Articles | Volume 18, issue 22
https://doi.org/10.5194/gmd-18-8827-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-18-8827-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Description and evaluation of airborne microplastics in the United Kingdom Earth System Model (UKESM1.1) using GLOMAP-mode
Cameron McErlich
CORRESPONDING AUTHOR
School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand
Felix Goddard
School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand
Alex Aves
School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand
Catherine Hardacre
School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand
Nikolaos Evangeliou
Department of Atmospheric and Climate Research (ATMOS), Stiftelsen NILU (former Norwegian Institute for Air Research), Kjeller, Norway
Alan J. Hewitt
Met Office, FitzRoy Road, Exeter, Devon, EX1 3PB, United Kingdom
Laura E. Revell
CORRESPONDING AUTHOR
School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand
Related authors
No articles found.
Zihui Teng, Jane Tygesen Skønager, Andreas Massling, Henrik Skov, Nikolaos Evangeliou, Sabine Eckhardt, Merete Bilde, and Bernadette Rosati
Aerosol Research Discuss., https://doi.org/10.5194/ar-2025-34, https://doi.org/10.5194/ar-2025-34, 2025
Preprint under review for AR
Short summary
Short summary
Coastal aerosols in Scandinavian urban areas remain understudied. We examined aerosol optical properties and size distributions along Denmark's coastline. Combining in-situ data with dispersion modelling, we identified two main aerosol types: carbonaceous aerosols from fossil fuel and biomass burning and large, highly-scattering aerosols (potentially sea salt). Black carbon from in-situ data and dispersion modelling correlated well while FLEXPART underestimated the concentration.
Sara Herrero-Anta, Sabine Eckhardt, Nikolaos Evangeliou, Stefania Gilardoni, Sandra Graßl, Dominic Heslin-Rees, Stelios Kazadzis, Natalia Kouremeti, Radovan Krejci, David Mateos, Mauro Mazzola, Christoph Ritter, Roberto Román, Kerstin Stebel, and Tymon Zielinski
EGUsphere, https://doi.org/10.5194/egusphere-2025-3423, https://doi.org/10.5194/egusphere-2025-3423, 2025
Short summary
Short summary
In summer 2019, unusually high aerosol levels were measured in the Arctic, linked to wildfires, volcanic eruptions, and anthropogenic pollution. Using various instruments and models, we traced their origins and found good agreement between methods. The particles were mostly non-absorbing, but still we found a reduction of the solar radiation reaching the surface. This study shows that combining different measurements improves our understanding of how distant events affect the Arctic climate.
Olga B. Popovicheva, Marina A. Chichaeva, Nikolaos Evangeliou, Sabine Eckhardt, Evangelia Diapouli, and Nikolay S. Kasimov
Atmos. Chem. Phys., 25, 7719–7739, https://doi.org/10.5194/acp-25-7719-2025, https://doi.org/10.5194/acp-25-7719-2025, 2025
Short summary
Short summary
High-quality measurements of light-absorbing carbon were performed at the polar aerosol station "Island Bely” (Western Siberian Arctic) from 2019 to 2022. The maximum light absorption coefficients were seen in summer due to gas flaring, which is the most significant source in the region. However, the increasing Siberian wildfires had a special share in carbon contribution at this high Arctic station, with a persistent smoke layer extending over the whole troposphere in summer.
Lubna Dada, Benjamin T. Brem, Lidia-Marta Amarandi-Netedu, Martine Collaud Coen, Nikolaos Evangeliou, Christoph Hueglin, Nora Nowak, Robin Modini, Martin Steinbacher, and Martin Gysel-Beer
Aerosol Research, 3, 315–336, https://doi.org/10.5194/ar-3-315-2025, https://doi.org/10.5194/ar-3-315-2025, 2025
Short summary
Short summary
We investigated the sources of ultrafine particles (UFPs) in Payerne, Switzerland, highlighting the significant role of secondary processes in elevating UFP concentrations to levels comparable to urban areas. As the first study in rural midland Switzerland to analyze new particle formation events and secondary contributions, it offers key insights for air quality regulation and the role of agriculture in Switzerland and central Europe.
Martin Richard Willett, Melissa Brooks, Andrew Bushell, Paul Earnshaw, Samantha Smith, Lorenzo Tomassini, Martin Best, Ian Boutle, Jennifer Brooke, John M. Edwards, Kalli Furtado, Catherine Hardacre, Andrew J. Hartley, Alan Hewitt, Ben Johnson, Adrian Lock, Andy Malcolm, Jane Mulcahy, Eike Müller, Heather Rumbold, Gabriel G. Rooney, Alistair Sellar, Masashi Ujiie, Annelize van Niekerk, Andy Wiltshire, and Michael Whitall
EGUsphere, https://doi.org/10.5194/egusphere-2025-1829, https://doi.org/10.5194/egusphere-2025-1829, 2025
Short summary
Short summary
Global Atmosphere (GA) configurations of the Unified Model (UM) and Global Land (GL) configurations of JULES are developed for use in any global atmospheric modelling application. We describe a recent iteration of these configurations, GA8GL9, which includes improvements to the represenation of convection and other physical processes. GA8GL9 is used for operational weather prediction in the UK and forms the basis for the next GA and GL configuration.
Nikolaos Evangeliou, Ondřej Tichý, Marit Svendby Otervik, Sabine Eckhardt, Yves Balkanski, and Didier A. Hauglustaine
Aerosol Research, 3, 155–174, https://doi.org/10.5194/ar-3-155-2025, https://doi.org/10.5194/ar-3-155-2025, 2025
Short summary
Short summary
The COVID-19 lockdown measures in 2020 reduced emissions of various substances, improving air quality. However, PM2.5 stayed unchanged due to NH3 and related chemical transformations. Higher humidity favoured more SO42- production, as did the accumulated NH3. Excess NH3 reacted with HNO3 to make NO3-. In high-NH3 conditions such as those in 2020, a small reduction in NOx levels drove faster oxidation of NO3- and slower deposition of total inorganic NO3-, causing high secondary PM2.5.
Karl Espen Yttri, Are Bäcklund, Franz Conen, Sabine Eckhardt, Nikolaos Evangeliou, Markus Fiebig, Anne Kasper-Giebl, Avram Gold, Hans Gundersen, Cathrine Lund Myhre, Stephen Matthew Platt, David Simpson, Jason D. Surratt, Sönke Szidat, Martin Rauber, Kjetil Tørseth, Martin Album Ytre-Eide, Zhenfa Zhang, and Wenche Aas
Atmos. Chem. Phys., 24, 2731–2758, https://doi.org/10.5194/acp-24-2731-2024, https://doi.org/10.5194/acp-24-2731-2024, 2024
Short summary
Short summary
We discuss carbonaceous aerosol (CA) observed at the high Arctic Zeppelin Observatory (2017 to 2020). We find that organic aerosol is a significant fraction of the Arctic aerosol, though less than sea salt aerosol and mineral dust, as well as non-sea-salt sulfate, originating mainly from anthropogenic sources in winter and from natural sources in summer, emphasizing the importance of wildfires for biogenic secondary organic aerosol and primary biological aerosol particles observed in the Arctic.
Dongqi Lin, Jiawei Zhang, Basit Khan, Marwan Katurji, and Laura E. Revell
Geosci. Model Dev., 17, 815–845, https://doi.org/10.5194/gmd-17-815-2024, https://doi.org/10.5194/gmd-17-815-2024, 2024
Short summary
Short summary
GEO4PALM is an open-source tool to generate static input for the Parallelized Large-Eddy Simulation (PALM) model system. Geospatial static input is essential for realistic PALM simulations. However, existing tools fail to generate PALM's geospatial static input for most regions. GEO4PALM is compatible with diverse geospatial data sources and provides access to free data sets. In addition, this paper presents two application examples, which show successful PALM simulations using GEO4PALM.
Ondřej Tichý, Sabine Eckhardt, Yves Balkanski, Didier Hauglustaine, and Nikolaos Evangeliou
Atmos. Chem. Phys., 23, 15235–15252, https://doi.org/10.5194/acp-23-15235-2023, https://doi.org/10.5194/acp-23-15235-2023, 2023
Short summary
Short summary
We show declining trends in NH3 emissions over Europe for 2013–2020 using advanced dispersion and inverse modelling and satellite measurements from CrIS. Emissions decreased by −26% since 2013, showing that the abatement strategies adopted by the European Union have been very efficient. Ammonia emissions are low in winter and peak in summer due to temperature-dependent soil volatilization. The largest decreases were observed in central and western Europe in countries with high emissions.
Yusuf A. Bhatti, Laura E. Revell, Alex J. Schuddeboom, Adrian J. McDonald, Alex T. Archibald, Jonny Williams, Abhijith U. Venugopal, Catherine Hardacre, and Erik Behrens
Atmos. Chem. Phys., 23, 15181–15196, https://doi.org/10.5194/acp-23-15181-2023, https://doi.org/10.5194/acp-23-15181-2023, 2023
Short summary
Short summary
Aerosols are a large source of uncertainty over the Southern Ocean. A dominant source of sulfate aerosol in this region is dimethyl sulfide (DMS), which is poorly simulated by climate models. We show the sensitivity of simulated atmospheric DMS to the choice of oceanic DMS data set and emission scheme. We show that oceanic DMS has twice the influence on atmospheric DMS than the emission scheme. Simulating DMS more accurately in climate models will help to constrain aerosol uncertainty.
Ben A. Cala, Scott Archer-Nicholls, James Weber, N. Luke Abraham, Paul T. Griffiths, Lorrie Jacob, Y. Matthew Shin, Laura E. Revell, Matthew Woodhouse, and Alexander T. Archibald
Atmos. Chem. Phys., 23, 14735–14760, https://doi.org/10.5194/acp-23-14735-2023, https://doi.org/10.5194/acp-23-14735-2023, 2023
Short summary
Short summary
Dimethyl sulfide (DMS) is an important trace gas emitted from the ocean recognised as setting the sulfate aerosol background, but its oxidation is complex. As a result representation in chemistry-climate models is greatly simplified. We develop and compare a new mechanism to existing mechanisms via a series of global and box model experiments. Our studies show our updated DMS scheme is a significant improvement but significant variance exists between mechanisms.
Dongqi Lin, Marwan Katurji, Laura E. Revell, Basit Khan, and Andrew Sturman
Atmos. Chem. Phys., 23, 14451–14479, https://doi.org/10.5194/acp-23-14451-2023, https://doi.org/10.5194/acp-23-14451-2023, 2023
Short summary
Short summary
Accurate fog forecasting is difficult in a complex environment. Spatial variations in soil moisture could impact fog. Here, we carried out fog simulations with spatially different soil moisture in complex topography. The soil moisture was calculated using satellite observations. The results show that the spatial variations in soil moisture do not have a significant impact on where fog occurs but do impact how long fog lasts. This finding could improve fog forecasts in the future.
Rimal Abeed, Camille Viatte, William C. Porter, Nikolaos Evangeliou, Cathy Clerbaux, Lieven Clarisse, Martin Van Damme, Pierre-François Coheur, and Sarah Safieddine
Atmos. Chem. Phys., 23, 12505–12523, https://doi.org/10.5194/acp-23-12505-2023, https://doi.org/10.5194/acp-23-12505-2023, 2023
Short summary
Short summary
Ammonia emissions from agricultural activities will inevitably increase with the rise in population. We use a variety of datasets (satellite, reanalysis, and model simulation) to calculate the first regional map of ammonia emission potential during the start of the growing season in Europe. We then apply our developed method using a climate model to show the effect of the temperature increase on future ammonia columns under two possible climate scenarios.
Jane P. Mulcahy, Colin G. Jones, Steven T. Rumbold, Till Kuhlbrodt, Andrea J. Dittus, Edward W. Blockley, Andrew Yool, Jeremy Walton, Catherine Hardacre, Timothy Andrews, Alejandro Bodas-Salcedo, Marc Stringer, Lee de Mora, Phil Harris, Richard Hill, Doug Kelley, Eddy Robertson, and Yongming Tang
Geosci. Model Dev., 16, 1569–1600, https://doi.org/10.5194/gmd-16-1569-2023, https://doi.org/10.5194/gmd-16-1569-2023, 2023
Short summary
Short summary
Recent global climate models simulate historical global mean surface temperatures which are too cold, possibly to due to excessive aerosol cooling. This raises questions about the models' ability to simulate important climate processes and reduces confidence in future climate predictions. We present a new version of the UK Earth System Model, which has an improved aerosols simulation and a historical temperature record. Interestingly, the long-term response to CO2 remains largely unchanged.
Maureen Beaudor, Nicolas Vuichard, Juliette Lathière, Nikolaos Evangeliou, Martin Van Damme, Lieven Clarisse, and Didier Hauglustaine
Geosci. Model Dev., 16, 1053–1081, https://doi.org/10.5194/gmd-16-1053-2023, https://doi.org/10.5194/gmd-16-1053-2023, 2023
Short summary
Short summary
Ammonia mainly comes from the agricultural sector, and its volatilization relies on environmental variables. Our approach aims at benefiting from an Earth system model framework to estimate it. By doing so, we represent a consistent spatial distribution of the emissions' response to environmental changes.
We greatly improved the seasonal cycle of emissions compared with previous work. In addition, our model includes natural soil emissions (that are rarely represented in modeling approaches).
Lauren M. Zamora, Ralph A. Kahn, Nikolaos Evangeliou, Christine D. Groot Zwaaftink, and Klaus B. Huebert
Atmos. Chem. Phys., 22, 12269–12285, https://doi.org/10.5194/acp-22-12269-2022, https://doi.org/10.5194/acp-22-12269-2022, 2022
Short summary
Short summary
Arctic dust, smoke, and pollution particles can affect clouds and Arctic warming. The distributions of these particles were estimated in three different satellite, reanalysis, and model products. These products showed good agreement overall but indicate that it is important to include local dust in models. We hypothesize that mineral dust effects on ice processes in the Arctic atmosphere might be highest over Siberia, where it is cold, moist, and subject to relatively high dust levels.
Alex R. Aves, Laura E. Revell, Sally Gaw, Helena Ruffell, Alex Schuddeboom, Ngaire E. Wotherspoon, Michelle LaRue, and Adrian J. McDonald
The Cryosphere, 16, 2127–2145, https://doi.org/10.5194/tc-16-2127-2022, https://doi.org/10.5194/tc-16-2127-2022, 2022
Short summary
Short summary
This study confirms the presence of microplastics in Antarctic snow, highlighting the extent of plastic pollution globally. Fresh snow was collected from Ross Island, Antarctica, and subsequent analysis identified an average of 29 microplastic particles per litre of melted snow. The most likely source of these airborne microplastics is local scientific research stations; however, modelling shows their origin could have been up to 6000 km away.
Olga B. Popovicheva, Nikolaos Evangeliou, Vasilii O. Kobelev, Marina A. Chichaeva, Konstantinos Eleftheriadis, Asta Gregorič, and Nikolay S. Kasimov
Atmos. Chem. Phys., 22, 5983–6000, https://doi.org/10.5194/acp-22-5983-2022, https://doi.org/10.5194/acp-22-5983-2022, 2022
Short summary
Short summary
Measurements of black carbon (BC) combined with atmospheric transport modeling reveal that gas flaring from oil and gas extraction in Kazakhstan, Volga-Ural, Komi, Nenets and western Siberia contributes the largest share of surface BC in the Russian Arctic dominating over domestic, industrial and traffic sectors. Pollution episodes show an increasing trend in concentration levels and frequency as the station is in the Siberian gateway of the highest anthropogenic pollution to the Russian Arctic.
Cynthia H. Whaley, Rashed Mahmood, Knut von Salzen, Barbara Winter, Sabine Eckhardt, Stephen Arnold, Stephen Beagley, Silvia Becagli, Rong-You Chien, Jesper Christensen, Sujay Manish Damani, Xinyi Dong, Konstantinos Eleftheriadis, Nikolaos Evangeliou, Gregory Faluvegi, Mark Flanner, Joshua S. Fu, Michael Gauss, Fabio Giardi, Wanmin Gong, Jens Liengaard Hjorth, Lin Huang, Ulas Im, Yugo Kanaya, Srinath Krishnan, Zbigniew Klimont, Thomas Kühn, Joakim Langner, Kathy S. Law, Louis Marelle, Andreas Massling, Dirk Olivié, Tatsuo Onishi, Naga Oshima, Yiran Peng, David A. Plummer, Olga Popovicheva, Luca Pozzoli, Jean-Christophe Raut, Maria Sand, Laura N. Saunders, Julia Schmale, Sangeeta Sharma, Ragnhild Bieltvedt Skeie, Henrik Skov, Fumikazu Taketani, Manu A. Thomas, Rita Traversi, Kostas Tsigaridis, Svetlana Tsyro, Steven Turnock, Vito Vitale, Kaley A. Walker, Minqi Wang, Duncan Watson-Parris, and Tahya Weiss-Gibbons
Atmos. Chem. Phys., 22, 5775–5828, https://doi.org/10.5194/acp-22-5775-2022, https://doi.org/10.5194/acp-22-5775-2022, 2022
Short summary
Short summary
Air pollutants, like ozone and soot, play a role in both global warming and air quality. Atmospheric models are often used to provide information to policy makers about current and future conditions under different emissions scenarios. In order to have confidence in those simulations, in this study we compare simulated air pollution from 18 state-of-the-art atmospheric models to measured air pollution in order to assess how well the models perform.
Christine D. Groot Zwaaftink, Wenche Aas, Sabine Eckhardt, Nikolaos Evangeliou, Paul Hamer, Mona Johnsrud, Arve Kylling, Stephen M. Platt, Kerstin Stebel, Hilde Uggerud, and Karl Espen Yttri
Atmos. Chem. Phys., 22, 3789–3810, https://doi.org/10.5194/acp-22-3789-2022, https://doi.org/10.5194/acp-22-3789-2022, 2022
Short summary
Short summary
We investigate causes of a poor-air-quality episode in northern Europe in October 2020 during which EU health limits for air quality were vastly exceeded. Such episodes may trigger measures to improve air quality. Analysis based on satellite observations, transport simulations, and surface observations revealed two sources of pollution. Emissions of mineral dust in Central Asia and biomass burning in Ukraine arrived almost simultaneously in Norway, and transport continued into the Arctic.
Stephen M. Platt, Øystein Hov, Torunn Berg, Knut Breivik, Sabine Eckhardt, Konstantinos Eleftheriadis, Nikolaos Evangeliou, Markus Fiebig, Rebecca Fisher, Georg Hansen, Hans-Christen Hansson, Jost Heintzenberg, Ove Hermansen, Dominic Heslin-Rees, Kim Holmén, Stephen Hudson, Roland Kallenborn, Radovan Krejci, Terje Krognes, Steinar Larssen, David Lowry, Cathrine Lund Myhre, Chris Lunder, Euan Nisbet, Pernilla B. Nizzetto, Ki-Tae Park, Christina A. Pedersen, Katrine Aspmo Pfaffhuber, Thomas Röckmann, Norbert Schmidbauer, Sverre Solberg, Andreas Stohl, Johan Ström, Tove Svendby, Peter Tunved, Kjersti Tørnkvist, Carina van der Veen, Stergios Vratolis, Young Jun Yoon, Karl Espen Yttri, Paul Zieger, Wenche Aas, and Kjetil Tørseth
Atmos. Chem. Phys., 22, 3321–3369, https://doi.org/10.5194/acp-22-3321-2022, https://doi.org/10.5194/acp-22-3321-2022, 2022
Short summary
Short summary
Here we detail the history of the Zeppelin Observatory, a unique global background site and one of only a few in the high Arctic. We present long-term time series of up to 30 years of atmospheric components and atmospheric transport phenomena. Many of these time series are important to our understanding of Arctic and global atmospheric composition change. Finally, we discuss the future of the Zeppelin Observatory and emerging areas of future research on the Arctic atmosphere.
Catherine Hardacre, Jane P. Mulcahy, Richard J. Pope, Colin G. Jones, Steven T. Rumbold, Can Li, Colin Johnson, and Steven T. Turnock
Atmos. Chem. Phys., 21, 18465–18497, https://doi.org/10.5194/acp-21-18465-2021, https://doi.org/10.5194/acp-21-18465-2021, 2021
Short summary
Short summary
We investigate UKESM1's ability to represent the sulfur (S) cycle in the recent historical period. The S cycle is a key driver of historical radiative forcing. Earth system models such as UKESM1 should represent the S cycle well so that we can have confidence in their projections of future climate. We compare UKESM1 to observations of sulfur compounds, finding that the model generally performs well. We also identify areas for UKESM1’s development, focussing on how SO2 is removed from the air.
Anthony C. Jones, Adrian Hill, Samuel Remy, N. Luke Abraham, Mohit Dalvi, Catherine Hardacre, Alan J. Hewitt, Ben Johnson, Jane P. Mulcahy, and Steven T. Turnock
Atmos. Chem. Phys., 21, 15901–15927, https://doi.org/10.5194/acp-21-15901-2021, https://doi.org/10.5194/acp-21-15901-2021, 2021
Short summary
Short summary
Ammonium nitrate is hard to model because it forms and evaporates rapidly. One approach is to relate its equilibrium concentration to temperature, humidity, and the amount of nitric acid and ammonia gases. Using this approach, we limit the rate at which equilibrium is reached using various condensation rates in a climate model. We show that ammonium nitrate concentrations are highly sensitive to the condensation rate. Our results will help improve the representation of nitrate in climate models.
Jessica L. McCarty, Juha Aalto, Ville-Veikko Paunu, Steve R. Arnold, Sabine Eckhardt, Zbigniew Klimont, Justin J. Fain, Nikolaos Evangeliou, Ari Venäläinen, Nadezhda M. Tchebakova, Elena I. Parfenova, Kaarle Kupiainen, Amber J. Soja, Lin Huang, and Simon Wilson
Biogeosciences, 18, 5053–5083, https://doi.org/10.5194/bg-18-5053-2021, https://doi.org/10.5194/bg-18-5053-2021, 2021
Short summary
Short summary
Fires, including extreme fire seasons, and fire emissions are more common in the Arctic. A review and synthesis of current scientific literature find climate change and human activity in the north are fuelling an emerging Arctic fire regime, causing more black carbon and methane emissions within the Arctic. Uncertainties persist in characterizing future fire landscapes, and thus emissions, as well as policy-relevant challenges in understanding, monitoring, and managing Arctic fire regimes.
Karl Espen Yttri, Francesco Canonaco, Sabine Eckhardt, Nikolaos Evangeliou, Markus Fiebig, Hans Gundersen, Anne-Gunn Hjellbrekke, Cathrine Lund Myhre, Stephen Matthew Platt, André S. H. Prévôt, David Simpson, Sverre Solberg, Jason Surratt, Kjetil Tørseth, Hilde Uggerud, Marit Vadset, Xin Wan, and Wenche Aas
Atmos. Chem. Phys., 21, 7149–7170, https://doi.org/10.5194/acp-21-7149-2021, https://doi.org/10.5194/acp-21-7149-2021, 2021
Short summary
Short summary
Carbonaceous aerosol sources and trends were studied at the Birkenes Observatory. A large decrease in elemental carbon (EC; 2001–2018) and a smaller decline in levoglucosan (2008–2018) suggest that organic carbon (OC)/EC from traffic/industry is decreasing, whereas the abatement of OC/EC from biomass burning has been less successful. Positive matrix factorization apportioned 72 % of EC to fossil fuel sources and 53 % (PM2.5) and 78 % (PM10–2.5) of OC to biogenic sources.
Dongqi Lin, Basit Khan, Marwan Katurji, Leroy Bird, Ricardo Faria, and Laura E. Revell
Geosci. Model Dev., 14, 2503–2524, https://doi.org/10.5194/gmd-14-2503-2021, https://doi.org/10.5194/gmd-14-2503-2021, 2021
Short summary
Short summary
We present an open-source toolbox WRF4PALM, which enables weather dynamics simulation within urban landscapes. WRF4PALM passes meteorological information from the popular Weather Research and Forecasting (WRF) model to the turbulence-resolving PALM model system 6.0. WRF4PALM can potentially extend the use of WRF and PALM with realistic boundary conditions to any part of the world. WRF4PALM will help study air pollution dispersion, wind energy prospecting, and high-impact wind forecasting.
Nikolaos Evangeliou, Yves Balkanski, Sabine Eckhardt, Anne Cozic, Martin Van Damme, Pierre-François Coheur, Lieven Clarisse, Mark W. Shephard, Karen E. Cady-Pereira, and Didier Hauglustaine
Atmos. Chem. Phys., 21, 4431–4451, https://doi.org/10.5194/acp-21-4431-2021, https://doi.org/10.5194/acp-21-4431-2021, 2021
Short summary
Short summary
Ammonia, a substance that has played a key role in sustaining life, has been increasing in the atmosphere, affecting climate and humans. Understanding the reasons for this increase is important for the beneficial use of ammonia. The evolution of satellite products gives us the opportunity to calculate ammonia emissions easier. We calculated global ammonia emissions over the last 10 years, incorporated them into a chemistry model and recorded notable improvement in reproducing observations.
Nikolaos Evangeliou, Stephen M. Platt, Sabine Eckhardt, Cathrine Lund Myhre, Paolo Laj, Lucas Alados-Arboledas, John Backman, Benjamin T. Brem, Markus Fiebig, Harald Flentje, Angela Marinoni, Marco Pandolfi, Jesus Yus-Dìez, Natalia Prats, Jean P. Putaud, Karine Sellegri, Mar Sorribas, Konstantinos Eleftheriadis, Stergios Vratolis, Alfred Wiedensohler, and Andreas Stohl
Atmos. Chem. Phys., 21, 2675–2692, https://doi.org/10.5194/acp-21-2675-2021, https://doi.org/10.5194/acp-21-2675-2021, 2021
Short summary
Short summary
Following the transmission of SARS-CoV-2 to Europe, social distancing rules were introduced to prevent further spread. We investigate the impacts of the European lockdowns on black carbon (BC) emissions by means of in situ observations and inverse modelling. BC emissions declined by 23 kt in Europe during the lockdowns as compared with previous years and by 11 % as compared to the period prior to lockdowns. Residential combustion prevailed in Eastern Europe, as confirmed by remote sensing data.
Ondřej Tichý, Miroslav Hýža, Nikolaos Evangeliou, and Václav Šmídl
Atmos. Meas. Tech., 14, 803–818, https://doi.org/10.5194/amt-14-803-2021, https://doi.org/10.5194/amt-14-803-2021, 2021
Short summary
Short summary
We present an investigation of the usability of newly developed real-time concentration monitoring systems, which are based on the gamma-ray counting of aerosol filters. These high-resolution data were used for inverse modeling of the 106Ru release in 2017. Our inverse modeling results agree with previously published estimates and provide better temporal resolution of the estimates.
Fiona M. O'Connor, N. Luke Abraham, Mohit Dalvi, Gerd A. Folberth, Paul T. Griffiths, Catherine Hardacre, Ben T. Johnson, Ron Kahana, James Keeble, Byeonghyeon Kim, Olaf Morgenstern, Jane P. Mulcahy, Mark Richardson, Eddy Robertson, Jeongbyn Seo, Sungbo Shim, João C. Teixeira, Steven T. Turnock, Jonny Williams, Andrew J. Wiltshire, Stephanie Woodward, and Guang Zeng
Atmos. Chem. Phys., 21, 1211–1243, https://doi.org/10.5194/acp-21-1211-2021, https://doi.org/10.5194/acp-21-1211-2021, 2021
Short summary
Short summary
This paper calculates how changes in emissions and/or concentrations of different atmospheric constituents since the pre-industrial era have altered the Earth's energy budget at the present day using a metric called effective radiative forcing. The impact of land use change is also assessed. We find that individual contributions do not add linearly, and different Earth system interactions can affect the magnitude of the calculated effective radiative forcing.
Jane P. Mulcahy, Colin Johnson, Colin G. Jones, Adam C. Povey, Catherine E. Scott, Alistair Sellar, Steven T. Turnock, Matthew T. Woodhouse, Nathan Luke Abraham, Martin B. Andrews, Nicolas Bellouin, Jo Browse, Ken S. Carslaw, Mohit Dalvi, Gerd A. Folberth, Matthew Glover, Daniel P. Grosvenor, Catherine Hardacre, Richard Hill, Ben Johnson, Andy Jones, Zak Kipling, Graham Mann, James Mollard, Fiona M. O'Connor, Julien Palmiéri, Carly Reddington, Steven T. Rumbold, Mark Richardson, Nick A. J. Schutgens, Philip Stier, Marc Stringer, Yongming Tang, Jeremy Walton, Stephanie Woodward, and Andrew Yool
Geosci. Model Dev., 13, 6383–6423, https://doi.org/10.5194/gmd-13-6383-2020, https://doi.org/10.5194/gmd-13-6383-2020, 2020
Short summary
Short summary
Aerosols are an important component of the Earth system. Here, we comprehensively document and evaluate the aerosol schemes as implemented in the physical and Earth system models, HadGEM3-GC3.1 and UKESM1. This study provides a useful characterisation of the aerosol climatology in both models, facilitating the understanding of the numerous aerosol–climate interaction studies that will be conducted for CMIP6 and beyond.
Ondřej Tichý, Lukáš Ulrych, Václav Šmídl, Nikolaos Evangeliou, and Andreas Stohl
Geosci. Model Dev., 13, 5917–5934, https://doi.org/10.5194/gmd-13-5917-2020, https://doi.org/10.5194/gmd-13-5917-2020, 2020
Short summary
Short summary
We study the estimation of the temporal profile of an atmospheric release using formalization as a linear inverse problem. The problem is typically ill-posed, so all state-of-the-art methods need some form of regularization using additional information. We provide a sensitivity study on the prior source term and regularization parameters for the shape of the source term with a demonstration on the ETEX experimental release and the Cs-134 and Cs-137 dataset from the Chernobyl accident.
Cited articles
Abbasi, S., Jaafarzadeh, N., Zahedi, A., Ravanbakhsh, M., Abbaszadeh, S., and Turner, A.: Microplastics in the atmosphere of Ahvaz City, Iran, Journal of Environmental Sciences, 126, 95–102, https://doi.org/10.1016/j.jes.2022.02.044, 2023a. a
Abbasi, S., Rezaei, M., Mina, M., Sameni, A., Oleszczuk, P., Turner, A., and Ritsema, C.: Entrainment and horizontal atmospheric transport of microplastics from soil, Chemosphere, 322, 138150, https://doi.org/10.1016/j.chemosphere.2023.138150, 2023b. a
Abbasi, S., Ahmadi, F., Khodabakhshloo, N., Pourmahmood, H., Esfandiari, A., Mokhtarzadeh, Z., Rahnama, S., Dehbandi, R., Vazirzadeh, A., and Turner, A.: Atmospheric deposition of microplastics in Shiraz, Iran, Atmospheric Pollution Research, 15, 101977, https://doi.org/10.1016/j.apr.2023.101977, 2024. a, b
Abdul-Razzak, H. and Ghan, S. J.: A parameterization of aerosol activation: 2. Multiple aerosol types, Journal of Geophysical Research: Atmospheres, 105, 6837–6844, https://doi.org/10.1029/1999JD901161, 2000. a
Adhikari, K., Pearce, C. I., Sanguinet, K. A., Bary, A. I., Chowdhury, I., Eggleston, I., Xing, B., and Flury, M.: Accumulation of microplastics in soil after long-term application of biosolids and atmospheric deposition, Science of the Total Environment, 912, 168883, https://doi.org/10.1016/j.scitotenv.2023.168883, 2024. a
Allen, D., Allen, S., Abbasi, S., Baker, A., Bergmann, M., Brahney, J., Butler, T., Duce, R. A., Eckhardt, S., Evangeliou, N., Jickells, T., Kanakidou, M., Kershaw, P., Laj, P., Levermore, J., Li, D., Liss, P., Liu, K., Mahowald, N., Masque, P., Materić, D., Mayes, A. G., McGinnity, P., Osvath, I., Prather, K. A., Prospero, J. M., Revell, L. E., Sander, S. G., Shim, W. J., Slade, J., Stein, A., Tarasova, O., and Wright, S.: Microplastics and nanoplastics in the marine-atmosphere environment, Nature Reviews Earth & Environment, 3, 393–405, https://doi.org/10.1038/s43017-022-00292-x, 2022. a, b
Allen, S., Allen, D., Phoenix, V. R., Le Roux, G., Durántez Jiménez, P., Simonneau, A., Binet, S., and Galop, D.: Atmospheric transport and deposition of microplastics in a remote mountain catchment, Nature Geoscience, 12, 339–344, https://doi.org/10.1038/s41561-019-0335-5, 2019. a
Allen, S., Allen, D., Moss, K., Le Roux, G., Phoenix, V. R., and Sonke, J. E.: Examination of the ocean as a source for atmospheric microplastics, PloS one, 15, e0232746, https://doi.org/10.1371/journal.pone.0232746, 2020. a
Allen, S., Allen, D., Baladima, F., Phoenix, V. R., Thomas, J. L., Le Roux, G., and Sonke, J. E.: Evidence of free tropospheric and long-range transport of microplastic at Pic du Midi Observatory, Nature Communications, 12, 7242, https://doi.org/10.1038/s41467-021-27454-7, 2021. a
Amato-Lourenço, L. F., Costa, N. d. S. X., Dantas, K. C., dos Santos Galvão, L., Moralles, F. N., Lombardi, S. C. F. S., Júnior, A. M., Lindoso, J. A. L., Ando, R. A., Lima, F. G., Carvalho-Oliveira, R., and Mauad, T.: Airborne microplastics and SARS-CoV-2 in total suspended particles in the area surrounding the largest medical centre in Latin America, Environmental Pollution, 292, 118299, https://doi.org/10.1016/j.envpol.2021.118299, 2022. a
Ankit, Y., Ajay, K., Nischal, S., Kaushal, S., Kataria, V., Dietze, E., and Anoop, A.: Atmospheric deposition of microplastics in an urban conglomerate near to the foothills of Indian Himalayas: investigating the quantity, chemical character, possible sources and transport mechanisms, Environmental Pollution, 361, 124629, https://doi.org/10.1016/j.envpol.2024.124629, 2024. a
Archibald, A. T., O'Connor, F. M., Abraham, N. L., Archer-Nicholls, S., Chipperfield, M. P., Dalvi, M., Folberth, G. A., Dennison, F., Dhomse, S. S., Griffiths, P. T., Hardacre, C., Hewitt, A. J., Hill, R. S., Johnson, C. E., Keeble, J., Köhler, M. O., Morgenstern, O., Mulcahy, J. P., Ordóñez, C., Pope, R. J., Rumbold, S. T., Russo, M. R., Savage, N. H., Sellar, A., Stringer, M., Turnock, S. T., Wild, O., and Zeng, G.: Description and evaluation of the UKCA stratosphere–troposphere chemistry scheme (StratTrop vn 1.0) implemented in UKESM1, Geosci. Model Dev., 13, 1223–1266, https://doi.org/10.5194/gmd-13-1223-2020, 2020. a, b
Aves, A. R., Revell, L. E., Gaw, S., Ruffell, H., Schuddeboom, A., Wotherspoon, N. E., LaRue, M., and McDonald, A. J.: First evidence of microplastics in Antarctic snow, The Cryosphere, 16, 2127–2145, https://doi.org/10.5194/tc-16-2127-2022, 2022. a
Bakels, L., Tatsii, D., Tipka, A., Thompson, R., Dütsch, M., Blaschek, M., Seibert, P., Baier, K., Bucci, S., Cassiani, M., Eckhardt, S., Groot Zwaaftink, C., Henne, S., Kaufmann, P., Lechner, V., Maurer, C., Mulder, M. D., Pisso, I., Plach, A., Subramanian, R., Vojta, M., and Stohl, A.: FLEXPART version 11: improved accuracy, efficiency, and flexibility, Geosci. Model Dev., 17, 7595–7627, https://doi.org/10.5194/gmd-17-7595-2024, 2024. a
Bellouin, N.: Interaction of UKCA aerosols with radiation: UKCA RADAER, Tech. rep., Tech. rep., UK Met Office, http://www.ukca.ac.uk/wiki (last access: 18 November 2025), 2010. a
Bergmann, M., Mützel, S., Primpke, S., Tekman, M. B., Trachsel, J., and Gerdts, G.: White and wonderful? Microplastics prevail in snow from the Alps to the Arctic, Science Advances, 5, eaax1157, https://doi.org/10.1126/sciadv.aax1157, 2019. a
Brahana, P., Zhang, M., Nakouzi, E., and Bharti, B.: Weathering influences the ice nucleation activity of microplastics, Nature Communications, 15, 9579, https://doi.org/10.1038/s41467-024-53987-8, 2024. a, b
Brahney, J., Mahowald, N., Prank, M., Cornwell, G., Klimont, Z., Matsui, H., and Prather, K. A.: Constraining the atmospheric limb of the plastic cycle, Proceedings of the National Academy of Sciences, 118, e2020719118, https://doi.org/10.1073/pnas.2020719118, 2021. a, b, c
Bucci, S., Richon, C., and Bakels, L.: Exploring the Transport Path of Oceanic Microplastics in the Atmosphere, Environmental Science & Technology, 58, 14338–14347, https://doi.org/10.1021/acs.est.4c03216, 2024. a
Busse, H. L., Ariyasena, D. D., Orris, J., and Freedman, M. A.: Pristine and Aged Microplastics Can Nucleate Ice through Immersion Freezing, ACS ES&T Air, https://doi.org/10.1021/acsestair.4c00146, 2024. a, b
Cai, L., Wang, J., Peng, J., Tan, Z., Zhan, Z., Tan, X., and Chen, Q.: Characteristic of microplastics in the atmospheric fallout from Dongguan city, China: preliminary research and first evidence, Environmental Science and Pollution Research, 24, 24928–24935, https://doi.org/10.1007/s11356-017-0116-x, 2017. a
Carpenter, E. J. and Smith, K. L.: Plastics on the Sargasso Sea Surface, Science, 175, 1240–1241, https://doi.org/10.1126/science.175.4027.1240, 1972. a
Carpenter, E. J., Anderson, S. J., Harvey, G. R., Miklas, H. P., and Peck, B. B.: Polystyrene Spherules in Coastal Waters, Science, 178, 749–750, https://doi.org/10.1126/science.178.4062.749, 1972. a
Celik-Saglam, I., Yurtsever, M., Civan, M., Yurdakul, S., and Cetin, B.: Evaluation of levels and sources of microplastics and phthalic acid esters and their relationships in the atmosphere of highly industrialized and urbanized Gebze, Türkiye, Science of the Total Environment, 881, 163508, https://doi.org/10.1016/j.scitotenv.2023.163508, 2023. a
Chandrakanthan, K., Fraser, M. P., and Herckes, P.: Airborne microplastics in a suburban location in the desert southwest: occurrence and identification challenges, Atmospheric Environment, 298, 119617, https://doi.org/10.1016/j.atmosenv.2023.119617, 2023. a
Chang, D. Y., Jeong, S., Shin, J., Park, J., Park, C. R., Choi, S., Chun, C.-H., Chae, M.-Y., and Lim, B. C.: First quantification and chemical characterization of atmospheric microplastics observed in Seoul, South Korea, Environmental Pollution, 327, 121481, https://doi.org/10.1016/j.envpol.2023.121481, 2023. a
Chen, Q., Shi, G., Revell, L. E., Zhang, J., Zuo, C., Wang, D., Le Ru, E. C., Wu, G., and Mitrano, D. M.: Long-range atmospheric transport of microplastics across the southern hemisphere, Nature Communications, 14, 7898, https://doi.org/10.1038/s41467-023-43695-0, 2023. a, b, c
Chen, Y., Meng, Y., Liu, G., Huang, X., Chai, G., and Xie, Y.: Atmospheric deposition of microplastics at a western China metropolis: Relationship with underlying surface types and human exposure, Environmental Pollution, 355, 124192, https://doi.org/10.1016/j.envpol.2024.124192, 2024. a
Chenappan, N. K., Ibrahim, Y. S., Anuar, S. T., Yusof, K. M. K. K., Jaafar, M., Ahamad, F., Sulaiman, W. Z. W., and Mohamad, N.: Quantification and characterization of airborne microplastics in the coastal area of Terengganu, Malaysia, Environmental Monitoring and Assessment, 196, 242, https://doi.org/10.1007/s10661-024-12381-z, 2024. a
Dahal, Y. and Babel, S.: Abundance and characteristics of atmospheric microplastics deposition in indoor and outdoor environments in Bangkok, Thailand, Air Quality, Atmosphere & Health, 18, 1–21, https://doi.org/10.1007/s11869-024-01652-w, 2024. a
Dehhaghi, S. and Pardakhti, A.: Characterization of microplastics in the atmosphere of megacity Tehran (Iran), Environmental Science and Pollution Research, 30, 106026–106037, https://doi.org/10.1007/s11356-023-29897-5, 2023. a
Ding, J., Sun, C., He, C., Zheng, L., Dai, D., and Li, F.: Atmospheric microplastics in the Northwestern Pacific Ocean: Distribution, source, and deposition, Science of the Total Environment, 829, 154337, https://doi.org/10.1016/j.scitotenv.2022.154337, 2022. a
Dong, H., Wang, L., Wang, X., Xu, L., Chen, M., Gong, P., and Wang, C.: Microplastics in a remote lake basin of the Tibetan Plateau: Impacts of atmospheric transport and glacial melting, Environmental science & technology, 55, 12951–12960, https://doi.org/10.1021/acs.est.1c03227, 2021. a
Dris, R., Gasperi, J., Rocher, V., Saad, M., Renault, N., and Tassin, B.: Microplastic contamination in an urban area: a case study in Greater Paris, Environmental Chemistry, 12, 592–599, https://doi.org/10.1071/EN14167, 2015. a, b
Du, A., Zhao, Y., Hu, C., Wang, X., Cheng, H., Xia, W., Wang, L., and Xing, J.: Distribution characteristics of atmospheric microplastics in typical desert agricultural regions, Environmental Toxicology and Chemistry, 43, 1982–1995, https://doi.org/10.1002/etc.5951, 2024. a
Edwards, J. M. and Slingo, A.: Studies with a Flexible New Radiation Code. I: Choosing a Configuration for a Large-Scale Model, Quarterly Journal of the Royal Meteorological Society, 122, 689–719, https://doi.org/10.1002/qj.49712253107, 1996. a
Evangeliou, N., Grythe, H., Klimont, Z., Heyes, C., Eckhardt, S., Lopez-Aparicio, S., and Stohl, A.: Atmospheric transport is a major pathway of microplastics to remote regions, Nature Communications, 11, 3381, https://doi.org/10.1038/s41467-020-17201-9, 2020. a
Evangeliou, N., Tichý, O., Eckhardt, S., Zwaaftink, C. G., and Brahney, J.: Sources and fate of atmospheric microplastics revealed from inverse and dispersion modelling: From global emissions to deposition, Journal of Hazardous Materials, 432, 128585, https://doi.org/10.1016/j.jhazmat.2022.128585, 2022. a, b, c, d, e, f, g, h, i, j, k
Fan, W., Salmond, J. A., Dirks, K. N., Cabedo Sanz, P., Miskelly, G. M., and Rindelaub, J. D.: Evidence and mass quantification of atmospheric microplastics in a coastal New Zealand city, Environmental Science & Technology, 56, 17556–17568, https://doi.org/10.1021/acs.est.2c05850, 2022. a
Ferraz, G. M., de Moraes, A. d. S., Dos Santos, G. B., de Miranda, I. T., Zucolotto, V., and Urban, R. C.: Atmospheric microplastics deposition assessment in a countryside municipality in Southeastern Brazil: A case study at a state elementary school, Chemosphere, 369, 143886, https://doi.org/10.1016/j.chemosphere.2024.143886, 2024. a
Ferrero, L., Scibetta, L., Markuszewski, P., Mazurkiewicz, M., Drozdowska, V., Makuch, P., Jutrzenka-Trzebiatowska, P., Zaleska-Medynska, A., Andò, S., Saliu, F., Nilsson, E. D., and Bolzacchini, E.: Airborne and marine microplastics from an oceanographic survey at the Baltic Sea: an emerging role of air-sea interaction?, Science of The Total Environment, 824, 153709, https://doi.org/10.1016/j.scitotenv.2022.153709, 2022. a
Fu, Y., Pang, Q., Ga, S. L. Z., Wu, P., Wang, Y., Mao, M., Yuan, Z., Xu, X., Liu, K., Wang, X., Li, D., and Zhang, Y.: Modeling atmospheric microplastic cycle by GEOS-Chem: An optimized estimation by a global dataset suggests likely 50 times lower ocean emissions, One Earth, 6, 705–714, https://doi.org/10.1016/j.oneear.2023.05.012, 2023. a, b
Ganguly, M. and Ariya, P. A.: Ice Nucleation of Model Nanoplastics and Microplastics: A Novel Synthetic Protocol and the Influence of Particle Capping at Diverse Atmospheric Environments, ACS Earth and Space Chemistry, 3, 1729–1739, https://doi.org/10.1021/acsearthspacechem.9b00132, 2019. a
Gelfand, A. E.: Gibbs Sampling, Journal of the American Statistical Association, 95, 1300–1304, https://doi.org/10.1080/01621459.2000.10474335, 2000. a
Gewert, B., Plassmann, M. M., and MacLeod, M.: Pathways for degradation of plastic polymers floating in the marine environment, Environ. Sci.: Processes Impacts, 17, 1513–1521, https://doi.org/10.1039/C5EM00207A, 2015. a
Geyer, R., Jambeck, J. R., and Law, K. L.: Production, use, and fate of all plastics ever made, Science Advances, 3, e1700782, https://doi.org/10.1126/sciadv.1700782, 2017. a, b
Guo, Z., Chen, J., Yu, H., Zhang, Q., Duo, B., and Cui, X.: Characteristics, sources and potential ecological risk of atmospheric microplastics in Lhasa city, Environmental Geochemistry and Health, 46, 347, https://doi.org/10.1007/s10653-024-02125-w, 2024. a
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global reanalysis, Quarterly Journal of the Royal Meteorological Society, 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020. a
Hu, T., He, P., Yang, Z., Wang, W., Zhang, H., Shao, L., and Lü, F.: Emission of airborne microplastics from municipal solid waste transfer stations in downtown, Science of the Total Environment, 828, 154400, https://doi.org/10.1016/j.scitotenv.2022.154400, 2022. a
Huang, X., Chen, Y., Meng, Y., Liu, G., and Yang, M.: Are we ignoring the role of urban forests in intercepting atmospheric microplastics?, Journal of Hazardous Materials, 436, 129096, https://doi.org/10.1016/j.jhazmat.2022.129096, 2022. a
Huang, X., Chen, Y., Meng, Y., and Liu, G.: Mitigating airborne microplastics pollution from perspectives of precipitation and underlying surface types, Water Research, 243, 120385, https://doi.org/10.1016/j.watres.2023.120385, 2023. a
Huang, Y., He, T., Yan, M., Yang, L., Gong, H., Wang, W., Qing, X., and Wang, J.: Atmospheric transport and deposition of microplastics in a subtropical urban environment, Journal of Hazardous Materials, 416, 126168, https://doi.org/10.1016/j.jhazmat.2021.126168, 2021. a
Illuminati, S., Notarstefano, V., Tinari, C., Fanelli, M., Girolametti, F., Ajdini, B., Scarchilli, C., Ciardini, V., Iaccarino, A., Giorgini, E., Annibaldi, A., and Truzzi, C.: Microplastics in bulk atmospheric deposition along the coastal region of Victoria Land, Antarctica, Science of the Total Environment, 949, 175221, https://doi.org/10.1016/j.scitotenv.2024.175221, 2024. a
Isobe, A., Azuma, T., Cordova, M. R., Cózar, A., Galgani, F., Hagita, R., Kanhai, L. D., Imai, K., Iwasaki, S., Kako, S., Kozlovskii, N., Lusher, A. L., Mason, S. A., Michida, Y., Mituhasi, T., Morii, Y., Mukai, T., Popova, A., Shimizu, K., Tokai, T., Uchida, K., Yagi, M., and Zhang, W.: A Multilevel Dataset of Microplastic Abundance in the World's Upper Ocean and the Laurentian Great Lakes, Microplastics and Nanoplastics, 1, 16, https://doi.org/10.1186/s43591-021-00013-z, 2021. a
Jenner, L. C., Sadofsky, L. R., Danopoulos, E., Chapman, E., White, D., Jenkins, R. L., and Rotchell, J. M.: Outdoor atmospheric microplastics within the Humber Region (United Kingdom): Quantification and chemical characterisation of deposited particles present, Atmosphere, 13, 265, https://doi.org/10.3390/atmos13020265, 2022. a
Jia, Q., Duan, Y., Han, X., Sun, X., Munyaneza, J., Ma, J., and Xiu, G.: Atmospheric deposition of microplastics in the megalopolis (Shanghai) during rainy season: Characteristics, influence factors, and source, Science of the Total Environment, 847, 157609, https://doi.org/10.1016/j.scitotenv.2022.157609, 2022. a, b
Jiang, J., Ren, H., Wang, X., and Liu, B.: Pollution characteristics and potential health effects of airborne microplastics and culturable microorganisms during urban haze in Harbin, China, Bioresource Technology, 393, 130132, https://doi.org/10.1016/j.biortech.2023.130132, 2024. a
Jones, A. C., Hill, A., Remy, S., Abraham, N. L., Dalvi, M., Hardacre, C., Hewitt, A. J., Johnson, B., Mulcahy, J. P., and Turnock, S. T.: Exploring the sensitivity of atmospheric nitrate concentrations to nitric acid uptake rate using the Met Office's Unified Model, Atmos. Chem. Phys., 21, 15901–15927, https://doi.org/10.5194/acp-21-15901-2021, 2021. a
Jung, C.-C., Chao, Y.-C., Hsu, H.-T., and Gong, D.-W.: Spatial and seasonal variations of atmospheric microplastics in high and low population density areas at the intersection of tropical and subtropical regions, Environmental Research, 263, 119996, https://doi.org/10.1016/j.envres.2024.119996, 2024. a, b
Kau, D., Materić, D., Holzinger, R., Baumann-Stanzer, K., Schauer, G., and Kasper-Giebl, A.: Fine micro- and nanoplastics concentrations in particulate matter samples from the high alpine site Sonnblick, Austria, Chemosphere, 352, 141410, https://doi.org/10.1016/j.chemosphere.2024.141410, 2024. a, b, c
Kernchen, S., Schmalz, H., Löder, M. G., Georgi, C., Einhorn, A., Greiner, A., Nölscher, A. C., Laforsch, C., and Held, A.: Atmospheric deposition studies of microplastics in Central Germany, Air Quality, Atmosphere & Health, 17, 2247–2261, https://doi.org/10.1007/s11869-024-01571-w, 2024. a
Klein, M., Bechtel, B., Brecht, T., and Fischer, E. K.: Spatial distribution of atmospheric microplastics in bulk-deposition of urban and rural environments–A one-year follow-up study in northern Germany, Science of The Total Environment, 901, 165923, https://doi.org/10.1016/j.scitotenv.2023.165923, 2023. a
Knobloch, E., Ruffell, H., Aves, A., Pantos, O., Gaw, S., and Revell, L. E.: Comparison of Deposition Sampling Methods to Collect Airborne Microplastics in Christchurch, New Zealand, Water, Air, & Soil Pollution, 232, 133, https://doi.org/10.1007/s11270-021-05080-9, 2021. a
Kvale, K., Prowe, A. E. F., Chien, C.-T., Landolfi, A., and Oschlies, A.: Zooplankton grazing of microplastic can accelerate global loss of ocean oxygen, Nature Communications, 12, 2358, https://doi.org/10.1038/s41467-021-22554-w, 2021. a
Kyriakoudes, G. and Turner, A.: Suspended and deposited microplastics in the coastal atmosphere of southwest England, Chemosphere, 343, 140258, https://doi.org/10.1016/j.chemosphere.2023.140258, 2023. a
Leusch, F. D., Lu, H.-C., Perera, K., Neale, P. A., and Ziajahromi, S.: Analysis of the literature shows a remarkably consistent relationship between size and abundance of microplastics across different environmental matrices, Environmental Pollution, 319, 120984, https://doi.org/10.1016/j.envpol.2022.120984, 2023. a, b, c, d, e
Li, J., Zhang, J., Ren, S., Huang, D., Liu, F., Li, Z., Zhang, H., Zhao, M., Cao, Y., Mofolo, S., Liang, J., Xu, W., Jones, D. L., Chadwick, D. R., Liu, X., and Wang, K.: Atmospheric deposition of microplastics in a rural region of North China Plain, Science of the Total Environment, 877, 162947, https://doi.org/10.1016/j.scitotenv.2023.162947, 2023. a
Liao, Z., Ji, X., Ma, Y., Lv, B., Huang, W., Zhu, X., Fang, M., Wang, Q., Wang, X., Dahlgren, R., and Shang, X.: Airborne microplastics in indoor and outdoor environments of a coastal city in Eastern China, Journal of hazardous materials, 417, 126007, https://doi.org/10.1016/j.jhazmat.2021.126007, 2021. a
Limsiriwong, K. and Winijkul, E.: Exploring personal exposure to airborne microplastics across various work environments in Pathum Thani Province, Thailand, International Journal of Environmental Research and Public Health, 20, 7162, https://doi.org/10.3390/ijerph20247162, 2023. a
Liu, B., Lu, Y., Deng, H., Huang, H., Wei, N., Jiang, Y., Jiang, Y., Liu, L., Sun, K., and Zheng, H.: Occurrence of microplastics in the seawater and atmosphere of the South China Sea: Pollution patterns and interrelationship, Science of the Total Environment, 889, 164173, https://doi.org/10.1016/j.scitotenv.2023.164173, 2023a. a
Liu, K., Wang, X., Fang, T., Xu, P., Zhu, L., and Li, D.: Source and potential risk assessment of suspended atmospheric microplastics in Shanghai, Science of The Total Environment, 675, 462–471, https://doi.org/10.1016/j.scitotenv.2019.04.110, 2019a. a, b
Liu, K., Wang, X., Wei, N., Song, Z., and Li, D.: Accurate quantification and transport estimation of suspended atmospheric microplastics in megacities: Implications for human health, Environment International, 132, 105127, https://doi.org/10.1016/j.envint.2019.105127, 2019b. a
Liu, K., Wu, T., Wang, X., Song, Z., Zong, C., Wei, N., and Li, D.: Consistent Transport of Terrestrial Microplastics to the Ocean through Atmosphere, Environmental Science & Technology, 53, 10612–10619, https://doi.org/10.1021/acs.est.9b03427, 2019c. a
Liu, K., Wang, X., Song, Z., Wei, N., Ye, H., Cong, X., Zhao, L., Li, Y., Qu, L., Zhu, L., Zhang, F., Zong, C., Jiang, C., and Li, D.: Global inventory of atmospheric fibrous microplastics input into the ocean: An implication from the indoor origin, Journal of Hazardous Materials, 400, 123223, https://doi.org/10.1016/j.jhazmat.2020.123223, 2020. a
Liu, P., Shao, L., Zhang, Y., Silvonen, V., Oswin, H., Cao, Y., Guo, Z., Ma, X., and Morawska, L.: Comparative study on physicochemical characteristics of atmospheric microplastics in winter in inland and coastal megacities: A case of Beijing and Shanghai, China, Science of the Total Environment, 912, 169308, https://doi.org/10.1016/j.scitotenv.2023.169308, 2024. a
Liu, P., Shao, L., Guo, Z., Zhang, Y., Cao, Y., Ma, X., and Morawska, L.: Physicochemical characteristics of airborne microplastics of a typical coastal city in the Yangtze River Delta Region, China, Journal of Environmental Sciences, 148, 602–613, https://doi.org/10.1016/j.jes.2023.09.027 2025. a
Liu, S., Bai, F., Men, Z., Gu, X., Wang, F., Li, Y., and Liu, Q.: Spatial distribution, source apportionment and potential ecological risk assessment of suspended atmosphere microplastics in different underlying surfaces in Harbin, Science of the Total Environment, 901, 166040, https://doi.org/10.1016/j.scitotenv.2023.166040, 2023b. a
Long, X., Zhang, S., Huang, D., Chang, C., Peng, C., Liu, K., Wang, K., Liu, X., Fu, T.-M., Han, Y., Pengcheng, L., Han, Y., Cao, J., Li, X., Guo, Z., and Chen, Y.: Atmospheric microplastics emission source potentials and deposition patterns in semi-arid croplands of Northern China, Journal of Geophysical Research: Atmospheres, 129, e2024JD041546, https://doi.org/10.1029/2024JD041546, 2024. a
López-Rosales, A., Ferreiro, B., Andrade, J., Fernández-Amado, M., González-Pleiter, M., López-Mahía, P., Rosal, R., and Muniategui-Lorenzo, S.: A reliable method to determine airborne microplastics using quantum cascade laser infrared spectrometry, Science of the Total Environment, 913, 169678, https://doi.org/10.1016/j.scitotenv.2023.169678, 2024. a
Lu, L., Zhang, R., Wang, K., Tian, J., Wu, Q., and Xu, L.: Occurrence, influencing factors and sources of atmospheric microplastics in peri-urban farmland ecosystems of Beijing, China, Science of the Total Environment, 912, 168834, https://doi.org/10.1016/j.scitotenv.2023.168834, 2024. a
Luo, X., Zhang, Y., Kang, S., Chen, R., Gao, T., and Allen, S.: Atmospheric emissions of microplastics entrained with dust from potential source regions, Journal of Hazardous Materials, 488, 137509, https://doi.org/10.1016/j.jhazmat.2025.137509, 2025. a
Luo, Y., Naidu, R., and Fang, C.: Accelerated transformation of plastic furniture into microplastics and nanoplastics by fire, Environmental Pollution, 317, 120737, https://doi.org/10.1016/j.envpol.2022.120737, 2023. a
MacLeod, M., Arp, H. P. H., Tekman, M. B., and Jahnke, A.: The global threat from plastic pollution, Science, 373, 61–65, https://doi.org/10.1126/science.abg5433, 2021. a
Mandal, M., Roy, A., Singh, P., and Sarkar, A.: Quantification and characterization of airborne microplastics and their possible hazards: A case study from an urban sprawl in Eastern India, Frontiers in Environmental Chemistry, 5, 1499873, https://doi.org/10.3389/fenvc.2024.1499873, 2024. a
Mann, G. W., Carslaw, K. S., Spracklen, D. V., Ridley, D. A., Manktelow, P. T., Chipperfield, M. P., Pickering, S. J., and Johnson, C. E.: Description and evaluation of GLOMAP-mode: a modal global aerosol microphysics model for the UKCA composition-climate model, Geosci. Model Dev., 3, 519–551, https://doi.org/10.5194/gmd-3-519-2010, 2010. a
Materić, D., Kjær, H. A., Vallelonga, P., Tison, J.-L., Röckmann, T., and Holzinger, R.: Nanoplastics measurements in Northern and Southern polar ice, Environmental Research, 208, 112741, https://doi.org/10.1016/j.envres.2022.112741, 2022. a
McErlich, C.: Microplastic Modelling: July 27th, 2025 release (Version 2.0), Zenodo [data set], https://doi.org/10.5281/zenodo.16510854, 2025. a, b, c
Mokammel, A., Naddafi, K., Hassanvand, M. S., Nabizadeh, R., Faridi, S., Noruzzade, E., and Yaghmaeian, K.: Airborne microplastics pollution in municipal solid waste processing and disposal complex: Concentration, characterization, and composition, Emerging Contaminants, 11, 100459, https://doi.org/10.1016/j.emcon.2024.100459, 2025. a
Mulcahy, J. P., Jones, C., Sellar, A., Johnson, B., Boutle, I. A., Jones, A., Andrews, T., Rumbold, S. T., Mollard, J., Bellouin, N., Johnson, C. E., Williams, K. D., Grosvenor, D. P., and McCoy, D. T.: Improved Aerosol Processes and Effective Radiative Forcing in HadGEM3 and UKESM1, Journal of Advances in Modeling Earth Systems, 10, 2786–2805, https://doi.org/10.1029/2018MS001464, 2018. a, b
Mulcahy, J. P., Johnson, C., Jones, C. G., Povey, A. C., Scott, C. E., Sellar, A., Turnock, S. T., Woodhouse, M. T., Abraham, N. L., Andrews, M. B., Bellouin, N., Browse, J., Carslaw, K. S., Dalvi, M., Folberth, G. A., Glover, M., Grosvenor, D. P., Hardacre, C., Hill, R., Johnson, B., Jones, A., Kipling, Z., Mann, G., Mollard, J., O'Connor, F. M., Palmiéri, J., Reddington, C., Rumbold, S. T., Richardson, M., Schutgens, N. A. J., Stier, P., Stringer, M., Tang, Y., Walton, J., Woodward, S., and Yool, A.: Description and evaluation of aerosol in UKESM1 and HadGEM3-GC3.1 CMIP6 historical simulations, Geosci. Model Dev., 13, 6383–6423, https://doi.org/10.5194/gmd-13-6383-2020, 2020. a, b
Mulcahy, J. P., Jones, C. G., Rumbold, S. T., Kuhlbrodt, T., Dittus, A. J., Blockley, E. W., Yool, A., Walton, J., Hardacre, C., Andrews, T., Bodas-Salcedo, A., Stringer, M., de Mora, L., Harris, P., Hill, R., Kelley, D., Robertson, E., and Tang, Y.: UKESM1.1: development and evaluation of an updated configuration of the UK Earth System Model, Geosci. Model Dev., 16, 1569–1600, https://doi.org/10.5194/gmd-16-1569-2023, 2023. a, b
Myat, Y. N., Kongpran, J., Vattanasit, U., and Tanaka, S.: Airborne microplastics in the roadside and residential areas of Southern Thailand, Case Studies in Chemical and Environmental Engineering, 9, 100682, https://doi.org/10.1016/j.cscee.2024.100682, 2024. a
Nafea, T. H., Chan, F. K. S., Xu, Y., Xiao, H., and He, J.: Unveiling the seasonal transport and exposure risks of atmospheric microplastics in the southern area of the Yangtze River Delta, China, Environmental Pollution, 367, 125567, https://doi.org/10.1016/j.envpol.2024.125567, 2025. a
Parashar, N. and Hait, S.: Plastic rain – Atmospheric microplastics deposition in urban and peri-urban areas of Patna City, Bihar, India: Distribution, characteristics, transport, and source analysis, Journal of Hazardous Materials, 458, 131883, https://doi.org/10.1016/j.jhazmat.2023.131883, 2023. a
Perera, K., Ziajahromi, S., Bengtson Nash, S., Manage, P. M., and Leusch, F. D.: Airborne microplastics in indoor and outdoor environments of a developing country in South Asia: abundance, distribution, morphology, and possible sources, Environmental science & technology, 56, 16676–16685, 2022. a
Purwiyanto, A. I. S., Prartono, T., Riani, E., Naulita, Y., Cordova, M. R., and Koropitan, A. F.: The deposition of atmospheric microplastics in Jakarta-Indonesia: The coastal urban area, Marine Pollution Bulletin, 174, 113195, https://doi.org/10.1016/j.marpolbul.2021.113195, 2022. a
Rao, W., Fan, Y., Li, H., Qian, X., and Liu, T.: New insights into the long-term dynamics and deposition-suspension distribution of atmospheric microplastics in an urban area, Journal of Hazardous Materials, 463, 132860, https://doi.org/10.1016/j.jhazmat.2023.132860, 2024. a
Roblin, B., Ryan, M., Vreugdenhil, A., and Aherne, J.: Ambient atmospheric deposition of anthropogenic microfibers and microplastics on the western periphery of Europe (Ireland), Environmental science & technology, 54, 11100–11108, https://doi.org/10.1021/acs.est.0c04000, 2020. a
Romarate, R. A., Ancla, S. M. B., Patilan, D. M. M., Inocente, S. A. T., Pacilan, C. J. M., Sinco, A. L., Guihawan, J. Q., Capangpangan, R. Y., Lubguban, A. A., and Bacosa, H. P.: Breathing plastics in Metro Manila, Philippines: Presence of suspended atmospheric microplastics in ambient air, Environmental Science and Pollution Research, 30, 53662–53673, https://doi.org/10.1007/s11356-023-26117-y, 2023. a
Ryan, A. C., Allen, D., Allen, S., Maselli, V., LeBlanc, A., Kelleher, L., Krause, S., Walker, T. R., and Cohen, M.: Transport and deposition of ocean-sourced microplastic particles by a North Atlantic hurricane, Communications Earth & Environment, 4, 442, https://doi.org/10.1038/s43247-023-01115-7, 2023. a
Sarathana, D. and Winijkul, E.: Concentrations of airborne microplastics during the dry season at five locations in Bangkok Metropolitan Region, Thailand, Atmosphere, 14, 28, https://doi.org/10.3390/atmos14010028, 2022. a
Seifried, T. M., Nikkho, S., Morales Murillo, A., Andrew, L. J., Grant, E. R., and Bertram, A. K.: Microplastic Particles Contain Ice Nucleation Sites That Can Be Inhibited by Atmospheric Aging, Environmental Science & Technology, 58, 15711–15721, https://doi.org/10.1021/acs.est.4c02639, 2024. a, b
Seinfeld, J. H. and Pandis, S. N.: Atmospheric chemistry and physics: from air pollution to climate change, John Wiley & Sons, ISBN 978-1-118-94740-1, 2016. a
Sellar, A. A., Jones, C. G., Mulcahy, J. P., Tang, Y., Yool, A., Wiltshire, A., O'Connor, F. M., Stringer, M., Hill, R., Palmieri, J., Woodward, S., de Mora, L., Kuhlbrodt, T., Rumbold, S. T., Kelley, D. I., Ellis, R., Johnson, C. E., Walton, J., Abraham, N. L., Andrews, M. B., Andrews, T., Archibald, A. T., Berthou, S., Burke, E., Blockley, E., Carslaw, K., Dalvi, M., Edwards, J., Folberth, G. A., Gedney, N., Griffiths, P. T., Harper, A. B., Hendry, M. A., Hewitt, A. J., Johnson, B., Jones, A., Jones, C. D., Keeble, J., Liddicoat, S., Morgenstern, O., Parker, R. J., Predoi, V., Robertson, E., Siahaan, A., Smith, R. S., Swaminathan, R., Woodhouse, M. T., Zeng, G., and Zerroukat, M.: UKESM1: Description and Evaluation of the U.K. Earth System Model, Journal of Advances in Modeling Earth Systems, 11, 4513–4558, https://doi.org/10.1029/2019MS001739, 2019. a
Shruti, V., Kutralam-Muniasamy, G., Pérez-Guevara, F., Roy, P. D., and Martínez, I. E.: Occurrence and characteristics of atmospheric microplastics in Mexico City, Science of The Total Environment, 847, 157601, https://doi.org/10.1016/j.scitotenv.2022.157601, 2022. a
Stride, B., Abolfathi, S., Bending, G. D., and Pearson, J.: Quantifying microplastic dispersion due to density effects, Journal of Hazardous Materials, 466, 133440, https://doi.org/10.1016/j.jhazmat.2024.133440, 2024. a
Sun, J., Peng, Z., Zhu, Z.-R., Fu, W., Dai, X., and Ni, B.-J.: The atmospheric microplastics deposition contributes to microplastic pollution in urban waters, Water Research, 225, 119116, https://doi.org/10.1016/j.watres.2022.119116, 2022. a
Syafina, P. R., Yudison, A. P., Sembiring, E., Irsyad, M., and Tomo, H. S.: Identification of fibrous suspended atmospheric microplastics in Bandung Metropolitan Area, Indonesia, Chemosphere, 308, 136194, https://doi.org/10.1016/j.chemosphere.2022.136194, 2022. a
Szewc, K., Graca, B., and Dołęga, A.: Atmospheric deposition of microplastics in the coastal zone: Characteristics and relationship with meteorological factors, Science of the Total Environment, 761, 143272, https://doi.org/10.1016/j.scitotenv.2020.143272, 2021. a
Šaravanja, A., Pušić, T., and Dekanić, T.: Microplastics in Wastewater by Washing Polyester Fabrics, Materials, 15, https://doi.org/10.3390/ma15072683, 2022. a
Tatsii, D., Gasparini, B., Evangelou, I., Bucci, S., and Stohl, A.: Do Microplastics Contribute to the Total Number Concentration of Ice Nucleating Particles?, Journal of Geophysical Research: Atmospheres, 130, e2024JD042827, https://doi.org/10.1029/2024JD042827, 2025. a
ten Hietbrink, S., Materić, D., Holzinger, R., Groeskamp, S., and Niemann, H.: Nanoplastic concentrations across the North Atlantic, Nature, 643, 412–416, https://doi.org/10.1038/s41586-025-09218-1, 2025. a
Walters, D., Baran, A. J., Boutle, I., Brooks, M., Earnshaw, P., Edwards, J., Furtado, K., Hill, P., Lock, A., Manners, J., Morcrette, C., Mulcahy, J., Sanchez, C., Smith, C., Stratton, R., Tennant, W., Tomassini, L., Van Weverberg, K., Vosper, S., Willett, M., Browse, J., Bushell, A., Carslaw, K., Dalvi, M., Essery, R., Gedney, N., Hardiman, S., Johnson, B., Johnson, C., Jones, A., Jones, C., Mann, G., Milton, S., Rumbold, H., Sellar, A., Ujiie, M., Whitall, M., Williams, K., and Zerroukat, M.: The Met Office Unified Model Global Atmosphere 7.0/7.1 and JULES Global Land 7.0 configurations, Geosci. Model Dev., 12, 1909–1963, https://doi.org/10.5194/gmd-12-1909-2019, 2019. a, b
Wang, C., Guo, M., Yan, B., Wei, J., Liu, F., Li, Q., and Bo, Y.: Characteristics of microplastics in the atmosphere of Anyang City, Environmental Monitoring and Assessment, 196, 350, https://doi.org/10.1007/s10661-024-12493-6, 2024a. a
Wang, K., Liu, Y., Shi, X., Zhao, S., Sun, B., Lu, J., and Li, W.: Characterization and traceability analysis of dry deposition of atmospheric microplastics (MPs) in Wuliangsuhai Lake, Science of the Total Environment, 906, 168201, https://doi.org/10.1016/j.scitotenv.2023.168201, 2024b. a
Wang, X., Ouyang, Z., He, Y., Ding, L., Liang, X., and Guo, X.: An important source of terrestrial microplastics-atmospheric deposition: A microplastics survey based on Shaanxi, China, Land Degradation & Development, 35, 3191–3199, https://doi.org/10.1002/ldr.5128 ,2024c. a
Wang, Y., Okochi, H., Tani, Y., Hayami, H., Minami, Y., Katsumi, N., Takeuchi, M., Sorimachi, A., Fujii, Y., Kajino, M., Adachi, K., Ishihara, Y., Iwamoto, Y., and Niida, Y.: Airborne hydrophilic microplastics in cloud water at high altitudes and their role in cloud formation, Environmental Chemistry Letters, 21, 3055–3062, https://doi.org/10.1007/s10311-023-01626-x, 2023. a, b
Wei, Y., Yu, Y., Cao, X., Wang, B., Yu, D., Wang, J., and Liu, Z.: Remote mountainous area inevitably becomes temporal sink for microplastics driven by atmospheric transport, Environmental Science & Technology, 58, 13380–13390, https://doi.org/10.1021/acs.est.4c00296, 2024. a
Welsh, B., Aherne, J., Paterson, A. M., Yao, H., and McConnell, C.: Atmospheric deposition of anthropogenic particles and microplastics in south-central Ontario, Canada, Science of the Total Environment, 835, 155426, https://doi.org/10.1016/j.scitotenv.2022.155426, 2022. a
Winijkul, E., Latt, K. Z., Limsiriwong, K., Pussayanavin, T., and Prapaspongsa, T.: Depositions of airborne microplastics during the wet and dry seasons in Pathum Thani, Thailand, Atmospheric Pollution Research, 15, 102242, https://doi.org/10.1016/j.apr.2024.102242, 2024. a
Xiao, S., Cui, Y., Brahney, J., Mahowald, N. M., and Li, Q.: Long-distance atmospheric transport of microplastic fibres influenced by their shapes, Nature Geoscience, 16, 863–870, https://doi.org/10.1038/s41561-023-01264-6, 2023. a
Xu, L., Li, J., Yang, S., Li, Z., Liu, Y., Zhao, Y., Liu, D., Targino, A. C., Zheng, Z., Yu, M., Xu, P., Sun, Y., and Li, W.: Characterization of atmospheric microplastics in Hangzhou, a megacity of the Yangtze river delta, China, Environmental Science: Atmospheres, 4, 1161–1169, https://doi.org/10.1039/D4EA00069B, 2024a. a
Xu, S., Cui, B., Zhang, W., Liu, R., Liu, H., Zhu, X., Huang, X., and Liu, M.: Microplastics in the atmospheric of the eastern coast of China: different function areas reflecting various sources and transport, Environmental Geochemistry and Health, 46, 461, https://doi.org/10.1007/s10653-024-02217-7, 2024b. a
Xu, X., Li, T., Zhen, J., Jiang, Y., Nie, X., Wang, Y., Yuan, X.-Z., Mao, H., Wang, X., Xue, L., and Chen, J.: Characterization of Microplastics in Clouds over Eastern China, Environmental Science & Technology Letters, 11, 16–22, https://doi.org/10.1021/acs.estlett.3c00729, 2024c. a
Yuan, Z., Pei, C., Li, H., Lin, L., Liu, S., Hou, R., Liao, R., and Xu, X.: Atmospheric microplastics at a southern China metropolis: occurrence, deposition flux, exposure risk and washout effect of rainfall, Science of the Total Environment, 869, 161839, https://doi.org/10.1016/j.scitotenv.2023.161839, 2023a. a
Yuan, Z., Pei, C.-L., Li, H.-X., Lin, L., Hou, R., Liu, S., Zhang, K., Cai, M.-G., and Xu, X.-R.: Vertical distribution and transport of microplastics in the urban atmosphere: New insights from field observations, Science of The Total Environment, 895, 165190, https://doi.org/10.1016/j.scitotenv.2023.165190, 2023b. a
Zhang, R., Jia, X., Wang, K., Lu, L., Li, F., Li, J., and Xu, L.: Characteristics, sources and influencing factors of atmospheric deposition of microplastics in three different ecosystems of Beijing, China, Science of the Total Environment, 883, 163567, https://doi.org/10.1016/j.scitotenv.2023.163567, 2023. a
Zhao, C., Liang, J., Zhu, M., Zheng, S., Zhao, Y., and Sun, X.: Occurrence, characteristics, and factors influencing the atmospheric microplastics around Jiaozhou Bay, the Yellow Sea, Marine Pollution Bulletin, 196, 115568, https://doi.org/10.1016/j.marpolbul.2023.115568, 2023. a
Zhu, J., Xu, A., Shi, M., Su, Y., Liu, W., Zhang, Y., She, Z., Xing, X., and Qi, S.: Atmospheric deposition is an important pathway for inputting microplastics: Insight into the spatiotemporal distribution and deposition flux in a mega city, Environmental Pollution, 341, 123012, https://doi.org/10.1016/j.envpol.2023.123012, 2024. a
Short summary
Airborne microplastics are a new air pollutant but are not yet included in most global models. We add them to the UK Earth System Model to show how they move, change, and are removed from air. Smaller microplastics persist for longer and can travel further, even to Antarctica. While their current role in air pollution is small, their presence is expected to grow in future. This work offers a framework to assess future impacts of microplastics on air quality and climate.
Airborne microplastics are a new air pollutant but are not yet included in most global models....