Articles | Volume 18, issue 22
https://doi.org/10.5194/gmd-18-8751-2025
https://doi.org/10.5194/gmd-18-8751-2025
Development and technical paper
 | 
20 Nov 2025
Development and technical paper |  | 20 Nov 2025

Autoencoder-based feature extraction for the automatic detection of snow avalanches in seismic data

Andri Simeon, Cristina Pérez-Guillén, Michele Volpi, Christine Seupel, and Alec van Herwijnen

Related authors

Quantification of capillary rise dynamics in snow using neutron radiography
Michael Lombardo, Amelie Fees, Anders Kaestner, Alec van Herwijnen, Jürg Schweizer, and Peter Lehmann
The Cryosphere, 19, 4437–4458, https://doi.org/10.5194/tc-19-4437-2025,https://doi.org/10.5194/tc-19-4437-2025, 2025
Short summary
Exploring seismic mass-movement data with anomaly detection and dynamic time warping
Francois Kamper, Fabian Walter, Patrick Paitz, Matthias Meyer, Michele Volpi, and Mathieu Salzmann
EGUsphere, https://doi.org/10.5194/egusphere-2025-3864,https://doi.org/10.5194/egusphere-2025-3864, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Supershear crack propagation in snow slab avalanche release: new insights from numerical simulations and field measurements
Grégoire Bobillier, Bertil Trottet, Bastian Bergfeld, Ron Simenhois, Alec van Herwijnen, Jürg Schweizer, and Johan Gaume
Nat. Hazards Earth Syst. Sci., 25, 2215–2223, https://doi.org/10.5194/nhess-25-2215-2025,https://doi.org/10.5194/nhess-25-2215-2025, 2025
Short summary
Data-driven modeling of environmental factors influencing Arctic methanesulfonic acid aerosol concentrations
Jakob Boyd Pernov, William H. Aeberhard, Michele Volpi, Eliza Harris, Benjamin Hohermuth, Sakiko Ishino, Ragnhild B. Skeie, Stephan Henne, Ulas Im, Patricia K. Quinn, Lucia M. Upchurch, and Julia Schmale
Atmos. Chem. Phys., 25, 6497–6537, https://doi.org/10.5194/acp-25-6497-2025,https://doi.org/10.5194/acp-25-6497-2025, 2025
Short summary
The effect of slab touchdown on anticrack arrest in propagation saw tests
Philipp L. Rosendahl, Johannes Schneider, Grégoire Bobillier, Florian Rheinschmidt, Bastian Bergfeld, Alec van Herwijnen, and Philipp Weißgraeber
Nat. Hazards Earth Syst. Sci., 25, 1975–1991, https://doi.org/10.5194/nhess-25-1975-2025,https://doi.org/10.5194/nhess-25-1975-2025, 2025
Short summary

Cited articles

Barandas, M., Folgado, D., Fernandes, L., Santos, S., Abreu, M., Bota, P., Liu, H., Schultz, T., and Gamboa, H.: TSFEL: Time Series Feature Extraction Library, SoftwareX, 11, 100456, https://doi.org/10.1016/j.softx.2020.100456, 2020. a
Bengio, Y., Courville, A., and Vincent, P.: Representation Learning: A Review and New Perspectives, IEEE Transactions on Pattern Analysis and Machine Intelligence, 35, 1798–1828, https://doi.org/10.1109/TPAMI.2013.50, 2013. a, b
Bessason, B., Eiríksson, G., Thórarinsson, Ó., Thórarinsson, A., and Einarsson, S.: Automatic detection of avalanches and debris flows by seismic methods, J. Glaciol., 53, 461–472, https://doi.org/10.3189/002214307783258468, 2007. a, b, c
Biescas, B., Dufour, F., Furdada, G., Khazaradze, G., and Suriñach, E.: Frequency content evolution of snow avalanche seismic signals, Surv. Geophys., 24, 447–464, https://doi.org/10.1023/B:GEOP.0000006076.38174.31, 2003. a
Breiman, L.: Random Forests, Machine Learning, 45, 5–32, https://doi.org/10.1023/A:1010933404324, 2001. a
Download
Short summary
Avalanche detection systems are crucial for forecasting, but distinguishing avalanches from other seismic sources remains a challenge. We propose novel autoencoder models to automatically extract features and compare them with engineered seismic features. These features are then used to classify avalanches and noise events. The autoencoder feature classifiers exhibit the highest sensitivity in detecting avalanches, while the engineered seismic classifier performs better overall.
Share