Articles | Volume 18, issue 22
https://doi.org/10.5194/gmd-18-8949-2025
https://doi.org/10.5194/gmd-18-8949-2025
Model evaluation paper
 | 
25 Nov 2025
Model evaluation paper |  | 25 Nov 2025

Proximal surface pedogeophysical characterization in Maritime Antarctica: assessing pedogeomorphological, periglacial, and landform influences

Danilo César de Mello, Clara Glória Oliveira Baldi, Cássio Marques Moquedace, Isabelle de Angeli Oliveira, Gustavo Vieira Veloso, Lucas Carvalho Gomes, Márcio Rocha Francelino, Carlos Ernesto Gonçalves Reynaud Schaefer, Elpídio Inácio Fernandes-Filho, Edgar Batista de Medeiros Júnior, Fabio Soares de Oliveira, José João Lelis Leal Souza, Tiago Osório Ferreira, and José A. M. Demattê

Related authors

Weathering intensities in tropical soils evaluated by machine learning, clusterization and geophysical sensors
Danilo César de Mello, Tiago Osório Ferreira, Gustavo Vieira Veloso, Marcos Guedes de Lana, Fellipe Alcantara de Oliveira Mello, Luis Augusto Di Loreto Di Raimo, Diego Ribeiro Oquendo Cabrero, José João Lelis Leal de Souza, Elpídio Inácio Fernandes-Filho, Márcio Rocha Francelino, Carlos Ernesto Gonçalves Reynaud Schaefer, and José A. M. Demattê
SOIL Discuss., https://doi.org/10.5194/soil-2022-17,https://doi.org/10.5194/soil-2022-17, 2022
Revised manuscript not accepted
Short summary
A new methodological framework for geophysical sensor combinations associated with machine learning algorithms to understand soil attributes
Danilo César de Mello, Gustavo Vieira Veloso, Marcos Guedes de Lana, Fellipe Alcantara de Oliveira Mello, Raul Roberto Poppiel, Diego Ribeiro Oquendo Cabrero, Luis Augusto Di Loreto Di Raimo, Carlos Ernesto Gonçalves Reynaud Schaefer, Elpídio Inácio Fernandes Filho, Emilson Pereira Leite, and José Alexandre Melo Demattê
Geosci. Model Dev., 15, 1219–1246, https://doi.org/10.5194/gmd-15-1219-2022,https://doi.org/10.5194/gmd-15-1219-2022, 2022
Short summary

Cited articles

Arivazhagan, S., Naseer, K. A., Mahmoud, K. A., Arun Kumar, K. V., Libeesh, N. K., Sayyed, M. I., Alqahtani, M. S., Yousef, E. S., and Khandaker, M. U.: Gamma-ray protection capacity evaluation and satellite data-based mapping for the limestone, charnockite, and gneiss rocks in the Sirugudi taluk of the Dindigul district, India, Radiation Physics and Chemistry, 196, 110108, https://doi.org/10.1016/j.radphyschem.2022.110108, 2022. 
Ayoubi, S., Abazari, P., and Zeraatpisheh, M.: Soil great groups discrimination using magnetic susceptibility technique in a semi-arid region, central Iran, Arab. J. Geosci., 11, 616, https://doi.org/10.1007/s12517-018-3941-4, 2018. 
Bastos, B. P., Pinheiro, H. S. K., Junior, W. C., dos Anjos, L. H. C., and Ferreira, F. J. F.: Clustering airborne gamma-ray spectrometry data in Nova Friburgo, State of Rio de Janeiro, southeastern Brazil, Journal of Applied Geophysics, 209, 104900, https://doi.org/10.1016/j.jappgeo.2022.104900, 2023. 
Beamish, D.: Relationships between gamma-ray attenuation and soils in SW England, Geoderma, 259–260, 174–186, https://doi.org/10.1016/j.geoderma.2015.05.018, 2015. 
Birkenmajer, K.: Geology of Admiralty Bay, King George Island (South Shetland Islands) – An outline, Polish Polar Research, 1, 29–54, 1980. 
Download
Short summary
The study explores Maritime Antarctica's geology, shaped by periglacial forces, using pioneering gamma-spectrometric and magnetic surveys on igneous rocks due to limited Antarctic surveys. Machine learning predicts radionuclide and magnetic content based on terrain features, linking their distribution to landscape processes, morphometrics, lithology, and pedogeomorphology. Inaccuracies arise due to complex periglacial processes and landscape complexities.
Share