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Abstract. Maritime Antarctica (M.A.) contains the most ex-
tensive and diverse lithological exposure compared to the
entire continent. This lithological substrate reveals a rich
history encompassing lithological, pedogeomorphological,
and glaciological aspects of M.A., all of with are influ-
enced by periglacial processes. Although pedogeophysical
surveys can detect and provide valuable information to un-
derstand Antarctic lithologies and their history, such surveys
are scarce on this continent and, in practice, almost non-
existent. In this sense, we conducted a pioneering and com-
prehensive y-spectrometric (natural radioactivity) and mag-
netic susceptibility (k) survey on various igneous rocks. This
study aimed to improve the geoscientific understanding of
periglacial and pedogeomorphological processes in Keller
Peninsula by integrating radiometric and magnetic data with
advanced spatial analysis. It investigates the spatial variabil-
ity of natural radiouclides and magnetic susceptibility across
different substrates, evaluates a machine learning approach
for data modelling, and interprets y-ray and x maps to re-
veal soil and landscape-forming processes. For that, we used
proximal y-spectrometric and « data in different lithological
substrates associated to terrain attributes. The pedogeophys-
ical variables were collected in the field from various litho-
logical substrates, by use field portable equipment. The pe-
dogeophysical variables were collected in the field from var-

ious lithological substrates using portable equipment. These
variables, combined with relief data and lithology, served
as input data for modeling to predict and spatially map the
content of radionuclides and « by random forest algorithm
(RF). In addition, we use nested-LOOCYV as a form of ex-
ternal validation in a geophysical data with a small num-
ber of samples, and the error maps as evaluation of results.
The RF algorithm successfully generated detailed maps of
y-spectrometric and « variables. The distribution of radionu-
clides and ferrimagnetic minerals was influenced by mor-
phometric variables. Nested-LOOCV method evaluated al-
gorithm performance accurately with limited samples, gen-
erating robust mean maps. The highest thorium levels were
observed in elevated, flat, and west beach areas, where de-
trital materials from periglacial erosion came through flu-
vioglacial channels. Lithology and pedogeomorphological
processes-controlled thorium contents. Steeper areas formed
a ring with the highest uranium contents, influenced by
lithology and geomorphological-periglacial processes (rock
cryoclasty, periglacial erosion, and heterogeneous deposi-
tion). Felsic rocks and areas less affected by periglacial ero-
sion had the highest potassium levels, while regions with
sulfurization-affected pyritized-andesites near fluvioglacial
channels showed the lowest potassium contents. Lithology
and pedogeochemical processes governed potassium levels.
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The « values showed no distinct distribution pattern. Hy-
drothermal alteration affected the pyritized andesites, with
heat and magmatic fluids driving iron enrichment and the
formation of hydrothermal magnetite, which in turn led to
elevated « values. Conversely, Cryosol areas, experiencing
freezing and thawing activity, had the lowest k values due to
limited ferrimagnetic mineral formation. In regions charac-
terized by diverse terrain attributes and abundant active and
intense periglacial processes, the spatial distribution of geo-
physical variables does not reliably reflect the actual litho-
logical composition of the substrate. The complex interplay
of various periglacial processes in the area, along with the
morphometric features of the landscape, leads to the redis-
tribution, mixing, and homogenization of surface materials,
contributing to the inaccuracies in the predicted-spatialized
geophysical variables.

1 Introduction

Recently, proximal geophysical sensors have been used for
lithological-pedological characterization in other parts of the
world, where the provided information is used to under-
stand the lithosphere-pedosphere interaction and dynamics
in a geoenvironmental context (Bastos et al., 2023; Vingiani
et al., 2022). Pedogeophysics is the application of one or
more geophysical survey techniques to pedology to acquire
pedogeophysical variables, aiming to understand pedogene-
sis, soil attributes, their landscape distribution, and the re-
lationships between soil-forming factors and broader land
surface processes. Pedogeophysical surveys utilizing sensors
enabled the gathering of soil field information swiftly and ef-
ficiently, reducing the necessity of sample collection for lab-
oratory analysis (Souza et al., 2021; Mello et al., 2020, 2021,
2023a, b). Among the geophysical techniques used for litho-
logical surveys, radiometric (y-ray spectrometry) and mag-
netic (magnetic susceptibility) stand out.

Gamma-spectrometry involves the quantification uranium
(e*38U), thorium (e?2Th), and potassium (*°K) commonly
called (radionuclides) in naturally radioactive rocks, soils,
and sediments (Minty et al., 1997). The quantities of these
radionuclides are influenced by various factors such as litho-
logical substrate and surface processes (weathering, pedo-
genesis, geomorphological, and periglacial) (Navas et al.,
2018). Dickson and Scott (1997), Wilford and Minty (2006)
and Mello et al. (2021) have shown that radionuclide con-
tents depend not only on the soil parent material but also on
surface processes. Proximal y-ray spectrometry offers a pre-
cise method for determining concentrations of specific ra-
dioactive elements and mapping their sources accurately in
soil, bedrock, and surface geological exploration (Ford et al.,
2008).

Geosci. Model Dev., 18, 8949-8972, 2025

Magnetic susceptibility (k) quantifies the degree of mag-
netization induced in a material relative to the strength of the
applied magnetic field (Mullins, 1977). In soils, « is primar-
ily controlled by ferrimagnetic minerals either inherited from
lithological substrates or formed through weathering and pe-
dogenesis, typically occurring as magnetite in the sand frac-
tion and maghemite in the clay fraction (Ayoubi et al., 2018).
In addition, the surface processes a role in determining « val-
ues (Garankina et al., 2022; Mello et al., 2020; Ribeiro et al.,
2018; Sarmast et al., 2017).

Many studies used y-ray spectrometry mapping to delin-
eate lithological maps (Arivazhagan et al., 2022; Loiseau
et al., 2020; Shebl et al., 2021) and magnetic susceptibility
(Bressan et al., 2020; Costa et al., 2019; Harris and Grun-
sky, 2015). In addition, recently Mello et al. (2020, 2021,
2022a, b, c) have successfully used machine learning algo-
rithms combined with data from multiple field geophysical
equipment to map pedogeophysical variables and understand
tropical soils, lithology and landscapes, obtaining satisfac-
tory results in mapping and understanding these landscapes
using modeling via machine learning algorithms.

Maritime Antarctica (MA) is currently a great geosciences
frontier to be explored in pedogeophysical studies in with
its complex and heterogeneous landforms and lithological
characteristics. MA has a different climate from continental
Antarctica, being hotter and more humid (Turner et al., 2007,
2005). In this region, periglacial environments are abun-
dant and ruled by seasonal cycles of water freezing-thawing,
which determine the specific landforms, permafrost and typ-
ical soils (French, 2017; Pollard, 2018). The MA lithology
is predominantly composed of igneous rocks and a few sed-
imentary rocks. This complex lithological system associated
with climatic conditions produces heterogeneous soils, sed-
iments and saprolites, forming a unique geoenvironment on
the planet (Meier et al., 2023; Siqueira et al., 2022).

Traditionally geoscientists use invasive, destructive and
time-consuming techniques for lithological and pedological
characterization in natural systems, employing sample col-
lection for physical-chemical and mineralogical analysis in
the laboratory. Besides, the lack of detailed characteriza-
tion of samples in the field demands a high collection of
samples. In Antarctica, material collection is limited by a
lack of logistics and restricted access to a small number of
researchers who sample on the continent. While geophys-
ical survey techniques are well-established and commonly
utilized in research, only a few studies have demonstrated
their use, specifically y-ray spectrometry and magnetic sus-
ceptibility, for characterizing and understanding periglacial
landscapes such as MA (Mello et al., 2023a). This scarcity
of studies is particularly evident in the Antarctic environ-
ment, where hostile and inaccessible conditions have lim-
ited pedogeophysical characterization such as y spectrom-
etry and magnetic susceptibility mapping, and their correla-
tion with periglacial processes and landforms. Fieldwork lo-
gistics in such extreme geoenvironmental settings are inher-
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ently challenging. Consequently, acquiring in situ pedogeo-
physical data can support more accurate inferences about the
lithological, mineralogical, and pedological characteristics of
the terrain, reducing the need for extensive sample collection
and laboratory analysis. This approach is especially valuable
when utilizing diverse sensor technologies in remote and sen-
sitive environments.

Given the above, this study aimed to enhance the geosci-
entific understanding of periglacial and pedogeomorpholog-
ical processes in Keller Peninsula (Maritime Antarctica) by
integrating radiometric and magnetic surficial data with ad-
vanced spatial analysis techniques. Specifically, we sought
to: (i) investigate how natural radioactivity (338U, 2327,
and “°K) and magnetic susceptibility (k) vary across het-
erogeneous lithological and pedological substrates and how
they reflect underlying geomorphic and periglacial dynam-
ics; (ii) evaluate the performance of a machine learning al-
gorithm, combined with the Nested Leave-One-Out Cross-
Validation method, in modeling and spatializing pedogeo-
physical surface data; (iii) use the generated y-ray ternary
and « maps as tools to interpret and reveal spatial patterns
related to soil development, rock weathering, and cryogenic
processes in the study area.

This study can improve our understanding about
periglacial processes, which can improve pedogeophysical
surveys and soil-lithological digital mapping in the Antarc-
tic environment. This expectation is based on research that
has focused on comprehending lithological characteristics,
periglacial processes and landscape evolution in Antarctic
pedosphere-lithosphere interactions.

2 Material and methods

2.1 Study area, lithological-soil surveys and sampling
points

The study site comprises Keller Peninsula (62°4'33”S,
58°23’46” W), Admiralty Bay, King George Island, and in
the South Shetland Archipelago in M.A. (Fig. 1). The Keller
Peninsula covers an area of 500 ha, stretching 4 km (north—
south) and 2km (east—west) (Francelino et al., 2011). The
geological framework of Keller Peninsula (Admiralty Bay,
King George Island) was characterized based on the vol-
canic stratigraphy described by Birkenmajer (1980) and sub-
sequent revisions of the volcanic geology of Admiralty Bay.
The peninsula is composed predominantly of Tertiary vol-
canic sequences, representing three major eruptive cycles as-
sociated with caldera collapse and subsequent migration of
volcanic centers. Field descriptions and petrographic data
indicate the dominance of basaltic-andesitic to andesitic
lithologies, locally pyritized, with phenocrysts of labradorite-
andesine plagioclase and accessory pyroxenes. These litho-
logical features, combined with the caldera structure and
stratigraphic relations to Ullman Spur and Point Hennequin,
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were used to establish the geological context of the study
area, ensuring a robust framework for subsequent soil, geo-
morphological, and pedogeophysical analyses.

We used the most detailed comprehensive lithological map
of Admiralty Bay and its surroundings produced by British
geologists stationed at Base G on Keller Peninsula between
1948 and 1980 (Birkenmajer, 1980), at a scale of 1:50 000.
The geological framework of the area is linked to volcanic
activity involving transitional magmas between the oceanic
crust and the Antarctic Plate, generating basaltic to andesitic
lavas, pyroclastic deposits, volcanic tuffs, and hypabyssal in-
trusions, dated from the Upper Cretaceous to the Oligocene
(Pride et al., 1990). Overall, the lithology of Keller Peninsula
is dominated by igneous rocks, including andesitic-basalts,
basaltic-andesites, diorites, pyritized-andesites, and tuffites,
as well as undifferentiated Quaternary deposits comprising
local material and sediments reworked by marine erosion
(Fig. 2A). Marine terraces characterize the lower landscape,
while andesitic-basalts and basaltic-andesites predominate in
the upper sectors. Pyritized-andesites occur in various topo-
graphic positions, tuffites typically occupy intermediate ele-
vations, and diorites appear sporadically in isolated outcrops.
These data supported the interpretation of bedrock as a key
soil-forming factor, particularly in the mobilization and spa-
tial distribution of radionuclides (**U, 232Th, and “°K) in
surface soils. The mineralogical composition of the parent
material, especially the presence of Fe-bearing silicates and
accessory minerals, influenced the geochemical dynamics of
secondary ferrimagnetic mineral formation and the inheri-
tance of primary minerals. The spatial relationship between
sampling points and lithological boundaries was assessed us-
ing a detailed lithological map, revealing distinct geological
compartments corresponding to variations in landscape re-
lief.

The weather in Maritime Antarctica follows a typical
pattern, albeit slightly warmer, as outlined by Rakusa-
Suszczewski (2002). Summer (December—March) temper-
atures average around -+1.6°C, whereas winter (June—
September) temperatures drop to an average of —5.3°C
(INPE, 2009). Annual precipitation is around 400 mm. The
Keller Peninsula spans elevations between 0 and 380m
above sea level, featuring a diverse topography from flat
to steep (slopes ranging from O to 75 %). This region
is characterized by various landforms like moraines, pro-
talus, inactive rock glaciers, uplifted marine terraces, and
Felsenmeer. These lithological features have formed due to
both paraglacial and periglacial conditions, as discussed by
Francelino et al. (2011).

The lower portions of the landscape consist mainly of ma-
rine terraces. At intermediate elevations, lithified pyroclastic
deposits, known as tuffites, are predominant. These tuffites
are characterized by volcanic glass shards, plagioclase, and
pyroxene crystals, as well as lithic clasts embedded in a fine
ash matrix. They frequently exhibit varying degrees of al-
teration, including chloritization and sericitization, and may
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Figure 1. Study area in Maritime Antarctic (Keller Peninsula), collected point, digital elevation model, and geophysical sensors. (a) Antarctic
continent; (b) Keller Peninsula. (A) Gamma-ray spectrometer (Radiation Solution — RS 230); (B) Magnetic susceptibility meter (KT-10
Terraplus); (C) Gamma-ray readings; (D) Magnetic susceptibility readings.

be cemented by secondary silica or calcite (Nawrocki et al.,
2021).

Above the tuffites, extensive outcrops of andesitic-basalts
and basaltic-andesites dominate the upper landscape. These
volcanic rocks primarily consist of labradorite-andesine phe-
nocrysts set within a groundmass of plagioclase, volcanic
glass, and clinopyroxene (Nawrocki et al., 2021). Scattered
throughout these units are occurrences of pyritized andesites,
which have undergone significant post-magmatic hydrother-
mal alteration. This alteration transformed primary plagio-
clase and pyroxene into secondary minerals such as chlo-
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rite, albite, carbonate, and quartz. Additionally, quartz—pyrite
mineralization developed within these andesites (Birkenma-
jer, 1980).

Less abundant and restricted to specific localized zones,
diorite outcrops occur notably on Keller Peninsula. These
diorites are composed mainly of plagioclase (andesine to
labradorite), hornblende, and minor biotite, with accessory
minerals such as magnetite, apatite, titanite, and zircon. The
texture is generally coarse-grained and equigranular (Birken-
majer, 1980; de Morisson Valeriano et al., 2008).
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Figure 2. The maps indicated: (A) Lithology (adapted from Birkenmajer, 1980). (B) Soil classes: The lithological and soil classes maps were

adapted from Francelino et al. (2011).

Soil classification and mapping were carried out by an ex-
perienced pedologist, using 20 representative soil profiles.
The overall soil development in the area is limited, and ac-
cording to the World Reference Base for Soil Resources
(WRB) (FAO, 2014), the soils in the region can be cate-
gorized into various types, including Gelic Eutric Leptosol,
Gelic Skeletic Regosol, Gelic Skeletic Cambisol, Gelic Lep-
tic Regosol, Gelic Dystric Fluvisol, Arenic Skeletic Cryosol,
Vitric Leptic Cryosol, Gelic Leptic Cambisol, and Arenic
Turbic Cryosol, as illustrated in Fig. 2B. The occurrence of
permafrost was observed the first two meters below the soil
surface in five soil profiles. Additionally, it is discontinuously
found within the first two meters in regions with mid-slope
and flat topography, all of which are classified as Cryosols
(Francelino et al., 2011; Mello et al., 2023a). Within each
soil profile, samples were meticulously collected from iden-
tified diagnostic soil horizons at various soil depths to facili-
tate subsequent physico-chemical analyses.

The sampling design and the selection of measurement lo-
cations were conducted while considering mainly 5 topos-
sequences (topographic gradients) that account for various
lithologies and soils. The distribution of collection points by
the proximal y-ray and magnetic susceptibilimeter is shown
in Fig. 1. The readings with the sensors were carried out, tak-

https://doi.org/10.5194/gmd-18-8949-2025

ing into account the lithological diversity of the Peninsula, as
well as pedological diversity and variations in relief.

2.2 Pedogeophysical survey, radiometric and «
characterization

The pedogeophysical variables (radiometric and «), were
collected using proximal geophysical sensors, RS-230 and
KT-10 Terraplus, respectively (Fig. 1A and B, respectively).
The radiometric data (y-ray spectrometry) correspond to the
acquisition of radionuclide contents eU, eTh and 40K, quan-
tified in ppm (eU and eTh) and % for “°K. Magnetic sus-
ceptibility is given in 1073 SI units and the sensor is able
to detect mean k values to a depth of 2cm below the rock
outcrops surface (Sales and Terraplus, 2021). Detailed cali-
bration methods, method of collection and interpretation of
results can be found in (Mello et al., 2021, 2022a, b).
Gamma spectrometric readings (Fig. 1C) were taken on
the rock outcrop surface and soil depth (saprolite/rock), at the
91 collection points shown in Fig. 1, in “essay mode”, which
provides greater precision, and the reading time was adjusted
to 3 min at each point. The sensor is able to detect radiation
up to a mean depth of 30-60 cm depending on the charac-
teristics of the substrate (Beamish, 2015; Taylor et al., 2002;
Wilford et al., 1997). Subsequently, the equipment data were
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transferred to a computer and concatenated with soil k values
and environmental data (lithology and terrain attributes).

Similarly, the « survey readings (Fig. 1D) was undertaken
at each of the 87 points to a mean depth of 2 cm below the
rock outcrops surface and soil depth (saprolite/rock). Three
readings were taken for each point to reduce sensor noise and
increase the precision reading and, the k mean values of these
three readings were used in data processing. The resulting «
data were then combined with their respective y-ray spec-
trometric data, lithology and terrain attributes in order to be
processed.

All readings were carried out in different lithological-
pedological compartments, with emphasis on in situ mate-
rials (igneous rocks), despite of the little presence of marine
terraces with presence of external materials.

It is important to highlight that only 87 points with geo-
physical sensors were taken on pedological substrates. Fur-
thermore, these few points are found in soils with little pe-
dogenetic evolution, characterized by a high content of rock
fragments and a predominance of the coarse fraction com-
posed of cryoclastic rocks (many with a skeletal charac-
ter). Additionally, where there was soil, we opened a small
trench and carried out geophysical readings at the base of
the soil profiles, in direct contact with the rock. As a re-
sult, we do not have enough number of points to carry out
an analysis to identify differences between surface geophys-
ical variables and pedological substrates. Therefore, we con-
sider these points as readings carried out on the lithological
substrate.

2.3 Digital Elevation Model

Geoprocessing and Digital Elevation Model (DEM) analy-
sis were conducted utilizing R software version 4.10 version
(R Core Team, 2023), employing data derived from a High-
Resolution Topography (HRT) survey to create the DEM
(Fig. 1). The HRT survey, conducted during the 2014/2015
and 2015/2016 periods, utilized a Terrestrial Laser Scanner
(TLS) of the RIEGL VZ-1000 model, known for its nominal
accuracy and precision of 8 and 5 mm, respectively (Schiine-
mann et al., 2018). This advanced sensor and geoprocess-
ing methodology yielded a low root mean square error and
a high number of points per cell, resulting in a densely pop-
ulated point cloud. This dataset facilitated a comprehensive
generalization process to generate surface models with supe-
rior performance, accurately representing local relief. This,
in turn, enabled in-depth studies of landscape evolution at a
micro scale over time, specifically allowing for the assess-
ment of pedogeomorphological processes.

Using the R software (R Core Team, 2023), a total of forty-
eight additional topographic attributes were computed based
on the DEM data extracted from the Digital Terrain Model
(DTM) (Table 1). These attributes were derived using the uti-
lization of the “Rsaga” tool (Brenning, 2008) and the “raster”
package (Hijmans and Van Etten, 2016).

Geosci. Model Dev., 18, 8949-8972, 2025
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2.4 Modeling processes and statistical analysis

The point values of eU, eTh, K* and «, linked with ter-
rain attributes, soil type, lithology, and RGB (Table 1), were
utilized to modeling these variables for other areas, employ-
ing the Random Forest (RF) algorithm. The modeling pro-
cess comprises two main steps: covariate selection and model
tuning/performance evaluation. During the covariates the se-
lection phase, the algorithm aims to generate an optimal set
of covariates, adhering to the principle of parsimony. This
involved two sequential methods, we initially removed self-
correlated variables and subsequently assessed the impor-
tance of the remaining variables.

Initially, to assess the correlation between variables, we
used a Spearman correlation cut-off limit > |0.95|. We elimi-
nated one variable from each pair showing correlations above
the established threshold. To decide which variable to re-
move, we selected the one with the highest sum of absolute
correlations with the remaining covariates in the dataset. To
carry out this phase, we employed the “cor” and “findcorrela-
tion” functions from the “stats” (Hothorn, 2021) and “caret”
(R Core Team, 2020) packages in the R software, respec-
tively (Kuhn and Johnson, 2013). The covariates that suc-
cessfully passed this selection phase were combined with the
samples and, subsequently, the samples were separated into
training and test sets.

To partition the data into training and test subsets, we
adopted the “nested leave-one-out cross-validation” (nested
LOOCYV) method (Ferreira et al., 2021; Paes et al., 2022; Ry-
tky et al., 2020). It is noteworthy that the number of samples
and readings obtained from geophysical sensors was lim-
ited (92) due to various challenges encountered during data
collection in the field (e.g., sloping terrain, high hazard ar-
eas, glaciers, steep terrain, snowbanks, etc.). Given the small
sample size, the nested LOOCV method was chosen, as this
method has already been recommended by other authors in
similar cases (Ferreira et al., 2021; Mello et al., 2022a, b, ¢).
This particular approach represents a significant innovation
in our research.

The nested LOOCV approach involves a double looping
process. In the first loop, the model is trained on a dataset of
size n — 1, and in the second loop, testing is performed us-
ing the omitted sample to evaluate the training performance
(Jung et al., 2020; Neogi and Dauwels, 2019; Mello et al.,
2025). The final machine learning algorithm performance re-
sults are calculated as average performance indicators across
all points (training/testing). This method proves to be robust
in evaluating the real generalization ability of the algorithm
and in identifying possible problematic samples or outliers
in the data set. Each iteration generates a training set that
undergoes covariate selection by importance and subsequent
training.

The covariate selection based on importance is executed
using the backward-forward method, employing the Recur-
sive Feature Elimination (RFE) function available in the

https://doi.org/10.5194/gmd-18-8949-2025
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Table 1. Terrain attributes generated from the digital terrain model, geology, soil and spectral indices.

Terrain attributes, geology and ~ Abbreviations  Brief description
spectral indices

Aspect AS Slope orientation

Blue Band B The blue band wavelengths fall below 1546.12 nm.

Green Band G BA primary wavelength of 495-570 nm approximately

Red Band R The longer wavelengths of 1546.12 nm and higher

Curvature classification CC Curvature classification

Convergence index CI terrain parameter which shows the structure of the relief as a set of convergent

areas (channels) and divergent areas (ridges).

Difference D Geometric difference of the overlayed polygon layers

Diurnal anisotropic heating DAH Continuous measurement of exposure-dependent energy

Easterners EA Degree of orientation of a slope toward the east

Flow Line Curvature FLC Represents the projection of a gradient line onto a horizontal plane

General curvature GC The combination of both plan and profile curvatures

Lithology GEO Rocks and similar substances that make up the earth’s surface

Hill shade HI A technique where a lighting effect is added to a map based on elevation
variations within the landscape.

Digital elevation model DEM Representation of the bare ground (bare earth) topographic surface of the Earth
excluding trees, buildings etc.

Effective air flow heights EAFH A line representing the resultant velocity of the disturbed airflow

Longitudinal curvature LC Measures the curvature in the downslope direction

Mass balance index MBI Multivariate distance methods for geomorphographic relief classification

Maximal curvature MAXC Maximum curvature in the local normal section

Mid-slope position MSP Represents the distance from the top to the valley, ranging from O to 1

Minimal curvature MINC Minimum curvature for the local normal section

Morphometric Protection Index =~ MPI Measure of exposure/protection of a point from the surrounding relief

Multiresolution index of ridge MRRTF Indicates flat positions in high-altitude areas

top flatness

Multiresolution index of valley = MRVBF Indicates flat surfaces at the bottom of valley
bottom flatness

Normalized Difference NDVI Remote sensing techniques used to assess the health and density of vegetation.
Vegetation Index

Normalized height NH Vertical distance between base and ridge of normalized slope
Northerns NO Means in or from the north of a region
Ridge level RL The maximum vertical distance between the finished floor level and the

finished roof height directly above.

Slope S Represents local angular slope
Slope height SH Vertical distance between the base and the ridge of slope
Slope Index SI Represents the local angular slope index
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Table 1. Continued.

Terrain attributes, geology and ~ Abbreviations  Brief description

spectral indices

Solrad Diffusel SolDiffusel Diffuse insolation for the month of January

Solrad Diffuse2 SolDiffuse2 Diffuse insolation for the month of July

Solar total radiation SolTR Insolation duration for the month of January

Solrad Directl SolDiret1 Direct insolation for the month of January

Solrad Direct2 SolDiret2 Direct insolation for the month of July

Solrad Ration1 SolRation1 Ratio between direct insolation and diffuse insolation for the month of January

Solrad Ration2 SolRation2 Ratio between direct insolation and diffuse insolation for the month of July

Soil S Soil body as triphasic system

Sky view factor SVF Defines the ratio of sky hemisphere visible from the ground

Standardized height STANH Vertical distance between base and standardized slope index

Tangential curvature TANC Measured in the normal plane in a direction perpendicular to the gradient

Terrain ruggedness index TRI Quantitative index of topography heterogeneity

Terrain surface convexity TSC Ratio of the number of cells that have positive curvature to the number of all
valid cells within a specified search radius

Terrain surface texture TST Splits surface texture into 8, 12, or 16 classes

Total curvature TC General measure of surface curvature

Total insolation TSR The amount of solar energy that strikes a given area over a specific time,

Topographic openness TO Expresses the dominance (positive) or enclosure (negative) of a landscape
location.

Topographic position index TPI Difference between a point’s elevation and surrounding elevation

Valley depth VD Calculation of vertical distance at drainage base level

Valley VA Calculation of fuzzy valley using the Top Hat approach

Valley Index VA Calculation of fuzzy valley index using the Top Hat approach

Vector ruggedness index VRI Measure terrain ruggedness as the variation in three-dimensional orientation

Topographic wetness index TWI Describes the tendency of each cell to accumulate water as a function of relief

Wind exposition WE The average of wind effect index for all directions using an angular step

“caret” package (Kuhn and Johnson, 2013). This RFE tech-
nique is algorithm-specific and yields an optimal set of co-
variates utilized in predicting the final model for each re-
spective algorithm (Moquedace et al., 2024). RFE is a selec-
tion procedure that iteratively removes variables contributing
the least to the model, employing an importance measure tai-
lored to each algorithm (Kuhn and Johnson, 2013).

The algorithm is then trained on discrete subsets of vari-
ables, going from 2 to the total variables one by one. The
ideal subset of covariates is optimized based on the leave-
one-out cross-validation (LOOCYV), for each of the inter-
nal hyperparameters of the tested algorithms (10). The hy-
perparameters for each algorithm are described in the caret

Geosci. Model Dev., 18, 8949-8972, 2025

package manual, Chap. 6, “Described Models”, available at
https://topepo.github.io/caret/train-models-by-tag.html (last
access: 11 November 2025). The Mean Absolute Error
(MAE) was used as a metric to select the best subset for the
RF algorithm.

Training is then performed using the previously selected
variables and tested with LOOCYV. Additionally, ten values
of each RF hyperparameter were evaluated. At the end of
the training phase, predictions are made on samples not used
in the training process, and the results are saved for per-
formance analysis. The assessment of algorithm predictions
and sensor sets is carried out using a collection of samples
from the outer loop within the nested Leave-One-Out Cross-

https://doi.org/10.5194/gmd-18-8949-2025
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Validation (LOOCV) method. Three key evaluation parame-
ters are utilized: Concordance Correlation Coefficient (CCC)
(Eq. 1), Root Mean Square Error (RMSE) (Eq. 2), and Mean
Absolute Error (MAE) (Eq. 3) (Lin, 1989).

2poyoy
po=———— > (1)
02+ 024 (e — 1y)

Where: n represents the number of samples; p is the corre-
lation coefficient between the two variables; u, and w, are
the means for the two variables; axz and a)z, are the corre-
sponding variances; P; and O; represent the predicted and
observed values at location i.

1 2
RMSE = \/ ~ % > (Qabs = Qprea) ©)
1
MAE = n X Z | Opred — Qobs| 3
Where:  Qpreg =the mean of the training samples;

Qobs; =the validation sample; n=number of samples
(loop).

As additional validation, we used the “null model” ap-
proach (NULL_RMSE and NULL_MAE). This null model
involves using the mean value determined from the collected
samples (Egs. 4 and 5). The null model represents the sim-
plest possible model when given a training set, providing a
single average value for numerical results.

The null model serves as a reference and can be seen
as the simplest adjustable model. Any other models that
present similar or inferior performances in relation to the
null model must be discarded. This indicates that the final
model outperforms the use of average values, highlighting
its superior quality in model creation. Furthermore, the null
model approach is widely employed, especially in spatial-
ization processes such as kriging, where the variable under
consideration exhibits spatial dependence, often called the
pure nugget effect. The equations used for NULL_RMSE
and NULL_MAE calculations are as follows:

1
2

1 N 2
NULL_RMSE = [ﬁzi:  (Quain; — Qobs;) } “)
1 [
NULL_MAE = = x ¥ " [Quzain; — Qobs;| )
n
Where:  Qgain=the mean of the training samples;

Qobs; =the validation sample; n=number of samples
(loop).

The NULL_RMSE and NULL_MAE values were com-
puted using the nullMode function within the caret package
(R Core Team, 2020). To assess the overall performance of
the algorithms for each attribute, a total of 87 loops were
conducted. The training results represent the average perfor-
mance, and the test sample results were calculated from the
87 outer loops using Egs. (1), (2), and (3).
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Eighty-seven maps were predicted, yielding one map for
each execution of the outer loop in the nested Leave-One-Out
Cross-Validation (LOOCYV). Coefficient of Variation (CV)
was calculated for each pixel across the 87 stacked maps.
Additionally, a coefficient of variation map (CV% = standard
deviation/mean) was generated to illustrate the variation of
predicted values in each pixel of the map relative to the mean.
Spatial predictions exhibiting lower CV indicate more con-
sistent results, thereby resulting in smaller errors in the esti-
mation/predictions and reduced uncertainty.

The statistical differences between the pedogeophysical
variables and lithology substrates were analysed by using the
Kruskal-Wallis and Dunn’s posthoc tests with a significance
level of 5 %.

3 Results and discussion
3.1 Model’s performance and variables’ importance

The Random Forest (RF) algorithm was employed to pre-
dict y-ray data and magnetic susceptibility of the substrate,
enabling the production of ternary y-ray and x maps (Ta-
ble 2). The Concordance Correlation Coefficient (CCC) val-
ues ranged from 0.771 to 0.851 (Table 2). The CCC is a
modified version of the coefficient of determination (Rz);
in addition to measuring the strength of correlation, it also
assesses how closely the model predictions align with the
1:1 line (a 45° line from the origin). This feature makes the
CCC a robust metric for evaluating both the precision and
accuracy of predictions (Svensson et al., 2022; Zhao et al.,
2022). Unlike the Pearson correlation coefficient, the CCC
can detect systematic bias in model outputs. This key distinc-
tion makes it a more appropriate choice for model validation
than R2 (Khaledian and Miller, 2020). In recent geoscience
studies, CCC has been effectively used to assess the perfor-
mance of machine learning algorithms (Chen et al., 2019a,
b; Feng et al., 2019; Khosravi et al., 2018; Mishra et al.,
2022; Siqueira et al., 2023; Zhou et al., 2022). In addition,
the nested-LOOCV methodological framework was better
than NULL-model (Table 2), for prediction of radionuclides
and magnetic susceptibility with a limited number of sam-
ples. This approach consistently generated comparable maps
across loops, where 87 samples were utilized for training in
each loop, and at the conclusion of the process, all samples
were used as the test dataset. As a result, the models and/or
coefficients of variation in the maps were similar (Ferreira et
al., 2021).

The importance of covariates in predicting pedogeophys-
ical variables revealed that morphometric attributes such as
minimal curvature (MINC), mid-slope position (MSP), di-
urnal anisotropic heating (DAH), difference (D), total inso-
lation (TSR), flow line curvature (FLC), effective air flow
heights (EAFH), terrain surface convexity (TSC), hill shad-
ing (HI), aspect (AS), mass balance index (MBI), ridge
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Table 2. Model’s performance in terms of Concordance Correla-
tion Coefficient (CCC), Root Mean Squared Error (RMSE), Mean
Absolute Error (MAE), NULL_RMSE and NULL_MAE.

Parameters of model’s RF Algorithm

performance eU eTh 40 K
CCC 0.771 0.851 0.817  0.809
MAE 0496 1.784 0.497 11.898
RMSE 0.680 2432 0.646 15.469
NULL_RMSE 0.652 2457 0502 12.224
NULL_MAE 0463 1.818 0.502 15.651

level (RL), digital elevation model (DEM) minimal curvature
(MINC), and convergence index (CI) were the most influen-
tial, collectively contributing to over 50 % of the reduction in
mean prediction error (Fig. 3). In contrast, lithological vari-
ables contributed less significantly, accounting for less than
50% of the predictive importance (Fig. 3). Similar results
were reported by Cracknell and Reading (2014), Harris and
Grunsky (2015), and Kuhn et al. (2018), who also achieved
satisfactory performance using the RF algorithm to predict
radionuclide content and magnetic susceptibility for litholog-
ical mapping. In addition, the Red Band (R) and Green Band
(G) were found to be important for predicting “°K concen-
trations in more than 75 % (Fig. 3). In periglacial Antarctic
environments characterized by shallow soils, rugged terrain,
sparse vegetation, and exposures of mafic and felsic igneous
rocks (Francelino et al., 2011), VIS-NIR reflectance predom-
inantly captures variations in surface mineralogy and soil ex-
posure. Landscape dynamics such as erosion and deposition
are largely controlled by relief (Viscarra Rossel, 2011). At
our study site, exposed mineral surfaces on steep slopes and
weathered areas exhibit strong red band reflectance, making
this spectral band a valuable proxy for modelling the spa-
tial distribution of “°K when integrated with topographic and
lithological data within machine learning frameworks.

3.2 Radionuclides and « contents on lithological
compartments and their relationship with
mineralogy

The eU mean content was generally low and showed the
greatest variation on the lithologies (Fig. 4). The highest eU
mean content values were observed on tuffites and the lowest
on andesitic-basalts (Fig. 4). The diorite presented the high-
est mean eTh contents, while the andesitic-basalts showed
the lowest one. Regarding the K, the mean values were
high in all lithologies (> 1 %) excepted on pyritized-andesite
(Fig. 4). However, the observed “°K were low compared to
those of continental crust rocks (plutonic, metamorphic and
sedimentary. According to literature these values are con-
sistent with the average of oceanic crust rocks, which are
predominantly basaltic. The highest “°K contents were ob-
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served on diorite, and the lowest one on pyritized-andesite
(Fig. 4). The mean « values ranged from moderate to low
in all lithologies, where pyritized-andesites showed the high-
est mean values and tuffites the lowest (Fig. 4). The descrip-
tive statistics for radionuclides and « content for all litholog-
ical units are shown in Table 3, and corroborates and com-
plements the information provided in Fig. 4 in quantitative
terms.

In our study area, the high variability in eU content
and/or the relatively low concentrations observed in basic—
intermediate igneous rocks (Fig. 4, Table 3) can be primar-
ily explained by the fact that uranium and other radionu-
clides are typically concentrated during the late stages of
magmatic crystallization. As a result, mafic rocks, which
crystallize earlier in the magmatic sequence, are expected
to exhibit lower radionuclide contents (Ragland et al., 1967;
Whitfield et al., 1959). In addition, according to Wilford and
Minty (2006) and Wilford et al. (1997), the mean contents
of radionuclides in the Earth crust vary to 2.3 %, 3 ppm and
12 ppm, for 4°K, uranium and thorium, respectively, similar
to the values observed in our study site.

The ¢Th and *°K contents tended to increase with an in-
crease in the silicon content in our lithology composed by
igneous rocks (from andesitic-basalts to diorite) (Fig. 4, Ta-
ble 3). Our results are corroborated by Dickson and Scott
(1997) and Mello et al. (2023b), who found an increasing in
¢Th and “°K contents in acid-felsic igneous rocks and lower
levels in basic-mafic igneous rocks. It is noteworthy that
the undifferentiated sediments receive materials from various
parts of the Peninsula and from outside it, in which case it is
not appropriate to use this lithology for radionuclides com-
parison purposes. Most of the y-ray radiation detected and
quantified by the sensor originates from the first 45-60 cm
of the dry substrate (rocks, soils and sediments), which the
mineralogy and geochemistry of the substrate presented the
greater contribution to radionuclides contents (Gregory and
Horwood, 1961). In addition, Earth surface processes and
landforms such as chemical weathering, pedogenesis and re-
lief affect radionuclide contents, since “°K content decreases
with weathering advance once it is removed by destruction
of feldspars. Also, “°K is not incorporated in secondary min-
erals, so it is leached, whereas Th composes highly resis-
tant minerals, such as ilmenite and zircon. Consequently, Th
content increases with weathering (Dickson and Scott, 1997;
Wilford et al., 1997b; Mello et al., 2021, 2022a, 2023c¢). De-
spite this, physical weathering in this environment associated
with periglacial processes (governed by cycles of freezing
and thawing of water in the different portions and types of
substrates) should not be neglected, since during these pro-
cesses, radionuclides are redistributed in the landscape.

The low mean k values were not expected on ba-
sic mafic igneous lithologies (basaltic-andesite, andesitic-
basalts) (Fig. 4, Table 3), since there is a great probabil-
ity to these rocks present more abundance of ferrimagnetic
minerals in the rock. According to Mullins (1977) increas-
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Figure 4. Boxplot with descriptive statistics of the distribution of radionuclide contents and magnetic susceptibility by lithology. Lowercase
letters to the right of the boxplot bars indicate statistical differences as determined by the Kruskal-Walli’s test.

ing in ferrimagnetic mineral contents in the substrate re-
sults in increases in « values. The relatively low « val-
ues in the basaltic-andesite and andesitic-basalt substrates
may be attributed to the combined influence of the Antarc-
tic cold climate, limited water availability, and slow pedo-
genesis, which favor the formation of amorphous or poorly
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crystalline iron oxides, even in lithological substrates with
sufficient iron content, such as ferrihydrite, rather than well-
crystalline magnetite or maghemite. Despite this, « values
remains highly heterogeneous, except for the tuffites, no sta-
tistically significant differences were observed among the
other lithologies, including the marine terraces. Regarding
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Table 3. Descriptive statistics for the analyzed radionuclides and « by lithology.

D. C. D. Mello et al.: Proximal surface pedogeophysical characterization in Maritime Antarctica

Diorites

Summary Statistics

Radiometric and magnetic susceptibility

eU(mgkg™!) eTh(mgkg™!) 4K (%) « (1073 SIunits)
Mean 1.27 8.85 2.10 18.54
Standard deviation 0.62 3.01 0.74 13.72
Minimum 0.50 3.30 0.60 0.13
Maximum 2.50 13.7 3.20 49.0
Tuffites

Summary Statistics

Radiometric and magnetic susceptibility

eU(mgkg™!) eTh(mgkg™!) 4K (%) « (1073 SIunits)
Mean 1.63 6.62 1.41 4.73
Standard deviation 0.55 1.96 0.53 7.18
Minimum 1.00 3.20 0.80 0.04
Maximum 3.20 11.9 2.90 27.33

Andesitic-basalts

Summary Statistics

Radiometric and magnetic susceptibility

eU(mgkg™!) eTh(mgkg™!)) 4K (%) « (1073 SIunits)
Mean 0.99 5.72 1.26 21.0
Standard deviation 0.41 1.44 0.17 15.0
Minimum 0.20 2.90 1.00 3.56
Maximum 1.40 7.20 1.50 50.4

Basaltic-andesites

Summary Statistics

Radiometric and magnetic susceptibility

eU(mgkg™!) eTh(mgkeg™!)) 4K (%) « (1073 SI units)
Mean 1.62 7.87 1.59 17.2
Standard deviation 0.82 3.08 0.61 16.6
Minimum 0.40 3.80 0.80 0.70
Maximum 3.80 15.5 3.10 75.4

Pyritized-andesites

Summary Statistics

Radiometric and magnetic susceptibility

eU(mgkg™!) eTh(mgke ™)) 4K (%) « (1073 SI units)
Mean 1.64 7.59 1.54 225
Standard deviation 0.74 2.23 0.57 18.6
Minimum 0.20 3.30 0.70 2.37
Maximum 3.50 10.9 2.90 74.9

the low « values on tuffite, this igneous rock is formed from
volcanic ashes and containing large amounts of poorly crys-
talline minerals (Fabris et al., 1995), which is difficult to form
ferrimagnetic minerals. Poggere et al. (2018), also found low
magnetic signature on soil formed from tuffites in Brazilian
soils with contrasting rock parent material.

The greater x« values on pyritized-andesites (Fig. 4, Ta-
ble 3), can be explained by the presence of pyrite and

Geosci. Model Dev., 18, 8949-8972, 2025

hydrothermal alteration process (Passier et al., 2001). Hy-
drothermal processes in island-arc settings, similar to the
study area, can lead to the formation of hydrothermal mag-
netite. As hydrothermal fluids, heated by magmas, circulate
through permeable rocks, they dissolve minerals and sub-
sequently precipitate iron oxides, such as magnetite, in re-
sponse to changes in fluid temperature, pressure, and chem-
istry (Nawrocki et al., 2021; Sillitoe, 2010). In addition, some
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of the elevated « values may result from the formation of
pyrite in pyritized andesites, along with the development
of ferrimagnetic minerals such as pyrrhotite and magnetite
within the rock.

3.3 Ternary y-ray and magnetic susceptibility
predicted maps, radionuclides content and «
variability at landscape scale

The predicted maps of “°K, eTh, and eU are demonstrated
in Fig. 5A, B and C, respectively. In addition, Fig. 5D and
E demonstrate the high resolution predicted ternary y-ray
and magnetic susceptibility maps. Our initial focus lies on
describing the interpretations of the three radionuclides in
relation to the y-ray response associated to lithological-
pedological substrates found in the specific landscapes and
geomorphic processes.

The highest eTh values, predominantly represented by the
green areas on the map, occur mainly over basaltic-andesite
lithologies, rocks that are less mafic and richer in plagioclase
and quartz (Fig. 5D). These regions coincide with flatter,
high-elevation plateaus where deeper soils with higher clay
content develop. The increased clay fraction enhances the ad-
sorption capacity for eTh onto soil particle surfaces, thereby
elevating eTh readings in these high plateau zones. In such
areas, the spatial distribution and concentration of eTh are
primarily controlled by lithology and pedogeomorphological
factors.

In contrast, the western beach area, located at lower land-
scape positions, also exhibits elevated eTh levels associated
with undifferentiated sediments (Fig. SE). This pattern is ex-
plained by the geomorphological setting where fluvioglacial
meltwaters originating from the high plateaus transport cry-
oclastically derived, eTh-rich sediments downslope. These
sediments accumulate on the western beaches, demonstrat-
ing how erosive and depositional processes in a periglacial
environment govern the distribution of eTh in this sector.

Regarding eU, the highest values are found on steep
slopes characterized by shallow or absent soils, mainly over
basaltic-andesites and andesitic-basalts lithologies (Fig. SE).
In these geomorphologically active areas, eU distribution
largely reflects the chemical composition of the bedrock, in-
dicating strong lithological and geomorphological control.
Cryoclastically fractured and eroded materials are trans-
ported downslope by periglacial processes and deposited
more evenly across lower plateaus, where eU concentrations
reflect distinct source materials, in contrast to the focused
sediment transport through fluvioglacial channels, which is
responsible for eTh enrichment on the west beach. The 4 K
values peaks predominantly in lower landscape positions,
including lower plateaus and southeastern beaches, where
andesitic-basalts and dioritic lithologies prevail (Fig. 5E).
Conversely, pyritized-andesite zones show the lowest 4 K
values, likely due to enhanced chemical weathering driven
by natural acid drainage and sulfurization processes in lo-
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cal fluvioglacial channels. These processes accelerate potas-
sium depletion, as observed in recent studies of sulfate-
affected landscapes in Keller Peninsula (Mello et al., 2023c).
Therefore, both lithological composition and pedogeochem-
ical processes regulate 4 K distribution in the area.

Previous research (Wilford and Minty, 2006; Dickson and
Scott, 1997) has demonstrated that combining ternary y
imaging with digital elevation models improves the interpre-
tation of radionuclide spatial patterns by integrating litho-
logical, soil, periglacial, and geomorphological influences
(Mello et al., 2023b). Dickson and Scott (1997) showed that
rock radioelement contents explain much of the y radiation
variability, while also highlighting intra-class heterogeneity
— granites, for example, lack a unique radionuclide signature.
Similarly, Rawlins et al. (2012) quantified that bedrock type
accounted for 52 % of y radiation variability across North-
ern Ireland. Felsic rocks generally exhibit elevated eU, eTh,
and 4 K contents (Rawlins et al., 2007). Recent tropical en-
vironment studies (Ribeiro et al., 2018; Souza et al., 2021;
Guimaries et al., 2021; Mello et al., 2020, 2021, 2022a, b)
have linked radionuclide variability to lithology in areas with
minimal pedogenetic alteration, to relief in erosion and sedi-
ment deposition zones, and to weathering and pedogenesis in
well-developed soils. However, recent studies, including the
first applications of y spectrometry and magnetic suscepti-
bility to Antarctic soils undertaken by Mello et al. (2023a,
b), have suggested a strong influence of topography on the
distribution of pedogeophysical variables, which were thor-
oughly detailed in this work.

Magnetic susceptibility (x) values exhibit high spatial
variability across lithologies, soils, and landforms, showing
no consistent broad-scale pattern (Fig. 5D). Nonetheless, lo-
calized zones of elevated k correlate with pyritized-andesite
and andesitic-basalt lithologies, particularly on steep slopes
or areas minimally influenced by sediment influx from other
parts of the landscape. Conversely, hydrothermal alteration
in pyritized andesites can enhance x values as reported by
Nawrocki et al. (2021) and Sillitoe (2010). This effect is
further intensified by higher iron availability and chemical
weathering, which together concentrate ferrimagnetic miner-
als and contribute to increased susceptibility values (Mello et
al., 2023c).

The lowest « values are observed in areas dominated by
Cryosols, which are young soils with minimal pedogenetic
development (Fig. SD). Although pedogenetic processes can
influence k, the low magnetic susceptibility primarily reflects
the lack of magnetite and other ferrimagnetic phases. The
limited formation of secondary magnetic minerals appears
less important for susceptibility differences than the accu-
mulation of magnetite in more developed soils. This pattern
aligns with findings by Daher et al. (2019), who reported low
k values in Antarctic soils derived from igneous rocks, at-
tributed to their relatively young age and limited weathering.

The spatial distribution of radionuclides and magnetic sus-
ceptibility in Keller Peninsula (Fig. 5) results from a dy-
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Figure 5. (A) Predicted map of 40 (B) Predicted map of eU; (C) Predicted map of eTh; (D) and (E) 3D landscape perspective and magnetic
susceptibility and y-ray ternary image, respectively over part of the Keller Peninsula. By integrating y-ray spectrometric images with digital
elevation models (DEMs) in 3D perspective views, a comprehensive visualization emerges, revealing intricate connections between y-ray
responses, terrain morphology attributes and surface processes (pedogeomorphological and periglacial).

namic interplay between mineralogical characteristics of the
bedrock, topographic controls on soil development and sedi-
ment transport, and active periglacial geomorphological pro-
cesses. These factors collectively modulate the pedogeophys-
ical signatures observed, producing patterns that cannot be
solely attributed to lithology but rather to its modification
through landscape evolution and pedogeochemical cycling.
Our results regarding the distribution of radionuclides
across the landscape differ slightly from those commonly re-
ported in the literature (Dickson and Scott, 1997; Mello et
al., 2021; Wilford and Minty, 2006; Wilford et al., 2012),
which typically reports a strong correlation between radionu-
clide concentrations and the parent material in poorly devel-
oped soils. Although the low chemical weathering intensity
observed in our study area suggests that lithology should
exert primary control, the presence of highly dissected ter-
rain, steep slopes, and active periglacial processes includ-
ing periglacial erosion, freezing-thawing cycles, and cryotur-
bation intensifies the influence of topography on the redis-
tribution of radionuclides. As a result, in certain areas of
Keller Peninsula, radionuclide concentrations in soils deviate
from the expected values based solely on the underlying rock
types. Practically all the relief variables are associated with
the landform that control the surface periglacial and pedoge-
omorphological processes of the Keller Peninsula landscape.
Periglacial erosion, glacial fluvial melt channels, freezing
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and thawing of the active layer of permafrost and soliflux-
ion are the most frequent periglacial and pedogeomorpholog-
ical processes in Keller Peninsula, as observed by Francelino
et al. (2011) and Lépez-Martinez et al. (2012). These pro-
cesses promote the fragmentation, redistribution and mixing
of materials in significant areas of the landscape (Mello et
al., 2023a, b), which can contribute to variations in radionu-
clide and k values, as well as increase prediction errors in
the points of greater occurrence of these processes, such as
the sloping areas of the landscape (Mello et al., 2022¢). The
same periglacial processes and landscape dynamics also in-
fluence iron geochemistry. As a result, soils and areas under-
lain by mafic rocks such as basaltic-andesite and andesitic-
basalt may exhibit relatively low concentrations of ferrimag-
netic minerals, which is reflected in lower magnetic suscep-
tibility readings (Fig. 4). The opposite can also occur; for ex-
ample, soils developed over pyritized andesite show higher
magnetic susceptibility values, indicating greater concentra-
tions of ferrimagnetic minerals (Fig. 4).

The spatial patterns of natural radioactivity and mag-
netic susceptibility across Keller Peninsula are more strongly
influenced by topography than by lithology. In steep,
periglacially active terrains, geomorphic and pedogeomor-
phological processes such as cryoturbation, freeze—thaw cy-
cles, and periglacial erosion promote the downslope trans-
port and mixing of soil and minerals, resulting in the redis-
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tribution of radionuclides and ferrimagnetic minerals inde-
pendent of bedrock type. Birkenmajer (1980)’s geological
mapping and petrographic studies further support that vari-
ations in mineral assemblages, especially between lightly al-
tered mafic rocks and hydrothermal zones, and the presence
of secondary minerals such as zeolites, albite, and iron oxides
contribute to these patterns. Consequently, pedogeophysical
signals (e.g., eU, eTh, 4 K, and magnetic susceptibility) of-
ten reflect a mixed mineralogical signature redistributed by
topographic and geomorphological dynamics, rather than a
direct inheritance from the parent material. This may ex-
plain our observations such as unexpectedly low magnetic
susceptibility over mafic rocks and elevated values over al-
tered andesites, underscoring the dominant role of relief and
periglacial processes in shaping pedogeophysical variability
in Keller Peninsula.

3.4 Applicability of geophysical techniques on
soil-lithological survey and understanding of
periglacial processes

A relationship between radionuclide content/distribution and
k in the landscape in a digital elevation model are demon-
strated in Figs. 6 and 7, respectively). Rock color variations
between different lithologies were also observed in the field
(Fig. 8). The content and distribution of radionuclides and
k are occasionally associated with the lithology of the area,
making it difficult to establish a direct and generalist rela-
tionship between radionuclides and « with the lithological
units. This method allows for the estimation of apparent sur-
face concentrations of naturally occurring radionuclides and
their relationship with lithology, pedogeomorphological and
periglacial processes (Mello et al., 2023b). By assuming that
the absolute and relative concentrations of these radioele-
ments vary significantly with lithology (Dickson and Scott,
1997; Wilford et al., 2016), y-ray spectrometric surveys can
be used effectively for lithological mapping (Elawadi et al.,
2004). However, in this particular study, the surface lithology
is difficult to be map due to multiple geomorphological and
periglacial processes that operates in M. A.

Gamma-ray ternary image combined with 3D landscape
perspective in different views highlighting areas with higher
and lower values of radionuclides (Fig. 6). The predicted
ternary y-ray map (composite image) technique by machine
learning was employed to simultaneously display three pa-
rameters of radioelement concentrations and distributions on
a single image (Fig. 6). By utilizing color differences, this
technique proved effective in discerning periglacial and pe-
dogeomorphological processes associated to lithology and
not only lithology (Fig. 6). This methodology allowed the
identification of areas where distinct surface processes oper-
ate where different lithofacies occur within the larger mapped
region and detailed studies involving surface process by us-
ing y-ray spectrometry and « should be encouraged.
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Regarding «, surface pedogeomorphological and
periglacial processes also influence the distribution of
magnetic susceptibility in the landscape, such that the
spatial variability of « has specific relationships with the
lithology of the area (Fig. 7). Low values may not reflect
the properties of the in-situ lithology, as many of the areas
are affected by depositional processes caused by periglacial
erosion, resulting in the mixing of surface materials (Mello
et al., 2023c). In a similar vein, Joju et al. (2023) conducted
research and discovered that coarse soils in Larsemann
Hills, East Antarctica, are primarily composed of magnetic
minerals originating directly from the parent material, show-
casing the strong influence of lithology on soil composition.
Furthermore, despite the milder and moister climate in
the maritime Antarctic region, Lee et al. (2004) observed
minimal chemical weathering of bedrocks, suggesting that
the soils mainly consist of physically weathered minerals
and rock fragments. Moreover, our findings align with those
of Warrier et al. (2021), who argued that while pedogenesis
is indeed occurring, its intensity is insufficient to generate
magnetic grains.

In some areas, the sulfurization due to hydrothermal
processes, induced by the influence of pyritized-andesite
(Fig. 7), leads to significant environmental acidification and
hydrothermal magnetite formation affecting « values (Souza
et al., 2012; Lopes et al., 2019). This process may have
played a role in the limited occurrence of ferrimagnetic min-
erals and their uniform distribution across the landscape con-
tributing low variety in « values (Mello et al., 2023b). Certain
regions situated in the lower sections of the terrain are sur-
rounded by mafic igneous rock (andesitic-basalts) in sloping
areas, where periglacial erosion rates are high affect ferri-
magnetic minerals distribution over landscape (Francelino et
al., 2011; Mello et al., 2023c) On the other hand, some ar-
eas are located on marine terraces composed of undifferen-
tiated sediments, exhibiting diverse « values patterns (Mello
et al., 2023a). The variation in « values can be attributed to
the presence of different sediment types with distinct miner-
alogical compositions in these specific locations.

It is also notable the occurrence of low « values in the ele-
vated and flat parts of the landscape (Fig. 7), where Cryosols
occur. The permafrost in this compartment of the land-
scape hinders ferrimagnetic minerals formation. Water de-
rived from snow melt during summer infiltrates through soil
pores and accumulated in the active layer due to low perme-
ability of permafrost. The saturation of soil induces gleyza-
tion and avoid ferrimagnetic minerals precipitation (Zhu et
al., 2021). In addition, the presence of a deeper regolith as-
sociated with periglacial processes of freezing and thawing
of the active layer of permafrost, increases the differences
between content and distribution of ferrimagnetic minerals
on the surface and ferrimagnetic properties of the lithology
(Mello et al., 2023a).

The sensors were able to detect some lithological transi-
tions, with significant changes in radionuclide and « contents
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Figure 6. Gamma-ray ternary image combined with 3D landscape perspective in different views highlighting areas with higher and lower
values of radionuclides. (1) Higher eTh content; (2) higher eU content; (3A) higher 40 content; (3B) miner 40K content in natural sulfate-
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Figure 7. Magnetic susceptibility combined with 3D landscape perspective in different views highlighting areas with higher and lower «
values. (1) Areas with high « values; (2) areas with lower « values over Cryosols.
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Figure 8. Examples of lithological transitions in Keller Peninsula. (A) Pyritized-andesite/basaltic-andesites; (B, C) pyritized-
andesite/andesitic-basalts; (D, E) pyritized-andesite/tuffites; (F) pyritized-andesite/andesitic-basalts; (G) pyritized-andesite/basaltic-
andesites; (H) pyritized-andesite/andesitic-basalts; (I) pyritized-andesite/diorite; (J) undifferentiated marine sediments; (L) tuffite/pyritized-
andesite; (M) andesitic-basalts/basaltic-andesites; (N) undifferentiated marine sediments/pyritized-andesite; (O) pyritized-andesite/basaltic-
andesites; (P) andesitic-basalts/pyritized-andesite/undifferentiated marine sediments.

(Fig. 8). However, the sensors do not present values directly
associated with lithology due to the high intensity of surface
pedogeomorphological and periglacial processes, it exerts a
great influence on pedogeophysical readings in agreement
with Dickson and Scott (1997) and Mello et al. (2020, 2021).

3.5 Study limitations and recommendations

Figure 9 demonstrates the coefficient of variation (prediction
error) of the ternary y-ray and x maps. The relatively low co-
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efficient of variation values in our study can be attributed to
the nested-LOOCYV technique. These maps, associated with
the CCC (Table 2), illustrates the limitations of the models in
predicting and spatializing pedogeophysical data. The pre-
diction errors were low for the pedogeophysical variables, in
agreement with the high CCC values shown in Table 2, how-
ever, such errors do exist. It is possible to observe that the
main prediction errors are associated with the steepest areas
of the Peninsula, while the smallest are associated with ar-
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Figure 9. (a) Coefficient of variation for magnetic susceptibility predicted map; (b) coefficient of variation for ternary y-ray predicted maps.

eas with smoother to flat slopes. This shows that the main
limitation of the modeling is related to the small number and
distribution of samples read with the geophysical sensors. In
this context, the relatively limited sample number as well as
the distribution of samples is justified by the adverse field
conditions (e.g., steep areas with snowbanks, glaciers, sharp
rocks and frozen ground combined with high slopes, result-
ing in high danger areas for data acquisition by using prox-
imal sensors). In other words, the logistical difficulties im-
posed by cold environments in field conditions were one of
the significant limitations of this work, as noted by Fisher
(2014, 2015) and Mello et al. (2023a, c). However, moder-
ate CCC values and satisfactory CV in modeling processes,
an exploratory evaluation for field data acquisition can pro-
vided informative results (Dharumarajan et al., 2017; Khale-
dian and Miller, 2020; Mansuy et al., 2014; Mosleh et al.,
2016; Poggio et al., 2016).

The low number of samples in this study (87) was not
so appropriate for a more specific approach. However, the
RF algorithm combined with nested-LOOCYV were appropri-
ate for small samples number, as demonstrated in other re-
searches (Mello et al., 2022a, b, ¢). In addition, in-situ eval-
uation brings several uncontrolled factors (such as rocks or
fragments mixing due to periglacial erosion, permafrost ac-
tivity, fluvioglacial channels and others), can impact the pre-
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diction and reduce the CCC and increase CV (Mello et al.,
2023b).

The absence of detailed mineralogical, petrographic, and
geochemical analyses constitutes a limitation of this study.
This constraint was primarily due to logistical and opera-
tional challenges associated with fieldwork in remote and
climatically extreme environments, which limited both the
time available for sample collection and the transport of ma-
terials for laboratory analysis. Additionally, the main focus
of the study was the application and evaluation of predic-
tive models based on surface pedogeophysical data, rather
than a comprehensive mineralogical-petrographic characteri-
zation. Nevertheless, we mitigated this limitation by incorpo-
rating and referencing existing detailed geological studies of
the area, which provided essential information on the litho-
logical framework, mineralogy and post-magmatic alteration
processes. This information contributed significantly to un-
derstanding lithology as both a source of radionuclides and a
provider of iron, which plays a key role in the formation of
ferrimagnetic minerals either through pedogenetic processes
(in the clay fraction) or as an inherited feature from the par-
ent material (in the sand fraction). We recommend that future
studies integrate in situ mineralogical and geochemical anal-
yses to deepen the interpretation of the geophysical signals
and refine model accuracy. Another limitation of this study
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is the unavailability of spatially continuous detailed litholog-
ical map (1:5000 for example), which affects the prediction
performance (CCC, Table 2) and CV maps (Fig. 9). Further-
more, the variability of sensor readings is another limitation,
which is little, but it exists. As a result, this variability can
reduce the accuracy of the information. Nevertheless, our
methodology tackled this concern by extending the reading
time of the y-ray sensor to 3 min and employing the mean
values of three magnetic susceptibility readings. Mello et al.,
(2023a, c), carried out a similar approach where the same er-
rors and experimental conditions were observed when mod-
eling the intensity of weathering and studying pedogenesis
in soil profiles in Keller Peninsula, using machine learning
algorithms. These researchers also adjusted the data collec-
tion method with the same geophysical sensors used in this
research.

The applicability of the findings here, however, is re-
stricted to comparable environments, specifically those ex-
hibiting periglacial conditions, igneous lithology, similar
precipitation, temperature, and relief patterns. Given that
many of the Maritime Antarctica Islands and some parts of
Antarctic Peninsula share these common or similar environ-
mental features, it is strongly recommended to promote sim-
ilar pedogeophysical survey characterization efforts.

4 Conclusion

The research introduced a structured approach to special-
ize pedogeophysical variables using machine learning tech-
niques. It has been demonstrated that employing machine
learning methodologies is promising for accurately mapping
natural y-ray radioactivity and magnetic susceptibility char-
acteristics. Through our methodology, we fitted regression
models that identified key predictors, assessing accuracy and
uncertainty across the RF model and ensuring consistent pre-
dictions through multiple pedogeoenvironmental iterations.

The RF algorithm was efficient and successfully predicted
detailed maps of y-spectrometric and magnetic susceptibil-
ity variables in periglacial environments with diverse igneous
rock substrates. Relief-related morphometric variables sig-
nificantly influenced the distribution of radionuclides and fer-
rimagnetic minerals on the land surface. The nested-LOOCV
method proved suitable for pedogeophysical data with lim-
ited samples, providing robust evaluation of algorithm per-
formance and generating accurate and high-performing mean
maps.

Although the low degree of pedogenetic development and
limited chemical weathering in the study area would typi-
cally suggest a strong lithological control over radionuclide
concentrations, our findings indicate that topographic fac-
tors play a more dominant role. The highly dissected relief,
steep slopes, and active periglacial processes, such as erosion
and cryoturbation, contribute significantly to the redistribu-
tion of materials and radionuclides. As a result, in certain
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areas of Keller Peninsula, radionuclide concentrations do not
align with the expected values based solely on the underlying
lithology.

The highest levels of eTh were observed in three key ar-
eas: the elevated parts of the landscape, the flat areas, and the
west beach. The west beach receives detrital materials from
periglacial erosion, which come through fluvioglacial melt-
ing channels from the eTh-rich elevated parts. The eTh con-
tents are controlled by lithology and pedogeomorphological
processes.

The highest eU contents were observed in the steepest
areas, characterized by the greatest slope, forming a ring
around the highest parts of the landscape. In this case, the
control of eU contents is determined by lithology and geo-
morphological processes, such as rock cryoclasty, periglacial
erosion, and heterogeneous Accumulation of materials in the
lower elevations of the terrain.

The highest levels of “°K were found in the most felsic
rocks and areas with minimal influence from material de-
position caused by periglacial erosion. Conversely, the low-
est contents of *°K were observed in regions affected by
the pedogeochemical process of sulfurization, specifically on
pyritized-andesite within/around fluvioglacial melting chan-
nels. The control of 4K levels is determined by both lithol-
ogy and pedogeochemical processes.

The « did not exhibit an apparent distribution pattern,
although the highest levels were observed in pyritized-
andesites areas, while the lowest levels were found in
Cryosol areas. Pyritized andesites were influenced by hy-
drothermal alteration, where heat and magmatic fluids pro-
moted iron concentration and the formation of hydrother-
mal magnetite, thereby contributing to higher « values. On
the other hand, Cryosols, in addition to increasing the dis-
tance between surface materials and the rocky substrate, ex-
perience seasonal freezing and thawing activity of the active
permafrost layer, creating conditions that discourage the for-
mation of ferrimagnetic minerals and reduce « values. The
control of « values is determined by lithology and less influ-
enced by pedological-periglacial processes associated with
Cryosols.

In areas with diverse terrain attributes and a prevalence
of active and intense periglacial processes, the predicted-
spatialized pedogeophysical variables do not accurately rep-
resent the lithological composition of the substrate. This
is because the various periglacial processes in the region,
combined with the morphometric characteristics of the land-
scape, work to redistribute, mix, and homogenize the surface
materials.
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