Articles | Volume 18, issue 22
https://doi.org/10.5194/gmd-18-8949-2025
https://doi.org/10.5194/gmd-18-8949-2025
Model evaluation paper
 | 
25 Nov 2025
Model evaluation paper |  | 25 Nov 2025

Proximal surface pedogeophysical characterization in Maritime Antarctica: assessing pedogeomorphological, periglacial, and landform influences

Danilo César de Mello, Clara Glória Oliveira Baldi, Cássio Marques Moquedace, Isabelle de Angeli Oliveira, Gustavo Vieira Veloso, Lucas Carvalho Gomes, Márcio Rocha Francelino, Carlos Ernesto Gonçalves Reynaud Schaefer, Elpídio Inácio Fernandes-Filho, Edgar Batista de Medeiros Júnior, Fabio Soares de Oliveira, José João Lelis Leal Souza, Tiago Osório Ferreira, and José A. M. Demattê

Data sets

Application of machine learning to proximal gamma-ray and magnetic susceptibility surveys in the Maritime Antarctic: assessing the influence of periglacial processes and landforms Cassio Marques Moquedace https://doi.org/10.5281/zenodo.10828281

Model code and software

Application of machine learning to proximal gamma-ray and magnetic susceptibility surveys in the Maritime Antarctic: assessing the influence of periglacial processes and landforms Cassio Marques Moquedace https://doi.org/10.5281/zenodo.10828281

Download
Short summary
The study explores Maritime Antarctica's geology, shaped by periglacial forces, using pioneering gamma-spectrometric and magnetic surveys on igneous rocks due to limited Antarctic surveys. Machine learning predicts radionuclide and magnetic content based on terrain features, linking their distribution to landscape processes, morphometrics, lithology, and pedogeomorphology. Inaccuracies arise due to complex periglacial processes and landscape complexities.
Share