Articles | Volume 18, issue 22
https://doi.org/10.5194/gmd-18-8949-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-18-8949-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Proximal surface pedogeophysical characterization in Maritime Antarctica: assessing pedogeomorphological, periglacial, and landform influences
Danilo César de Mello
CORRESPONDING AUTHOR
Department of Soil Science, Federal University of Viçosa, Viçosa, Brazil
Clara Glória Oliveira Baldi
Department of Soil Science, Federal University of Viçosa, Viçosa, Brazil
Cássio Marques Moquedace
Department of Soil Science, Federal University of Viçosa, Viçosa, Brazil
Isabelle de Angeli Oliveira
Department of Soil Science, Federal University of Viçosa, Viçosa, Brazil
Gustavo Vieira Veloso
Department of Soil Science, Federal University of Viçosa, Viçosa, Brazil
Lucas Carvalho Gomes
Department of Agroecology, Aarhus University, Blichers Allé 20, 8830 Tjele, Denmark
Márcio Rocha Francelino
Department of Soil Science, Federal University of Viçosa, Viçosa, Brazil
Carlos Ernesto Gonçalves Reynaud Schaefer
Department of Soil Science, Federal University of Viçosa, Viçosa, Brazil
Elpídio Inácio Fernandes-Filho
Department of Soil Science, Federal University of Viçosa, Viçosa, Brazil
Edgar Batista de Medeiros Júnior
Department of Soil Science, Federal University of Viçosa, Viçosa, Brazil
Fabio Soares de Oliveira
Department of Geography, Federal University of Minas Gerais, Belo Horizonte, Brazil
José João Lelis Leal Souza
Department of Soil Science, Federal University of Viçosa, Viçosa, Brazil
Tiago Osório Ferreira
Department of Soil Science, “Luiz de Queiroz” College of Agriculture, University of São Paulo, Av. Pádua Dias, 11, CP 9, Piracicaba, SP 13418-900, Brazil
José A. M. Demattê
Department of Soil Science, “Luiz de Queiroz” College of Agriculture, University of São Paulo, Av. Pádua Dias, 11, CP 9, Piracicaba, SP 13418-900, Brazil
Related authors
Danilo César de Mello, Tiago Osório Ferreira, Gustavo Vieira Veloso, Marcos Guedes de Lana, Fellipe Alcantara de Oliveira Mello, Luis Augusto Di Loreto Di Raimo, Diego Ribeiro Oquendo Cabrero, José João Lelis Leal de Souza, Elpídio Inácio Fernandes-Filho, Márcio Rocha Francelino, Carlos Ernesto Gonçalves Reynaud Schaefer, and José A. M. Demattê
SOIL Discuss., https://doi.org/10.5194/soil-2022-17, https://doi.org/10.5194/soil-2022-17, 2022
Revised manuscript not accepted
Short summary
Short summary
We proposed a different method to evaluate different intensities of weathering in a heterogeneous area (soils, geology and relief) and small number of samples. We use combined data from three geophysical sensors, clustering and machine learning (nested-leave-one-out-cross-validation) to distinguish weathering intensities and assess the relationship of these variables with weathering, relief, geology, and soil types and attributes. and we obtained satisfactory performances of models evaluation.
Danilo César de Mello, Gustavo Vieira Veloso, Marcos Guedes de Lana, Fellipe Alcantara de Oliveira Mello, Raul Roberto Poppiel, Diego Ribeiro Oquendo Cabrero, Luis Augusto Di Loreto Di Raimo, Carlos Ernesto Gonçalves Reynaud Schaefer, Elpídio Inácio Fernandes Filho, Emilson Pereira Leite, and José Alexandre Melo Demattê
Geosci. Model Dev., 15, 1219–1246, https://doi.org/10.5194/gmd-15-1219-2022, https://doi.org/10.5194/gmd-15-1219-2022, 2022
Short summary
Short summary
We used soil parent material, terrain attributes, and geophysical data from the soil surface to test and compare different and unprecedented geophysical sensor combination, as well as different machine learning algorithms to model and predict several soil attributes. Also, we analyzed the importance of pedoenvironmental variables. The soil attributes were modeled throughout different machine learning algorithms and related to different geophysical sensor combinations.
Gabriel Nuto Nóbrega, Xosé L. Otero, Danilo Jefferson Romero, Hermano Melo Queiroz, Daniel Gorman, Margareth da Silva Copertino, Marisa de Cássia Piccolo, and Tiago Osório Ferreira
SOIL, 9, 189–208, https://doi.org/10.5194/soil-9-189-2023, https://doi.org/10.5194/soil-9-189-2023, 2023
Short summary
Short summary
The present study addresses the soil information gap in tropical seagrass meadows. The different geological and bioclimatic settings caused a relevant soil diversity. Contrasting geochemical conditions promote different intensities of soil processes. Seagrass soils from the northeastern semiarid coast are marked by a more intense sulfidization. Understanding soil processes may help in the sustainable management of seagrasses.
Danilo César de Mello, Tiago Osório Ferreira, Gustavo Vieira Veloso, Marcos Guedes de Lana, Fellipe Alcantara de Oliveira Mello, Luis Augusto Di Loreto Di Raimo, Diego Ribeiro Oquendo Cabrero, José João Lelis Leal de Souza, Elpídio Inácio Fernandes-Filho, Márcio Rocha Francelino, Carlos Ernesto Gonçalves Reynaud Schaefer, and José A. M. Demattê
SOIL Discuss., https://doi.org/10.5194/soil-2022-17, https://doi.org/10.5194/soil-2022-17, 2022
Revised manuscript not accepted
Short summary
Short summary
We proposed a different method to evaluate different intensities of weathering in a heterogeneous area (soils, geology and relief) and small number of samples. We use combined data from three geophysical sensors, clustering and machine learning (nested-leave-one-out-cross-validation) to distinguish weathering intensities and assess the relationship of these variables with weathering, relief, geology, and soil types and attributes. and we obtained satisfactory performances of models evaluation.
Danilo César de Mello, Gustavo Vieira Veloso, Marcos Guedes de Lana, Fellipe Alcantara de Oliveira Mello, Raul Roberto Poppiel, Diego Ribeiro Oquendo Cabrero, Luis Augusto Di Loreto Di Raimo, Carlos Ernesto Gonçalves Reynaud Schaefer, Elpídio Inácio Fernandes Filho, Emilson Pereira Leite, and José Alexandre Melo Demattê
Geosci. Model Dev., 15, 1219–1246, https://doi.org/10.5194/gmd-15-1219-2022, https://doi.org/10.5194/gmd-15-1219-2022, 2022
Short summary
Short summary
We used soil parent material, terrain attributes, and geophysical data from the soil surface to test and compare different and unprecedented geophysical sensor combination, as well as different machine learning algorithms to model and predict several soil attributes. Also, we analyzed the importance of pedoenvironmental variables. The soil attributes were modeled throughout different machine learning algorithms and related to different geophysical sensor combinations.
Cited articles
Arivazhagan, S., Naseer, K. A., Mahmoud, K. A., Arun Kumar, K. V., Libeesh, N. K., Sayyed, M. I., Alqahtani, M. S., Yousef, E. S., and Khandaker, M. U.: Gamma-ray protection capacity evaluation and satellite data-based mapping for the limestone, charnockite, and gneiss rocks in the Sirugudi taluk of the Dindigul district, India, Radiation Physics and Chemistry, 196, 110108, https://doi.org/10.1016/j.radphyschem.2022.110108, 2022.
Ayoubi, S., Abazari, P., and Zeraatpisheh, M.: Soil great groups discrimination using magnetic susceptibility technique in a semi-arid region, central Iran, Arab. J. Geosci., 11, 616, https://doi.org/10.1007/s12517-018-3941-4, 2018.
Bastos, B. P., Pinheiro, H. S. K., Junior, W. C., dos Anjos, L. H. C., and Ferreira, F. J. F.: Clustering airborne gamma-ray spectrometry data in Nova Friburgo, State of Rio de Janeiro, southeastern Brazil, Journal of Applied Geophysics, 209, 104900, https://doi.org/10.1016/j.jappgeo.2022.104900, 2023.
Beamish, D.: Relationships between gamma-ray attenuation and soils in SW England, Geoderma, 259–260, 174–186, https://doi.org/10.1016/j.geoderma.2015.05.018, 2015.
Birkenmajer, K.: Geology of Admiralty Bay, King George Island (South Shetland Islands) – An outline, Polish Polar Research, 1, 29–54, 1980.
Brenning, A.: Statistical geocomputing combining R and SAGA: The example of landslide susceptibility analysis with generalized additive models, Hamburger Beiträge zur Physischen Geographie und Landschaftsökologie, 19, 410, 2008.
Bressan, T. S., Kehl de Souza, M., Girelli, T. J., and Junior, F. C.: Evaluation of machine learning methods for lithology classification using geophysical data, Computers & Geosciences, 139, 104475, https://doi.org/10.1016/j.cageo.2020.104475, 2020.
Chen, D., Chang, N., Xiao, J., Zhou, Q., and Wu, W.: Mapping dynamics of soil organic matter in croplands with MODIS data and machine learning algorithms, Science of the Total Environment, 669, 844–855, https://doi.org/10.1016/j.scitotenv.2019.03.151, 2019a.
Chen, S., Liang, Z., Webster, R., Zhang, G., Zhou, Y., Teng, H., Hu, B., Arrouays, D., and Shi, Z.: A high-resolution map of soil pH in China made by hybrid modelling of sparse soil data and environmental covariates and its implications for pollution, Science of the Total Environment, 655, 273–283, https://doi.org/10.1016/j.scitotenv.2018.11.230, 2019b.
Costa, I. S. L., Tavares, F. M., and de Oliveira, J. K. M.: Predictive lithological mapping through machine learning methods: a case study in the Cinzento Lineament, Carajás Province, Brazil, Journal of Geology and Survey of Brazil, 2, 26–36, 2019.
Cracknell, M. J. and Reading, A. M.: Geological mapping using remote sensing data: A comparison of five machine learning algorithms, their response to variations in the spatial distribution of training data and the use of explicit spatial information, Computers & Geosciences, 63, 22–33, https://doi.org/10.1016/j.cageo.2013.10.008, 2014.
Daher, M., Schaefer, C. E. G. R., Fernandes Filho, E. I., Francelino, M. R., and Senra, E. O.: Semi-arid soils from a topolithosequence at James Ross Island, Weddell Sea region, Antarctica: Chemistry, mineralogy, genesis and classification, Geomorphology, 327, 351–364, https://doi.org/10.1016/j.geomorph.2018.11.003, 2019.
de Morisson Valeriano, M.: Topodata: guia para utilização de dados geomorfológicos locais, Inpe, 73, http://mtc-m16c.sid.inpe.br/col/sid.inpe.br/mtc-m18@80/2008/07.11.19.24/doc/publicacao.pdf (last access: 12 November 2025), 2008.
Dharumarajan, S., Hegde, R., and Singh, S. K.: Spatial prediction of major soil properties using Random Forest techniques: A case study in semi-arid tropics of South India, Geoderma Regional, 10, 154–162, https://doi.org/10.1016/j.geodrs.2017.07.005, 2017.
Dickson, B. L. and Scott, K. M.: Interpretation of aerial gamma-ray surveys – adding the geochemical factors, AGSO Journal of Australian Geology and Geophysics, 17, 187–200, 1997.
Elawadi, E., Ammar, A., and Elsirafy, A.: Mapping surface geology using airborne gamma-ray spectrometric survey data – A case study, in: Proceedings of the 7th SEGJ International Symposium, Japan, https://www.academia.edu/1062717/Mapping_surface_geology_using_airborne_gamma_ray_spectrometric_survey_data_A_case_study (last access: 14 November 2025), 2004.
Fabris, J. D., Coey, J. M. D., Qi, Q., and Mussel, W. da N.: Characterization of Mg-rich maghemite from tuffite, American Mineralogist, 80, 664–669, 1995.
FAO: World Reference Base for Soil Resources 2014: International soil classification system for naming soils and creating legends for soil maps, World Soil Resources Reports, No. 106, https://doi.org/10.1017/S0014479706394902, 2014.
Feng, Y., Cui, N., Hao, W., Gao, L., and Gong, D.: Estimation of soil temperature from meteorological data using different machine learning models, Geoderma, 338, 67–77, https://doi.org/10.1016/j.geoderma.2018.11.044, 2019.
Ferreira, R. G., da Silva, D. D., Elesbon, A. A. A., Fernandes-Filho, E. I., Veloso, G. V., de Souza Fraga, M., and Ferreira, L. B.: Machine Learning Models for Streamflow Regionalization in a Tropical Watershed, J. Environ. Manage., 280, 111713, https://doi.org/10.1016/j.jenvman.2020.111713, 2021.
Fisher, M.: The Challenges of Doing Soils Research in Antarctica: A Day in the Life of Ed Gregorich, Soil Horizons, 55, 1–3, 2014.
Fisher, M.: A Day in the Life of an Arctic Soil Scientist, Soil Horizons, 56, 1–3, 2015.
Ford, K., Harris, J. R., Shives, R., Carson, J., and Buckle, J.: Remote predictive mapping 2. Gamma-ray spectrometry: A tool for mapping Canada's North, Geoscience Canada, 35, 109–126, 2008.
Francelino, M. R., Schaefer, C. E. G. R., Simas, F. N. B., Fernandes Filho, E. I., de Souza, J. J. L. L., and da Costa, L. M.: Geomorphology and soils distribution under paraglacial conditions in an ice-free area of Admiralty Bay, King George Island, Antarctica, Catena, 85, 194–204, 2011.
French, H. M.: The Periglacial Environment, John Wiley & Sons, Chichester, 2017.
Garankina, E. V., Lobkov, V. A., Shorkunov, I. G., and Belyaev, V. R.: Identifying relict periglacial features in watershed landscape and deposits of Borisoglebsk Upland, Central European Russia, Journal of the Geological Society of London, 179, https://doi.org/10.1144/jgs2021-135, 2022.
Gregory, A. F. and Horwood, J. L.: A laboratory study of gamma-ray spectra at the surface of rocks, Geological Survey of Canada, Ottawa, Department of Mines and Technical Surveys, https://doi.org/10.2172/4833372, 1961.
Guimarães, C. C. B., Demattê, J. A. M., de Azevedo, A. C., Dalmolin, R. S. D., ten Caten, A., Sayão, V. M., da Silva, R. C., Poppiel, R. R., de Sousa Mendes, W., and Salazar, D. F. U.: Soil weathering behavior assessed by combined spectral ranges: Insights into aggregate analysis, Geoderma, 402, 115154, https://doi.org/10.1016/j.geoderma.2021.115154, 2021.
Harris, J. R. and Grunsky, E. C.: Predictive lithological mapping of Canada's North using Random Forest classification applied to geophysical and geochemical data, Computers & Geosciences, 80, 9–25, https://doi.org/10.1016/j.cageo.2015.03.013, 2015.
Hijmans, R. J. and Van Etten, J.: raster: Geographic Data Analysis and Modeling, R package version 2.5–8, https://cir.nii.ac.jp/crid/1370005520447936526 (last access: 12 November 2025), 2016.
Hothorn, T.: CRAN Task View: Machine Learning and Statistical Learning, https://cran.ms.unimelb.edu.au/web/views/MachineLearning.html (last access: 12 November 2025), 2021.
INPE Instituto Nacional de Pesquisas Espaciais: EACF Weather Data, http://antartica.cptec.inpe.br/~rantar/weatherdata.shtml (last access: 11 November 2025, 2009.
Joju, G. S., Warrier, A. K., Chaparro, M. A. E., Mahesh, B. S., Matthew, F. A., Anusree, S., and Mohan, R.: Mineral magnetic properties of surface soils from the Broknes and Grovnes Peninsula, Larsemann Hills, East Antarctica, Polar Science, 100968, https://doi.org/10.1016/j.polar.2023.100968, 2023.
Jung, Y., Lee, J., Lee, M., Kang, N., and Lee, I.: Probabilistic analytical target cascading using kernel density estimation for accurate uncertainty propagation, Structural and Multidisciplinary Optimization, 61, 1–19, 2020.
Khaledian, Y. and Miller, B. A.: Selecting appropriate machine learning methods for digital soil mapping, Applied Mathematical Modelling, 81, 401–418, 2020.
Khosravi, V., Doulati Ardejani, F., Yousefi, S., and Aryafar, A.: Monitoring soil lead and zinc contents via combination of spectroscopy with extreme learning machine and other data mining methods, Geoderma, 318, 29–41, https://doi.org/10.1016/j.geoderma.2017.12.025, 2018.
Kuhn, M. and Johnson, K.: Applied Predictive Modeling, Springer, New York, https://doi.org/10.1007/978-1-4614-6849-3, 2013.
Kuhn, S., Cracknell, M. J., and Reading, A. M.: Lithologic mapping using Random Forests applied to geophysical and remote-sensing data: A demonstration study from the Eastern Goldfields of Australia, Geophysics, 83, B183–B193, 2018.
Lee, Y. I., Lim, H. S., and Yoon, H. I.: Geochemistry of soils of King George Island, South Shetland Islands, West Antarctica: Implications for pedogenesis in cold polar regions, Geochimica et Cosmochimica Acta, 68, 4319–4333, https://doi.org/10.1016/j.gca.2004.01.020, 2004.
Lin, L. I.-K.: A concordance correlation coefficient to evaluate reproducibility, Biometrics, 45, 255–268, https://doi.org/10.2307/2532051, 1989.
Loiseau, T., Richer-de-Forges, A. C., Martelet, G., Bialkowski, A., Nehlig, P., and Arrouays, D.: Could airborne gamma-spectrometric data replace lithological maps as co-variates for digital soil mapping of topsoil particle-size distribution? A case study in Western France, Geoderma Regional, 22, e00295, https://doi.org/10.1016/j.geodrs.2020.e00295, 2020.
Lopes, D., Schaefer, C. E. G. R., Souza, J. J. L. L. de, Oliveira, F. S. de, Simas, F. N. B., and Daher, M.: Concretionary horizons, unusual pedogenetic processes and features of sulfate affected soils from Antarctica, Geoderma, 347, 13–24, https://doi.org/10.1016/j.geoderma.2019.03.024, 2019.
López-Martínez, J., Serrano, E., Schmid, T., Mink, S., and Linés, C.: Periglacial processes and landforms in the South Shetland Islands (northern Antarctic Peninsula region), Geomorphology, 155–156, 62–79, https://doi.org/10.1016/j.geomorph.2011.12.018, 2012.
Mansuy, N., Thiffault, E., Paré, D., Bernier, P., Guindon, L., Villemaire, P., Poirier, V., and Beaudoin, A.: Digital mapping of soil properties in Canadian managed forests at 250 m resolution using the k-nearest neighbor method, Geoderma, 235–236, 59–73, https://doi.org/10.1016/j.geoderma.2014.06.032, 2014.
Meier, M., Francelino, M. R., Gasparini, A. S., Thomazini, A., Pereira, A. B., von Krüger, F. L., Fernandes-Filho, E. I., and Schaefer, C. E. G. R.: Soilscapes and geoenvironments at Stansbury Peninsula, Nelson Island, maritime Antarctica, Catena, 223, 106884, https://doi.org/10.1016/j.catena.2022.106884, 2023.
Mello, D. C., Demattê, J. A. M., Silvero, N. E. Q., Di Raimo, L. A., Poppiel, R. R., Mello, F. A. O., and Rizzo, R. L: Soil magnetic susceptibility and its relationship with naturally occurring processes and soil attributes in pedosphere, in a tropical environment, Geoderma, 372, 114364, https://doi.org/10.1016/j.geoderma.2020.114364, 2020.
Mello, D., Demattê, J. A. M., Silvero, N. E. Q., Di Raimo, L. A. D. L., Poppiel, R. R., Mello, F. A. O., Souza, A. B., Safanelli, J. L., Resende, M. E. B., Rizzo, R., and Schaefer, C. E. G. R.: Applied gamma-ray spectrometry for evaluating tropical soil processes and attributes, Geoderma, 381, 114736, https://doi.org/10.1016/j.geoderma.2020.114736, 2021.
Mello, D. C., Ferreira, T. O., Veloso, G. V., de Lana, M. G., de Oliveira Mello, F. A., Di Raimo, L. A. D. L., Schaefer, C. E. G. R., Francelino, M. R., Fernandes-Filho, E. I., and Demattê, J. A. M.: Pedogenetic processes operating at different intensities inferred by geophysical sensors and machine learning algorithms, Catena, 216, 106370, https://doi.org/10.1016/j.catena.2022.106370, 2022a.
Mello, D. C., Safanelli, J. L., Poppiel, R. R., Veloso, G. V., Cabrero, D. R. O., Greschuk, L. T., de Oliveira Mello, F. A., Francelino, M. R., Ker, J. C., and Leite, E. P.: Soil apparent electrical conductivity survey in different pedoenvironments by geophysical sensor EM38: a potential tool in pedology and pedometry studies, Geocarto International, 37, 1–24, https://doi.org/10.1080/10106049.2022.2076913, 2022b.
Mello, D. C. D., Veloso, G. V., Lana, M. G. D., Mello, F. A. D. O., Poppiel, R. R., Cabrero, D. R. O., Di Raimo, L. A. D. L., Schaefer, C. E. G. R., Filho, E. I. F., Leite, E. P., and Demattê, J. A. M.: A new methodological framework for geophysical sensor combinations associated with machine learning algorithms to understand soil attributes, Geosci. Model Dev., 15, 1219–1246, https://doi.org/10.5194/gmd-15-1219-2022, 2022c.
Mello, D., Veloso, G. V., Moquedace, C. M., de Angeli Oliveira, I., de Oliveira, F. S., Gomes, L. C., de Souza, J. J. L. L., Francelino, M. R., Fernandes-Filho, E. I., Schaefer, C. E. G. R., and Demattê, J. A. M.: Radiometric and magnetic susceptibility characterization of soil profiles: Geophysical data and their relationship with Antarctic periglacial processes, pedogenesis, and lithology, Catena, 232, 107427, https://doi.org/10.1016/j.catena.2023.107427, 2023a.
Mello, D. C., Ferreira, T. O., Veloso, G. V., de Lana, M. G., de Oliveira Mello, F. A., Di Raimo, L. A. D. L., Cabrero, D. R. O., de Souza, J. J. L. L., Fernandes-Filho, E. I., and Francelino, M. R.: Digital mapping of soil weathering using field geophysical sensor data coupled with covariates and machine learning, Journal of South American Earth Sciences, 104449, https://doi.org/10.1016/j.jsames.2023.104449, 2023b.
Mello, D. C., Vieira, G., Marques, C., Angeli, I. De, Soares, F., Oliveira, D., and Demattê, M.: 2023. Chemical weathering detection in the periglacial landscapes of Maritime Antarctica : New approach using geophysical sensors, topographic variables and machine learning algorithms, Geoderma 438, https://doi.org/10.1016/j.geoderma.2023.116615, 2023c.
Mello, D. C. de, Veloso, G. V., Mello, M. F. de, Lana, M. G. de, Oliveira, I. de A., Mello, F. A. de O., Siqueira, R. G., Gomes, L. C., Fernandes-Filho, E. I., Schaefer, C. E. G. R., Francelino, M. R., Leite, E. P., Ferreira, T. O., and Demattê, J. A. M.: Integrating proximal geophysical sensing and machine learning for digital soil mapping: Spatial prediction and model evaluation using a small dataset, Soil Advances, 3, 100024, https://doi.org/10.1016/j.soilad.2024.100024, 2025.
Minty, B. R. S., Luyendyk, A. P. J., and Brodie, R. C.: Calibration and data processing for airborne gamma-ray spectrometry, AGSO Journal of Australian Geology and Geophysics, 17, 51–62, 1997.
Mishra, G., Sulieman, M. M., Kaya, F., Francaviglia, R., Keshavarzi, A., Bakhshandeh, E., Loum, M., Jangir, A., Ahmed, I., Elmobarak, A., Basher, A., and Rawat, D.: Machine learning for cation exchange capacity prediction in different land uses, Catena, 216, 106404, https://doi.org/10.1016/j.catena.2022.106404, 2022.
Moquedace, C. M.: Codes/Rasters – Application of machine learning to proximal gamma-ray and magnetic susceptibility surveys in the Maritime Antarctic: Assessing the influence of periglacial processes and landforms (Version v2), Zenodo [code, data set], https://doi.org/10.5281/zenodo.10828281, 2024.
Mosleh, Z., Salehi, M. H., Jafari, A., Borujeni, I. E., and Mehnatkesh, A.: The effectiveness of digital soil mapping to predict soil properties over low-relief areas, Environmental Monitoring and Assessment, 188, 195, https://doi.org/10.1007/s10661-016-5204-8, 2016.
Moquedace, C. M., Baldi, C. G. O., Siqueira, R. G., Cardoso, I. M., de Souza, E. F. M. , Fontes, R. L. F., Francelino, M. R., Gomes, L. C., and Fernandes-Filho, E. I.: High-Resolution Mapping of Soil Carbon Stocks in the Western Amazon, Geoderma Reg., 36, e00773, https://doi.org/10.1016/j.geodrs.2024.e00773, 2024.
Mullins, C. E.: Magnetic susceptibility of the soil and its significance in soil science – a review, Journal of Soil Science, 28, 223–246, https://doi.org/10.1111/j.1365-2389.1977.tb02232.x, 1977.
Navas, A., Serrano, E., López-Martínez, J., Gaspar, L., and Lizaga, I.: Interpreting environmental changes from radionuclides and soil characteristics in different landform contexts of Elephant Island (maritime Antarctica), Land Degradation and Development, 29, 3141–3158, 2018.
Nawrocki, J., Pańczyk, M., Wójcik, K., and Tatura, A.: U–Pb isotopic ages and provenance of some far-travelled exotic pebbles from glaciogenic sediments of the Polonez Cove Formation (Oligocene, King George Island), Journal of the Geological Society of London, 178, jgs2020-113, https://doi.org/10.1144/jgs2020-113, 2021.
Neogi, S. and Dauwels, J.: Factored latent-dynamic conditional random fields for single and multi-label sequence modeling, arXiv [preprint], https://doi.org/10.48550/arXiv.1911.03667, 2019.
Paes, É. de C., Veloso, G. V., Fonseca, A. A. da, Fernandes-Filho, E. I., Fontes, M. P. F., and Soares, E. M. B.: Predictive modeling of contents of potentially toxic elements using morphometric data, proximal sensing, and chemical and physical properties of soils under mining influence, Science of the Total Environment, 817, 152972, https://doi.org/10.1016/j.scitotenv.2022.152972, 2022.
Passier, H. F. de, De Lange, G. J., and Dekkers, M. J.: Magnetic properties and geochemistry of the active oxidation front and the youngest sapropel in the eastern Mediterranean Sea, Geophysical Journal International, 145, 604–614, 2001.
Poggere, G. C., Inda, A. V., Barrón, V., Kämpf, N., de Brito, A. D. B., Barbosa, J. Z., and Curi, N.: Maghemite quantification and magnetic signature of Brazilian soils with contrasting parent materials, Applied Clay Science, 165, 39–50, https://doi.org/10.1016/j.clay.2018.05.014, 2018.
Poggio, L., Gimona, A., Spezia, L., and Brewer, M. J.: Bayesian spatial modelling of soil properties and their uncertainty: The example of soil organic matter in Scotland using R-INLA, Geoderma, 277, 69–82, https://doi.org/10.1016/j.geoderma.2016.04.026, 2016.
Pollard, W.: Periglacial processes in glacial environments, in: Past Glacial Environments, Elsevier, 537–564, https://doi.org/10.1016/B978-0-08-100524-8.00016-6, 2018.
Pride, D. E., Cox, C. A., Moody, S. V., Conelea, R. R., and Rosen, M. A.: Investigation of mineralization in the South Shetland Islands, Gerlache Strait, and Anvers Island, northern Antarctic Peninsula, Mineral Resources Potential of Antarctica, 51, 69–94, 1990.
Ragland, P. C., Billings, G. K., and Adams, J. A. S.: Chemical fractionation and its relationship to the distribution of thorium and uranium in a zoned granite batholith, Geochimica et Cosmochimica Acta, 31, 17–33, https://doi.org/10.1016/0016-7037(67)90095-6, 1967.
Rakusa-Suszczewski, S.: King George Island—South Shetland Islands, Maritime Antarctic. In Geoecology of Antarctic ice-free coastal landscapes, Berlin, Heidelberg: Springer Berlin Heidelberg, 23–39, https://doi.org/10.1007/978-3-642-56318-8_3, 2002.
Rawlins, B. G., Lark, R. M., and Webster, R.: Understanding airborne radiometric survey signals across part of eastern England, Earth Surface Processes and Landforms, 32, 1503–1515, https://doi.org/10.1002/esp.1468, 2007.
Rawlins, B. G., Scheib, C., Tyler, A. N., and Beamish, D.: Optimal Mapping of Terrestrial Gamma Dose Rates Using Geological Parent Material and Aerogeophysical Survey Data, J. Environ. Monit., 14, 3086–3093, 2012.
R Core Team: Package “caret”, The R Journal, https://journal.r-project.org/ (last access: 12 November 2025), 2020.
R Core Team: R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, https://cir.nii.ac.jp/crid/1574231874043578752 (last access: 12 November 2025), 2023.
Ribeiro, F. C. A., Silva, J. I. R., Lima, E. S. A., do Amaral Sobrinho, N. M. B., Perez, D. V., and Lauria, D. C.: Natural radioactivity in soils of the State of Rio de Janeiro (Brazil): Radiological characterization and relationships to geological formation, soil types and soil properties, Journal of Environmental Radioactivity, 182, 34–43, https://doi.org/10.1016/j.jenvrad.2017.11.017, 2018.
Rytky, S. J. O., Tiulpin, A., Frondelius, T., Finnilä, M. A. J., Karhula, S. S., Leino, J., Pritzker, K. P. H., Valkealahti, M., Lehenkari, P., Joukainen, A., and Saarakkala, S.: Automating Three-Dimensional Osteoarthritis Histopathological Grading of Human Osteochondral Tissue Using Machine Learning on Contrast-Enhanced Micro-Computed Tomography, Osteoarthr. Cartil., 28, 1133–1144, https://doi.org/10.1016/j.joca.2020.05.002, 2020.
Sales, S. and Terraplus, C.: KT-10 v2 User Manual 2021, User's Guide ver. 2.1, https://pt.scribd.com/document/410478813/KT-10-User-Manual-GR (last access: 12 November 2025), 2021.
Sarmast, M., Farpoor, M. H., and Esfandiarpour Boroujeni, I.: Magnetic susceptibility of soils along a lithotoposequence in southeast Iran, Catena, 156, 252–262, https://doi.org/10.1016/j.catena.2017.04.019, 2017.
Schünemann, A. L., Almeida, P. H. A., Thomazini, A., Fernandes Filho, E. I., Francelino, M. R., Schaefer, C. E. G. R., and Pereira, A. B.: High-resolution topography for digital terrain model (DTM) in Keller Peninsula, Maritime Antarctica, Anais da Academia Brasileira de Ciências, 90, 2001–2010, 2018.
Shebl, A., Abdellatif, M., Hissen, M., Ibrahim Abdelaziz, M., and Csámer, Á.: Lithological mapping enhancement by integrating Sentinel-2 and gamma-ray data utilizing support vector machine: A case study from Egypt, International Journal of Applied Earth Observation and Geoinformation, 105, 102619, https://doi.org/10.1016/j.jag.2021.102619, 2021.
Siqueira, R. G., Veloso, G. V., Fernandes‐Filho, E. I., Francelino, M. R., Schaefer, C. E. G., and Corrêa, G. R.: Evaluation of machine learning algorithms to classify and map landforms in Antarctica, Earth Surface Processes and Landforms, 47, 367–382, 2022.
Siqueira, R. G., Moquedace, C. M., Francelino, M. R., Schaefer, C. E. G. R., and Fernandes-Filho, E. I.: Machine learning applied for Antarctic soil mapping: Spatial prediction of soil texture for Maritime Antarctica and Northern Antarctic Peninsula, Geoderma, 432, 116405, https://doi.org/10.1016/j.geoderma.2023.116405, 2023.
Sillitoe, R. H.: Porphyry copper systems, Economic Geology, 105, 3–41, 2010.
Souza, J. J. L. L., Schaefer, C. E. G. R., Abrahão, W. A. P., de Mello, J. W. V., Simas, F. N. B., da Silva, J., and Francelino, M. R.: Hydrogeochemistry of sulfate-affected landscapes in Keller Peninsula, Maritime Antarctica, Geomorphology, 155, 55–61, 2012.
Souza, A. B., Demattê, J. A. M., Bellinaso, H., de Mello, D. C., da Silva Lisboa, C. J., de Oliveira Mello, F. A., Marques, K. P. P., de Resende, M. E. B., Reis, J. V., and Mancini, M.: A sensors-based profile heterogeneity index for soil characterization, Catena, 207, 105670, https://doi.org/10.1016/j.catena.2021.105670, 2021.
Svensson, D. N., Messing, I., and Barron, J.: An investigation in laser diffraction soil particle size distribution analysis to obtain compatible results with sieve and pipette method, Soil and Tillage Research, 223, 105450, https://doi.org/10.1016/j.still.2022.105450, 2022.
Taylor, M. J., Smettem, K., Pracilio, G., and Verboom, W.: Relationships between soil properties and high-resolution radiometrics, central eastern Wheatbelt, Western Australia, Exploration Geophysics, 33, 95–102, 2002.
Turner, J., Colwell, S. R., Marshall, G. J., Lachlan-Cope, T. A., Carleton, A. M., Jones, P. D., Lagun, V., Reid, P. A., and Iagovkina, S.: Antarctic climate change during the last 50 years, International Journal of Climatology, 25, 279–294, 2005.
Turner, J., Overland, J. E., and Walsh, J. E.: An Arctic and Antarctic perspective on recent climate change, Int. J. Climatol. A J. R. Meteorol. Soc., 27, 277–293, https://doi.org/10.1002/joc.1406, 2007.
Vingiani, S., Agrillo, A., De Mascellis, R., Langella, G., Manna, P., Mileti, F. A., and Terribile, F.: Multi-sensor approach combined with pedological investigations to understand site-specific variability of soil properties and potentially toxic elements content of an industrial contaminated area, Applied Sciences, 12, 8393, https://doi.org/10.3390/app12083993, 2022.
Viscarra Rossel, R. A.: Fine-resolution multiscale mapping of clay minerals in Australian soils measured with near infrared spectra, Journal of Geophysical Research: Earth Surface, 116, F04023, https://doi.org/10.1029/2011JF001977, 2011.
Warrier, A. K., Sebastian, J. G., Amrutha, K., Yamuna Sali, A. S., Mahesh, B. S., and Mohan, R.: Magnetic Properties of Surface Sediments in Schirmacher Oasis, East Antarctica: Spatial Distribution and Controlling Factors, J. Soils Sediments, 21, 1206–1221, 2021.
Whitfield, J. M., Rogers, J. J. W., and Adams, J. A. S.: The relationship between the petrology and the thorium and uranium contents of some granitic rocks, Geochimica et Cosmochimica Acta, 17, 248–271, https://doi.org/10.1016/0016-7037(59)90099-7, 1959.
Wilford, J. and Minty, B.: The use of airborne gamma-ray imagery for mapping soils and understanding landscape processes, Developments in Soil Science, 31, 409–427, https://doi.org/10.1016/S0166-2481(06)31016-1, 2006.
Wilford, J. R., Thomas, M. A., and Minasny, B.: Modelling soil–regolith thickness in complex weathered landscapes of the central Mt Lofty Ranges, South Australia, in: Digital Soil Assessments and Beyond, edited by: Minasny, B., Malone, B. P., and McBratney, A. B., Taylor & Francis Group, London, UK, 69–75, 2012.
Wilford, J. R., Bierwirth, P. N., and Craig, M. A.: Application of Airborne Gamma-Ray Spectrometry in Soil/Regolith Mapping and Applied Geomorphology, AGSO J. Aust. Geol. Geophys., 17, 201–216, https://www.osti.gov/etdeweb/biblio/499123 (last access: 12 November 2025), 1997.
Wilford, J. R., Searle, R., Thomas, M., Pagendam, D., and Grundy, M. J.: A regolith depth map of the Australian continent, Geoderma, 266, 1–13, https://doi.org/10.1016/j.geoderma.2015.11.033, 2016.
Zhao, X., Zhao, D., Wang, J., and Triantafilis, J.: Soil organic carbon (SOC) prediction in Australian sugarcane fields using Vis–NIR spectroscopy with different model setting approaches, Geoderma Regional, 30, e00566, 2022.
Zhou, Y., Zhao, X., Guo, X., and Li, Y.: Mapping of soil organic carbon using machine learning models: Combination of optical and radar remote sensing data, Soil Science Society of America Journal, 86, 293–310, 2022.
Zhu, C., Wang, H., Li, S., Luo, Y., Xue, T., Song, Y., Qiu, A., and Liu, H.: Mineral magnetism variables as potential indicators of permafrost aggradation and degradation at the southern edge of the permafrost zone, Northeast China, Boreas, 50, 497–518, 2021.
Short summary
The study explores Maritime Antarctica's geology, shaped by periglacial forces, using pioneering gamma-spectrometric and magnetic surveys on igneous rocks due to limited Antarctic surveys. Machine learning predicts radionuclide and magnetic content based on terrain features, linking their distribution to landscape processes, morphometrics, lithology, and pedogeomorphology. Inaccuracies arise due to complex periglacial processes and landscape complexities.
The study explores Maritime Antarctica's geology, shaped by periglacial forces, using pioneering...