assumption that larger datasets always improve the perfor-
mance of deep-learning-based models (Xu and Liang, 2021;
Zhong et al., 2020), with the results suggested that HyLake
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Figure 9. Comparisons of (a) LST, (b) LE, and (c) HE between observations, FLake, HyLake v1.0 and TaihuScene in five sites (MLW,
BFG, DPK, PTS, and XLS) of Lake Taihu based on the Taihu-obs experiment. Dashed lines in boxplot represent median biases between
observations and predictions simulated by FLake, HyLake v1.0, and TaihuScene, respectively. The scatterplots and probability distribution
curves illustrate the data distribution of LST, LE and HE. The Numbers at the top or bottom right of subfigures with same color to boxes
indicate the MAE of outputs for FLake, HyLake v1.0, and TaihuScene, respectively.

v1.0, trained on relatively smaller datasets, performs better
than TaihuScene in Lake Taihu.

The results of intercomparison in each lake site for FLake
and TaihuScene models further explain the reasons for this
phenomenon (Fig. S4). HyLake v1.0 performed best at the
MLW, PTS, and XLS sites but showed poorer results at the
BFG and DPK sites. Specifically, HyLake v1.0 outperformed
FLake and TaihuScene at the MLW site, with a MAE of
0.85 °C, 15.18 W m−2, and 4.73 W m−2 for LST, LE, and
HE, respectively. In contrast, TaihuScene performed rela-
tively worse, with a MAE of 1.38 °C, 23.28 W m−2, and
8.33 W m−2. FLake showed moderate performance, with
MAE values of 1.35 °C, 24.76 W m−2, and 5.01 W m−2 for
LST, LE, and HE, respectively (Fig. S4a–c). A similar pattern
was apparent at the PTS and XLS sites. At PTS, HyLake v1.0
also showed the best performance (LST: MAE= 0.79 °C;
LE: MAE= 20.12 W m−2; HE: MAE= 6.90 W m−2), while
FLake performed moderately (LST: MAE= 1.22 °C; LE:
MAE= 24.77 W m−2; HE: MAE= 6.93 W m−2), and Tai-
huScene performed the worst (LST: MAE= 1.47 °C; LE:
MAE= 39.66 W m−2; HE: MAE= 15.11 W m−2) (Fig. S4j–
i). Similarly, at the XLS site, HyLake v1.0 performed
the best (LST: MAE= 0.86 °C; LE: MAE= 20.40 W m−2;
HE: MAE= 6.61 W m−2), while FLake performed mod-
erately (LST: MAE= 1.33 °C; LE: MAE= 30.00 W m−2;
HE: MAE= 7.69 W m−2), and TaihuScene performed the
worst (LST: MAE= 1.29 °C; LE: MAE= 32.20 W m−2;
HE: MAE= 12.19 W m−2) (Fig. S4m–o). However, at
the BFG and DPK sites, TaihuScene outperformed the
other models in estimating LST, LE, and HE, with
MAE values of 1.06 °C, 27.92 W m−2, and 9.73 W m−2 at
BFG and 1.00 °C, 26.05 W m−2, and 8.43 W m−2 at DPK
(Fig. S4d–i). Specifically, TaihuScene performed slightly
better than HyLake v1.0 (BFG: LST: MAE= 1.32 °C,
LE: MAE= 32.88 W m−2, HE: MAE= 10.47 W m−2; DPK:
LST: MAE= 1.29 °C, LE: MAE= 34.71 W m−2, HE:
MAE= 10.54 W m−2) but was far superior to FLake

(BFG: LST: MAE= 2.32 °C, LE: MAE= 65.05 W m−2,
HE: MAE= 16.53 W m−2; DPK: LST: MAE= 2.16 °C, LE:
MAE= 62.71 W m−2, HE: MAE= 15.56 W m−2).

It is clear that HyLake v1.0 demonstrated outstanding ca-
pacity to apply for ungauged regions, surpassing traditional
lake-atmosphere interaction models such as FLake in predic-
tion accuracy for each variable, which demonstrated a strong
transferability for future applications. TaihuScene, though
capable of predicting changes across all sites in Lake Taihu,
also exhibited a superior overall performance at specific sites
when compared to HyLake v1.0. This highlights HyLake
v1.0 offers promising potential for extending its application
to these ungauged lakes or sites with similar characteristics
by effectively learning physical principles.

3.4 Performance comparison of models in Lake Taihu
based on ERA5 datasets

This study additionally conducted Taihu-ERA5 experiment
that using meteorological variables from ERA5 datasets to
force several lake models demonstrate transferability of Hy-
Lake v1.0, which proves its superior capability to apply for
the ungauged locations based on different forcing datasets.
The meteorological variables from ERA5 dataset, which are
widely used as forcing datasets for process-based models
(Albergel et al., 2018; Hersbach et al., 2020), were selected
to force FLake, TaihuScene and HyLake v1.0 and then com-
pared their performance on LST, LE and HE observations
from the Lake Taihu Eddy Flux Network. The spatial reso-
lution of ERA5 dataset covers 5 grid cells that encompass
the studied lake sites, among the 11 grids for the entire Lake
Taihu. These grids include portions of the land surface sur-
rounding the lake, inevitably introducing uncertainty due to
the scale mismatch between climatic forcing datasets and the
lake model (Hersbach et al., 2020).

Despite these limitations, it was surprising to find that the
evaluation showed that HyLake v1.0 exhibited performance
similar to or even superior to that of FLake for each lake
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Figure 10. The statistical characteristics and spatial average of LST, LE and HE for observations, FLake, HyLake v1.0 and TaihuScene in all
sites using ERA5 forcing datasets. Green, blue and yellow texts in figures represent the MAEs of LST, LE and HE for FLake, HyLake v1.0
and TaihuScene, respectively.

Figure 11. The statistical characteristics and spatial average of predicted LST, LE and HE for HyLake v1.0 and TaihuScene drove by ERA5
forcing datasets. Panels (a)–(c) represent LST, LE and HE for HyLake v1.0, respectively; panels (d)–(f) represent LST, LE and HE for
TaihuScene, respectively. The green stars noted in all figures are lake sites in Lake Taihu.

site, with consistent spatial patterns for LST, LE, and HE
(Figs. 10–11 and S5). From the statistical properties, Hy-
Lake v1.0 still exhibited an incomparable performance in
overall datasets, with MAE values of 0.90 °C, 35.02 W m−2,
and 7.97 W m−2 for LST, LE and HE, respectively, which
following with TaihuScene performed with MAE values of
1.29 °C, 47.78 W m−2, and 10.11 W m−2 for LST, LE and
HE, far outperforming FLake with MAE values of 1.46 °C,
50.94 W m−2, and 9.68 W m−2 for LST, LE and HE, re-
spectively (Fig. 10). From spatial patterns observed, LST in
the middle of the lake was relatively higher for all models
(Fig. 11c and d), while LE was higher in the southern and
western shore (Fig. 11b and e), and HE showed higher val-
ues in the northwestern shores of Lake Taihu (Fig. 11c and f).
Both HyLake v1.0 and TaihuScene revealed similar patterns
of average across all variables, except for a slight overesti-

mation of LE and underestimation of HE in the southeastern
and northeastern shores of Lake Taihu in HyLake v1.0, re-
spectively (Fig. 11a–c). However, TaihuScene predicted rela-
tively higher values in LE and HE, and lower in LST than the
other models although it still followed similar spatial patterns
for LST, LE, and HE (Fig. 11d–f). This indicates that Hy-
Lake v1.0, coupled with a small dataset-trained BO-BLSTM-
based surrogate, can still provide robust and reasonable pre-
dictions for estimating spatial patterns of Lake Taihu.

HyLake v1.0 in Taihu-ERA5 experiments exhib-
ited superior performance for each lake site, showing
a strong transferability using ERA5 datasets (Fig. S5).
At the MLW site (Fig. S5a–c), which is located on
the northern shore of Lake Taihu, HyLake v1.0 out-
performed both FLake (LST: MAE= 1.68 °C; LE:
MAE= 33.84 W m−2; HE: MAE= 9.68 W m−2) and Tai-
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huScene (LST: MAE= 1.30 °C; LE: MAE= 36.81 W m−2;
HE: MAE= 8.39 W m−2), with MAE values of 1.05 °C,
31.46 W m−2, and 9.12 W m−2 for LST, LE, and HE,
respectively. The training datasets used for the BO-BLSTM-
based surrogate in HyLake v1.0 contributed to its powerful
performance at this site, while predictions from TaihuScene
performed farther from the observations. HyLake v1.0 still
performed considerable well in ungauged sites by learning
physical principles from MLW observations (Fig. S4d–o).
TaihuScene showed robust predictions but outperformed
HyLake v1.0 only at the XLS and MLW sites. For the
BFG site (Fig. S5d–f), HyLake v1.0 outperformed both
FLake and TaihuScene, with MAE values of 0.94 °C,
42.30 W m−2, and 9.94 W m−2, respectively. TaihuScene
performed the worst among these models, with MAE values
of 1.85 °C, 60.32 W m−2, and 15.73 W m−2. FLake exhibited
a moderately performance with MAE values of 1.15 °C,
49.52 W m−2, and 10.77 W m−2 for LST, LE and HE, respec-
tively. At the DPK site (Fig. S5g–i), HyLake v1.0 performed
better than FLake for LST but performed slightly worse for
LE and HE, with MAE values of 0.68 °C, 52.82 W m−2,
and 8.43 W m−2. TaihuScene performed the worst in this
site (LST: MAE= 1.49 °C; LE: MAE= 69.67 W m−2; HE:
MAE= 12.40 W m−2). FLake performed the moderate in
this site (LST: MAE= 1.14 °C; LE: MAE= 56.12 W m−2;
HE: MAE= 9.11 W m−2). At the PTS site (Fig. S5j–l), Hy-
Lake v1.0 (LST: MAE= 0.75 °C; LE: MAE= 22.28 W m−2;
HE: MAE= 6.43 W m−2) outperformed FLake for LST, LE,
and HE (LST: MAE= 1.89 °C; LE: MAE= 57.12 W m−2;
HE: MAE= 9.84 W m−2) and TaihuScene (LST:
MAE= 0.94 °C; LE: MAE= 31.75 W m−2; HE:
MAE= 6.74 W m−2). HyLake v1.0 showed a slightly
better performance at the XLS site (Fig. S5m–o), with
MAE values of 1.05 °C, 24.29 W m−2, and 5.69 W m−2,
while TaihuScene performed slightly worse for LE
(MAE= 37.94 W m−2) and HE (MAE= 6.79 W m−2),
FLake performed the worst with MAE values of 1.49 °C,
58.78 W m−2, and 9.01 W m−2.

Overall, both HyLake v1.0 and TaihuScene showed reli-
able performance across lake sites in Lake Taihu (Fig. S5).
Specifically, HyLake v1.0 performed the best in 13 of 15
variables (included LST, LE and HE for 5 lake sites) in Lake
Taihu among these 3 models; TaihuScene outperformed Hy-
Lake v1.0 in 1 of 15 variables and outperformed FLake in
7 of 15 variables in Lake Taihu. HyLake v1.0 providing su-
perior results in most cases, proving its potential for exten-
sive application in ungauged lakes under different forcing
datasets. However, the prediction accuracy of these models
based on ERA5 datasets were almost reduced due to the
potential uncertainty in lake-atmosphere modeling systems.
The current coupling strategies of HyLake v1.0 ensured the
numerical stability and superior performance in validation
due to the robust capability of auto-regressive predictions
by proposed LSTM-based surrogates and to avoid the nu-
merical divergence or error accumulation in step-by-step it-

eration loops. The results evidenced that HyLake v1.0 cou-
pled with BO-BLSTM-based surrogate is suitable for discov-
ering the potential physical principles for lake-atmosphere
interactions systems, indicating that the integration of deep
learning-based surrogates as a module with process-based
models is effective for improving predictions in ungauged
lakes.

4 Discussion

4.1 Limitations of HyLake v1.0

In this study, we developed HyLake v1.0 by integrating
a process-based backbone (PBBM) with an observation-
trained, LSTM-based surrogate for LST approximation,
forming a hard-coupled and auto-regressive hybrid structure.
The model was evaluated against FLake, Baseline, and Tai-
huScene to assess its generalization and transferability across
sites in Lake Taihu and Lake Chaohu. Results demonstrate
that HyLake v1.0 maintains robust predictive accuracy when
forced with ERA5 data across ungauged sites in Lake Taihu
and in Lake Chaohu (Table 3; Figs. S7–S9). Despite these
strengths, several limitations remain, mainly concerning data
availability, computation efficiency, model architecture, ex-
plainability, and coupling strategies.

A primary limitation lies in the increasing demand for
high-quality and representative data, stemming from the ex-
panding development and application of the deep-learning-
based surrogates and parameterizations (Almeida et al.,
2022; Guo et al., 2021; Read et al., 2019). Long-term, high-
frequency observations of radiation, energy fluxes, and tem-
perature are scarce and costly to maintain (Erkkilä et al.,
2018; Nordbo et al., 2011). While reanalysis products such
as ERA5, NLDAS-2, and GLSEA offer valuable alterna-
tives (Kayastha et al., 2023; Monteiro et al., 2022; Notaro
et al., 2022; Wang et al., 2022), they may introduce sys-
tematic forcing biases. These biases can propagate through
deep-learning-based surrogates into the physical base of the
model, potentially hindering a ground-truth understanding of
lake-atmosphere interactions. Nevertheless, our experiments
demonstrate that incorporating well-trained deep-learning
surrogates, calibrated with carefully curated observations
and reliable coupling strategies, into process-based back-
bones can yield robust and transferable performance in un-
gauged regions. This underscores the critical value of high-
quality data for enhancing model generalization at larger
scales.

Another limitation stems from simplified parameteriza-
tions in two critical components of the process-based back-
bone: the energy balance equations and 1-D vertical lake
temperature transport equations (Golub et al., 2022; Mooij
et al., 2010). For instance, the bulk-aerodynamic method
used to solve surface flux solutions of LE and HE, based
on Monin–Obukhov similarity theory (Monin and Obukhov,
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1954), remains sensitive to friction velocity (u∗) and surface
roughness length (z0 m). Although the estimation of these
variables has evolved from constant empirical values to iter-
ative routines (Woolway et al., 2015; Hostetler et al., 1993),
substantial discrepancies still exist between simulations and
observations (Fig. S6). Several recent hybrid models have
employed knowledge-guided loss functions to improve pre-
diction of lake temperature profiles (He and Yang, 2025; Lad-
wig et al., 2024; Read et al., 2019). However, the underly-
ing 1-D transport equations, often solved using finite differ-
ence methods (e.g., Crank-Nicholson solution, implicit Eu-
ler scheme), still struggle to accurately capture diurnal vari-
ability and long-term trends (Piccolroaz et al., 2024; Šarović
et al., 2022; Subin et al., 2012). While such models may
perform well on training and test datasets, their generaliza-
tion and transferability require further validation, particularly
given their complex coupling strategies and higher computa-
tional costs. These process simplifications introduce struc-
tural uncertainties that can only be partially compensated by
the surrogate component.

A third issue involves computational efficiency and model
architecture. The BO-BLSTM-based surrogate in HyLake
v1.0 improves stability and performance in autoregressive
forecasting but incurs computational costs compared to tradi-
tional process-based models (Table 3). We observed that the
computational efficiency of HyLake v1.0 is sensitive to the
number of parameters. For example, in the MLW experiment,
HyLake v1.0 required ∼ 9 times longer to run than FLake,
with a cost of 151.46 s. As modeling objectives shift toward
long-term predictions, the inherent limitations of LSTMs in
capturing long-range dependencies will become more pro-
nounced, motivating the integration of more advanced deep-
learning surrogates, such as those in the Transformer-based
family (Bi et al., 2023; Chen et al., 2023). Future improve-
ments should explore state-of-the-art architectures, including
Transformers, Graph Neural Networks, Temporal Convolu-
tional Networks, TimesNet, and Kolmogorov-Arnold Net-
works, which have shown exceptional capability in time se-
ries forecasting (Liu et al., 2024b; Wen et al., 2022; Wu et al.,
2022; Bai et al., 2018), and are increasingly applied in hydro-
logical modeling (Koya and Roy, 2024; Wang et al., 2024d;
Sun et al., 2021). However, developing powerful surrogates
such as the Fuxi and Pangunot only demands large-scale
observational datasets but also substantial computational re-
sources (Bi et al., 2023; Chen et al., 2023). This underscores
a critical trade-off among model complexity, predictive accu-
racy, and computational efficiency, highlighting the need for
more compact and efficient surrogate designs.

Although the hard-coupled structure of the HyLake v1.0
enhances interpretability compared to purely data-driven ap-
proaches, the LSTM-based surrogate still function partially
as a “black box”, limiting physical transparency (De la
Fuente et al., 2024; Chakraborty et al., 2021). Developing
deep-learning surrogates that inherently incorporate physical
knowledge is an active research area (Piccolroaz et al., 2024;

Willard et al., 2023; Read et al., 2019). For example, Read
et al. (2019) proposed a process-guided deep-learning model
that incorporated a GLM-based energy budget loss function
and evaluated it across 68 lakes. Ladwig et al. (2024) de-
veloped a modular framework integrating four deep-learning
models with an eddy diffusion scheme to improve tempera-
ture predictions in Lake Mendota. However, such approaches
often rely on simplified parameterizations, exhibit opaque
inter-module relationships, and entail high computational
costs, factors that currently constrain model generalization
and transferability. Future versions of HyLake should prior-
itize the development of physically informed surrogates and
more transparent coupling strategies to enhance explainabil-
ity, numerical stability, and physical consistency.

4.2 Future improvements

HyLake v1.0 demonstrates strong generalization capability
across different lake sites, establishing a promising founda-
tion for further extensions. Subsequent improvements should
focus on three key areas: investigating data scaling laws, ad-
vancing surrogate architectures, and extending the range of
coupled physical modules.

Expanding the training dataset to include lakes with di-
verse morphometric and climatic characteristic will enhance
model robustness. However, simply adding more data does
not guarantee improved performance; rather, physically in-
formative and highly representative samples from distinct
lake regimes are more beneficial. This aligns with observa-
tions from other large deep-learning models, where train-
ing on heterogeneous datasets without strategic sampling
can hinder performance gains (Wang et al., 2025). In this
study, we hypothesized that training LSTM surrogates indi-
vidually for each site would better represent localized lake–
atmosphere interactions, a premise largely supported by our
results. While surrogates trained on data from sites with lim-
ited observations (DPK, PTS, XLS) performed comparably
in estimating 1LST (except for XLW; Table S1), the surro-
gate trained at BFG, despite its relatively complete dataset,
underperformed the proposed BO-BLSTM surrogate in cap-
turing diurnal LST patterns (Fig. S10). As HyLake is scaled
to more lakes or larger regions, the computational architec-
ture must efficiently handle large training datasets, which
may otherwise constrain site-specific performance. Further-
more, scaling laws for deep-learning models indicate that
performance diminish with increasing model size beyond
a certain point (Hestness et al., 2017). Adopting more ad-
vanced deep-learning surrogates will thus be essential to im-
proving HyLake’s representation of lake-atmosphere interac-
tions in ungauged settings.

Although the BO-BLSTM-based surrogate improves
model robustness, its complex architecture increases train-
ing costs (Peng et al., 2025; Ferianc et al., 2021). Simpli-
fied Bayesian architecture may offer comparable uncertainty
quantification capabilities at a lower computational expense
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(Klotz et al., 2022). Notably, HyLake v1.0 holds potential
for future uncertainty assessment, such as predictive vari-
ance and the probability of extreme lake events, by further
developing its surrogate component (Kar et al., 2024; Gaw-
likowski et al., 2023). To overcome current limitations re-
lated to high computational demand and performance ceil-
ings, future work should explore novel surrogate architec-
tures that are both efficient and scalable, trained on larger
and more diverse datasets.

The modular Python-based framework of HyLake v1.0 of-
fers greater flexibility than traditional process-based mod-
els for coupling additional modules, such as those for lake
temperature profiles, greenhouse gas exchange, oxygen dy-
namics, and lake-watershed interactions (Saloranta and An-
dersen, 2007; Stepanenko et al., 2016). Emphasizing energy-
mass balance closure and parameter sharing across modules
will improve physical consistency and reduce uncertainty
propagation. Precedents for such integrated modeling exist:
Lake 2.0 (Stepanenko et al., 2016) coupled methane and car-
bon dioxide modules to study gas dynamics in Kuivajärvi
Lake, while MyLake (Saloranta and Andersen, 2007) has
been extended to include modules for DOC degradation, DO
dynamics, microbial respiration, gas exchange, sediment-
water interactions, dynamic light attenuation, nitrogen up-
take, and even floating solar panels (Exley et al., 2022; Salk
et al., 2022; Kiuru et al., 2019; Pilla and Couture, 2021;
Markelov et al., 2019; Couture et al., 2015; Holmberg et al.,
2014). Many of these hydro-biogeochemical processes are
currently described by simplified PDEs or empirical mod-
els, introducing structural uncertainties (Li et al., 2021b).
The flexible design of HyLake v1.0 enables the integration of
deep-learning surrogates to approximate complex processes
such as temperature dynamics, gas flux, and oxygen variabil-
ity, potentially outperforming both purely process-based and
purely data-driven models.

In summary, HyLake v1.0 provides a flexible and extensi-
ble framework for advancing hybrid lake modeling. Future
development should prioritize enhancing physical consis-
tency, improving uncertainty quantification, and increasing
computational efficiency to better represent complex lake–
atmosphere processes across diverse settings.

5 Conclusion

This study introduced a novel hybrid lake model, Hy-
Lake v1.0, by hard-coupling a BO-BLSTM-based surrogate
trained with observations from the MLW lake site in Lake
Taihu. It replaced the implicit Euler scheme typically used in
traditional process-based lake models with this BO-BLSTM-
based surrogate, enabling the prediction of LST, LE, and HE
at the lake-atmosphere interface by collectively using energy
balance equations. The HyLake v1.0 was proposed to offer
more accurate prediction and flexibility in development of
hybrid hydrological models. Specifically, in three numerical

experiments (MLW, Taihu-obs, and Taihu-ERA5), including
three models (FLake, Baseline, and TaihuScene), this study
intercompare the performance of HyLake v1.0 by adapting
different surrogates, training strategies, and forcing datasets.
Additionally, this study used different forcing datasets, in-
cluding observations from 5 lake sites in Lake Taihu and the
ERA5 datasets, to evaluate the transferability of HyLake v1.0
in ungauged regions and unlearned datasets. The experiments
demonstrated that HyLake v1.0 effectively learns the physi-
cal principles governing lake-atmosphere interactions, high-
lighting its potential for application in ungauged lakes. Major
conclusions are summarized as follows:

1. The BO-BLSTM-based surrogate in HyLake v1.0 per-
formed well in representing changes in 1LST of test
dataset (RMSE= 0.2587 °C, MAE= 0.1594 °C), out-
performing TaihuScene while underperforming Base-
line;

2. HyLake v1.0 showed superior generalization capac-
ity in LST (R= 0.99, RMSE= 1.08), LE (R= 0.94,
RMSE= 24.65), and HE (R= 0.93, RMSE= 7.15) at
both daily and hourly scales compared to observations,
FLake and Baseline model, indicating that integrating
physical principles with LSTM-based surrogates im-
proves model accuracy and better captures changes in
lake-atmosphere interactions;

3. HyLake v1.0 demonstrated its capability of trans-
ferability in ungauged regions of Lake Taihu and
with low-resolution ERA5 forcing datasets. The results
of intercomparison across lake site showed HyLake
v1.0 presented the best capability in representation of
LST (MAE= 1.03 °C), LE (MAE= 24.79 W m−2) and
HE (MAE= 7.88 W m−2) than FLake and TaihuScene.
Specifically, it performed the best in MLW, PTS, and
XLS, but slightly poorer in BFG and DPK sites than
TaihuScene. Regarding the capability of spatial trans-
ferability using ERA5 forcing datasets, results indicated
HyLake v1.0 performed the most closely matched the
observations in Lake Taihu compared to FLake and Tai-
huScene in 14 of 15 variables (LST, LE and HE in 5
lake sites).

These intercomparison experiments highlighted that HyLake
v1.0, when coupled with a BO-BLSTM-based surrogate, of-
fers excellent flexibility and is capable of capturing the un-
derlying physical principles, providing more accurate predic-
tions than traditional process-based models in ungauged re-
gions. This also demonstrates the model’s promising poten-
tial for application in ungauged lakes. Future work should
focus on expanding HyLake v1.0 by exploring different ar-
chitectures, utilizing larger training datasets, and incorporat-
ing additional coupled modules.
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