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Abstract. Monitoring snow avalanche activity is essential for
operational avalanche forecasting and the successful imple-
mentation of mitigation measures to ensure safety in moun-
tain regions. To facilitate and automate the monitoring pro-
cess, avalanche detection systems equipped with seismic sen-
sors can provide a cost-effective solution. Still, automati-
cally distinguishing avalanche signals from other sources
in seismic data remains challenging. This is mainly due to
the complexity of seismic signals generated by avalanches,
the complex signal transmission through the ground, the
relatively rare occurrence of avalanches, and the presence
of multiple sources in seismic data. To study and interpret
the variety of these signals, we compiled a dataset of seis-
mograms recorded with an array of five seismometers in-
stalled in an avalanche study site above Davos, Switzerland.
For the winter seasons of 2020-2021 and 2021-2022, this
dataset comprised 84 avalanches and 828 noise (unrelated
to avalanches) events. An approach to automate the detec-
tion of avalanches in seismic data is by applying machine
learning methods. So far, research in this area has mainly
focused on extracting domain-specific signal attributes as in-
put features for statistical models. In contrast, we propose
a novel application of representation learning from seismo-
grams using autoencoder models to automatically extract
features from 10s seismic signals of snow avalanches. On
top of that, we applied random forest classifiers to evaluate
whether these features facilitate the detection of avalanches.
Concretely, we trained one random forest classifier each on
a set of expert-engineered seismic attributes (baseline), tem-
poral autoencoder features and spectral autoencoder features.
The classifiers achieved an avalanche recall of 0.67 (4+0.00)
(baseline), 0.71 (£0.02) (temporal autoencoder) and 0.70

(£0.01) (spectral autoencoder) and macro average f1-scores
of 0.78 (£0.00) (baseline), 0.70 (£0.01) (temporal autoen-
coder) and 0.77 (£0.01) (spectral autoencoder). The devel-
oped approach could be potentially used as an operational,
near real-time avalanche detection system. Yet, the relatively
high number of false alarms still needs further implemen-
tation of the current automated seismic classification algo-
rithms for effective avalanche detection.

1 Introduction

Every winter, snow-covered mountainous regions worldwide
are exposed to the destructive potential of snow avalanches,
causing fatalities and damage to infrastructure. On average
in Switzerland, 25 avalanche fatalities occur every winter
(Techel et al., 2016). The catastrophic winter of 1999 re-
sulted in infrastructural damage costing several hundred mil-
lion Swiss francs (Briindl et al., 2004). Such periods under-
scored the need for ongoing investments in avalanche preven-
tion measures and providing accurate avalanche forecasts.
Avalanche forecasting is mainly driven by analysing weather
measurements and forecasts in combination with snowpack
and avalanche observations (Schweizer et al., 2020). De-
tailed information on the location and timing of avalanche
occurrences is indispensable for validating avalanche fore-
casts (van Herwijnen et al., 2016; Biihler et al., 2022), ef-
fectively implementing mitigation measures (McClung and
Schaerer, 2006; van Herwijnen et al., 2018), hazard mapping
(Biihler et al., 2022) and the development of statistical ap-
proaches to predict natural avalanche release (Sielenou et al.,
2021; Hendrick et al., 2023; Mayer et al., 2023). However,
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avalanche activity data are still mainly obtained through hu-
man field observations. Consequently, the poor visibility con-
ditions during snow storms, when avalanche activity is par-
ticularly high (Schweizer et al., 2020), lead to incomplete and
uncertain avalanche observations. Hence, there is a growing
demand for automated avalanche detection systems that pro-
vide reliable and continuous data on avalanche activity.

Since avalanches are extended moving sources of seismic
energy, seismic monitoring systems can be used to detect
natural avalanches in large areas within a radius of several
kilometres (Hammer et al., 2017; Pérez-Guillén et al., 2019;
Heck et al., 2019), regardless of the weather and visibility
conditions. Seismic avalanche detection systems have been
employed for several decades to monitor and characterise
avalanches (Surifiach et al., 2001; Biescas et al., 2003; van
Herwijnen and Schweizer, 2011), assess the source location
(Lacroix et al., 2012; Pérez-Guillén et al., 2019; Heck et al.,
2018b) and infer flow properties (Vilajosana et al., 2007,
Lacroix et al., 2012; Pérez-Guillén et al., 2016). Avalanches
generate spindle-shaped, high-frequency signals similar to
other types of mass movements (Surifiach et al., 2005), such
as landslides, debris flows, and lahars. These patterns have
frequently been used to detect and identify avalanche signals.
Although seismic detection systems would provide a cost-
effective and large-scale alternative to other systems, such as
radars, they have not yet reached the same level of reliability
regarding the automatic detection of avalanches (Schimmel
et al., 2017). This limitation is partly due to the complex sig-
nal transmission from the source (i.e., the avalanche) to the
receiver and multiple sources of environmental noise (e.g.,
earthquakes, aeroplanes, etc.).

As a solution, conventional machine learning methods
have been studied and developed over the past decade to
automatically classify seismic signals generated by different
types of mass movements based on Hidden Markov Mod-
els (Hammer et al., 2013; Dammeier et al., 2016), fuzzy
logic (Hibert et al., 2014) and random forest algorithms
(Provost et al., 2017). For avalanches, the first attempt to
automatically distinguish them from other sources based
on seismic features extracted in the time-frequency domain
and combined with fuzzy logic was conducted by Lepret-
tre et al. (1996). Afterwards, Bessason et al. (2007) devel-
oped a nearest-neighbour approach that successfully detected
65 % of previously confirmed avalanche events. Later, Ru-
bin et al. (2012) divided a seismic data stream into 5 s time
windows and extracted 10 spectral features by applying a
fast Fourier transform. They tested several machine-learning
classifiers using these input features, such as random for-
est algorithms, support vector machines, and artificial neu-
ral networks. Among them, their decision stump classifier
reached the highest precision of 0.13, indicating many false
alarms, on manually identified avalanches. At the same time,
they reported a recall of 0.90 and an accuracy of 0.93. More
recently, Hammer et al. (2017) and Heck et al. (2018a) ap-
plied hidden Markov models (HMMs) to learn class charac-
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teristic patterns based on extracted spectral features for auto-
matic avalanche classification. Extending on this approach,
Heck et al. (2018b) trained an HMM-based method to de-
tect avalanches in continuous seismic data. So far, these ap-
proaches relied on a careful and time-consuming selection
of features derived from processing signals in the time and
frequency domain.

In recent years, the emergence of deep learning algorithms
and the extensive growth of collected data have opened up
new perspectives for efficient and automated data process-
ing. A fascinating subfield of deep learning is representation
learning, providing an alternative to the more traditional pro-
cess of hand-crafting data representations based on specific
domain knowledge (Bengio et al., 2013; Léngkvist et al.,
2014). These models can process complex datasets and in-
fer representations in a reasonable time by reducing the di-
mensionality of data (Hinton and Salakhutdinov, 2006) and
rapidly synthesise data processes, providing valuable and
complementary insights. However, these novel deep learning
approaches have not yet been explored for seismic avalanche
signals, although they have been applied successfully in re-
lated domains (Seydoux et al., 2020; Mousavi and Beroza,
2022). For instance, Mousavi et al. (2019) trained feature
extractors to cluster seismic signals of an earthquake cata-
logue and showed comparable precision to supervised meth-
ods. In contrast, Kong et al. (2021) evaluated similar methods
for seismic event discrimination and phase picking. These
studies have proven that unsupervised feature extractors can
keep up with state-of-the-art models, mitigating the time-
consuming and expensive data labelling.

In this study, we, therefore, leveraged the potential of un-
supervised representation learning methods by applying the
autoencoder model introduced by Rumelhart et al. (1986)
for the first time to seismic avalanche signals to automat-
ically extract discriminative features. Moreover, we bench-
marked these novel features against our baseline, a set of
expert-engineered seismic attributes, by evaluating them on
an avalanche classification task using random forest mod-
els. With this approach, we aim to advance and automate
avalanche detection using seismic monitoring systems. For
this, we first compiled a catalogue of 84 avalanches and 8§28
unrelated noise events recorded with an array of five seis-
mic sensors at a study site above Davos (Sect. 2), Switzer-
land, throughout the winter seasons of 2020-2021 and 2021-
2022. In Sect. 3, we described the foundation of the training
dataset, which is built upon manually picking event onset and
end, using each sensor separately and applying a window-
ing algorithm of 10s with 50 % overlap. We then extracted
features from these 10s seismic time windows and trained
classifiers based on these features. In the feature extrac-
tion process, we implemented a baseline method (Sect. 4.1),
which is a set of engineered seismic attributes. Moreover, we
developed two methods based on autoencoders (Sect. 4.2),
which learned to automatically extract features from the sig-
nal’s time and frequency domain respectively. Using these
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three sets of input features, we optimised and trained one
random forest classifier per set, to automatically distinguish
the avalanche signals from other seismic events (Sect. 4.3).
Further, we defined two post-processing techniques on the
single-sensor predictions to reach sensor array-based predic-
tions through multiple-sensor aggregation, and event-based
predictions (Sect. 4.3.3). In Sect. 5 we analysed and com-
pared the performance of the models in a single-sensor,
array-based and event-based setting. Finally, in Sects. 6 and
7 we discuss the main results and the potential of applying
these methods to avalanche activity monitoring, automatic
dataset labelling and early warning in the future and present
conclusions.

2 Study site and instrumentation

The avalanche study site “Dischma” is located at the end of
the Dischma Valley, a tributary valley above Davos, Switzer-
land (Fig. 1). A continuously operating detection system in-
tegrating multiple sensor types monitors avalanches flowing
down the surrounding slopes. The system was deployed on
a flat meadow at about 2000 ma.s.l. (Eastern Swiss Alps;
46.72° N, 9.92° E). The surrounding mountains form a basin
of steep slopes reaching up to 3000 m a.s.l. Since the winter
season of 2020-2021, usually from November to May, we
installed a seismo-acoustic sensor array of five co-located
seismic and infrasound sensors arranged in a star-like pat-
tern. This spatial configuration allows for the localisation of
avalanches (Heck et al., 2018b). The seismic sensors were
buried into the ground at a depth of approximately 50 cm
and subsequently covered by snow during winter. A single
measuring unit consists of a one-component seismometer
Lennartz LE-1D/V (eigenfrequency of 1 Hz and sensitivity of
800 Vm~!s) and an infrasound sensor Item-prs (frequency
response of 0.2—100 Hz and sensitivity of 400 mV Pa~!. The
only exception was the central measuring unit applying a
three-component seismometer LE-3Dlite (eigenfrequency of
1 Hz and sensitivity of 800 V m~! s), of which we, however,
only used the vertical component in this study. The sensors
were connected to the same digitizer (Centaur digitizer from
Nanometrics), recording continuously with a sampling fre-
quency of 200 Hz. The seismo-acoustic sensor array mon-
itors avalanches released within a radius of approximately
3 km (blue ellipse in Fig. 1).

Additionally, the site was equipped with a Doppler radar
and three automatic cameras to obtain independent validation
data, including accurate release times and information on
the type and size of avalanches, provided favorable weather
conditions. The radar emits electromagnetic waves that are
reflected by the avalanche flow, providing the location and
velocity of the moving avalanche (Meier et al., 2016). Fig-
ure 1 shows the location of the radar, which monitors sev-
eral avalanche paths exposed to the west-southwest, cover-
ing an approximate area of 4km? (red delineated area). With
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this radar, avalanches could be detected up to a maximum
distance of approximately 2 km. The cameras automatically
photographed all surrounding slopes every 30 min (Fig. 1),
which we manually inspected to identify days with avalanche
activity and verify avalanche events of the detection systems.

In summary, the combination of detection systems in-
stalled at the study site allowed us to assess the limitations
and advantages of each system individually, as well as their
combined effectiveness for avalanche detection and charac-
terisation. In this study, we focused exclusively on automat-
ically detecting avalanches using seismic data. In contrast,
we used the Doppler radar, cameras and acoustic systems to
validate the detected avalanche events qualitatively.

3 Data

From the continuous recordings of the seismic detection sys-
tem (Sect. 2), we compiled an event catalogue for the win-
ter seasons 2020-2021 and 2021-2022. Foremost, we col-
lected avalanche signals detected by the radar and cameras.
Additionally, we manually picked seismic events within pe-
riods of known avalanche activity (Sect. 3.1), ensuring to
include avalanches that were not detectable by these other
systems. Next, three experts labelled the events to compile a
binary classification dataset (Sect. 3.2). Lastly, we prepared
the signals of the event catalogue for model development
(Sect. 3.3).

3.1 Event picking and signal processing

To define avalanche events, we selected signals based on
the release times provided by the radar and automatic cam-
eras. In addition, we picked potential avalanche events and
other sources from the continuous seismic recordings that
had been missed by the radar and cameras. Typically, the am-
plitude of seismic signals generated by avalanches gradually
emerges (see Fig. 2) since the avalanche approaches the lo-
cation of the seismic sensors at our study site (Fig. 1) and
seismic energy radiates due to snow entertainment and ero-
sion processes within the flowing avalanche (Pérez-Guillén
et al., 2016). Therefore, automated picking methods often
miss the starting phase of avalanches and sometimes entire
events. To prevent this, we visually inspected the continu-
ous seismic recordings and identified signals that exhibited a
high signal-to-noise ratio, i.e. were not in the order of mag-
nitude of the background noise. For efficiency, we limited
our search to periods with known avalanche activity, such as
avalanche cycles during snow storms, days when avalanches
had already been detected by the radar and periods with ob-
served avalanche deposits in the cameras.

For ease of picking the signals in those periods, we trans-
formed the units of the raw recordings, i.e. counts, to meters
per second (ground motion). Additionally, the signals were
linearly detrended, tapered with a Hanning window and fil-
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Figure 1. Left: Map and location of the Dischma study site. The instrumentation consisted of a seismo-acoustic sensor array (blue dots),
three cameras and a Doppler radar. The approximate area where avalanches could be detected is shown for the seismo-acoustic sensor array
(blue ellipse) and the radar (red cone). Moreover, the red-shaded area highlights the same avalanche path as in the photo on the right. Right:
Photo taken by an automatic camera at the study site, showing the georeferenced path of a dry-snow avalanche released on 2 February 2022

at 02:31 UTC.

tered with a 4th-order Butterworth band-pass filter between
1 and 10Hz. We found this to be the most energetic fre-
quency band of the avalanche signals recorded at our study
site (Fig. 2), considering the typical relative distance between
the avalanche and our receivers. To finally compile a clean
event catalogue, we manually defined the onset and end times
of the identified signals by visually inspecting the seismic
signal, the envelope signal and the spectrogram. In total, we
picked 912 events lasting between 5 and 515 s, which we la-
belled in the next step.

3.2 Event labelling

Having picked potential events, three experts assigned sig-
nals into two classes, avalanche and non-avalanche events:

Avalanches: Avalanche events were first identified using the
radar and camera data (Fig. 1) by matching seismic sig-
nals to avalanches detected by the radar or on images.
A second step to collect avalanches missed by these
systems was to visually classify signals based on the
characteristic seismic signature of avalanches (e.g. non-
impulsive onsets, spindle-shaped signals and triangular-
shaped spectrograms; left column in Fig. 2) as proposed
by van Herwijnen and Schweizer (2011). Additionally,
the output of wave parameters derived from sensor array
processing of the seismic and infrasound data was con-
sidered, i.e. backazimuth angles and apparent velocity
(Marchetti et al., 2015; Heck et al., 2018b).

Noise (non-avalanche events): Earthquakes were the most
frequent source of environmental noise at our study site.
They were identified by visual inspection of the signals
(typical emergent onsets and usually identifiable arrival
of the different phases; middle column in Fig. 2) and
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comparison of our seismo-acoustic recordings with two
nearby seismic stations from the Swiss national net-
work (Clinton et al., 2011). In addition, online earth-
quake catalogues were consulted to match our record-
ings with catalogued events (SED, 2023; EMS, 2023).
The remaining portion of seismic events was generated
by different sources, including aeroplanes (right col-
umn in Fig. 2), helicopters, explosions in nearby skiing
resorts, weather events (e.g. wind), people or animals
walking close to the sensors, and many more unknown
event sources. We summarised this collection of unre-
lated events as a “noise” class. In particular, weak sig-
nals generated by non-verified small avalanches might
also fall into this heterogeneous class. Moreover, this
definition of the noise class barely included low signal-
to-noise ratio (SNR) background noise.

The three experts independently assigned subjective prob-
abilities using either O (non-avalanche), 0.5 (potential
avalanche) or 1 (certain avalanche). Note that the average
rate of agreement in expert probabilities on the avalanche
signals between the three experts was 58 %. This hints at
the inevitable expert bias, the inherent subjectivity and the
complexity of the task. Finally, a signal was labelled posi-
tive if the sum of the three expert probabilities was at least
2. In this manner, we compiled an event catalogue with 84
avalanches (31 verified with the radar or camera images) and
828 unrelated noise events from the 2020-2021 and 2021-
2022 winter seasons. For completeness but not subject to
the binary classification presented in this study, the same
labelling process was used for earthquakes, with which we
found 183 earthquakes in the noise class. The seismic sen-
sors recorded maximum absolute amplitudes ranging from
33x 1078 t0 4.7 x 10> ms™! for avalanches, 1.3 x 10°8
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Figure 2. Waveform and spectrogram of the avalanche in Fig. 1 (left), an earthquake (middle) and an aeroplane (right). The dashed orange
vertical lines indicate the manually defined event onsets and ends. The pink vertical lines in the avalanche waveform indicate a 10 s seismic
snippet extracted by the windowing algorithm. This specific signal window is highlighted later also in Figs. 4 and 10.

0 9.7 x 107°ms~! for earthquakes and 1.4 x 107 to 5.1 x
103 ms~! for noise signals. Signal durations ranged from
13 to 113, 7 to 263 s and 5 to 515 s in each class, respec-
tively. Notably, the noise class’s amplitude range includes
the avalanche class’s amplitude range, highlighting its het-
erogeneity.

3.3 Signal windowing, normalisation and dataset
splitting

Aiming to enlarge the number of samples and develop a
model pipeline for real-time detection, we further processed
the signals of the event catalogue. Therefore, we used each
seismic sensor’s records independently, yielding five times
more samples for model training. Second, we applied a 10s
moving window with 50 % overlap to all signals. This mov-
ing window algorithm resulted in again more data samples to
train and ensured fixed-sized inputs for the models. Earlier
studies (Lacroix et al., 2012; Hammer et al., 2017; Pérez-
Guillén et al., 2019) have found the minimum duration of
avalanches to be roughly ten seconds. Beyond, this strat-
egy is also beneficial in a potential (near) real-time detec-
tion system, where 10s windows are continuously parsed.
Lastly, a crucial part when developing neural networks is in-
put data normalisation (Sola and Sevilla, 1997). By applying
the windowing algorithm, we obtained subsequences of time
series. Since waveform characteristics of an upcoming event
are not known in advance during inference, we normalised
each window separately by its maximum absolute ampli-
tude instead of using the maximum absolute amplitude of
the entire event to avoid look-ahead normalisation (Rakthan-
manon et al., 2012; Lima and Souza, 2023). With this, the
labelled dataset comprised 3580 avalanche and 37 110 noise
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(non-avalanche) windows, which included 11 575 earthquake
windows. Finally, we defined four independent data folds to
develop the models and select the optimal architectures and
their hyper-parameters (see Fig. 3). Three folds, comprising
70 % of the data samples, were used for model training and
optimisation via 3-fold cross-validation. The test set (top bar
in Fig. 3), containing 30 % of the data, was set aside to assess
the model performance on an independent inference set. We
separated the folds by specific dates to prevent any correla-
tion and temporal data leakage between the folds. We chose
the dates such that the class distributions across the folds
were approximately balanced (Fig. 3). Additionally, we en-
sured that the independent test set included both dry and wet
avalanches. This dataset was the foundation of model devel-
opment and allowed for systematic comparison of the models
in different settings.

4 Model development

For the later classification, we first extracted features from
the 10 s signal windows (Fig. 4). Feature extraction generally
describes the compression of a signal to a lower dimensional
embedding to retrieve the signal’s most distinctive informa-
tion. The embedded information (the features) is usually used
in an upstream classification or regression task. Following
this framework, we explored three methods to extract infor-
mation from seismic signals either as learned feature vectors
or domain-specific engineered features, which are then clas-
sified as avalanche or noise. Concretely, we implemented a
baseline based on a conventional expert-supervised feature
engineering approach (Sect. 4.1) and developed two fully
unsupervised autoencoders to extract features from temporal
and spectral input data, respectively (Sect. 4.2). We then opti-
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Figure 3. Class distributions and date ranges in the train and test
folds. The annotations at the end of the bars show the total number
of 10 s seismic windows in each fold. The annotations in blue depict
the percentage of avalanche windows.

mised three separate random forest models on top of the pre-
ceding feature extraction methods predicting avalanche and
noise probabilities (Sect. 4.3).

4.1 Baseline features

Since representation learning methods are a novel approach
in seismic avalanche detection, we sought a baseline against
which to benchmark them. Earlier studies on time series clas-
sification in general (Ismail Fawaz et al., 2019; Barandas
et al., 2020) and on seismic detection of different types of
mass movements (Rubin et al., 2012; Provost et al., 2017;
Lin et al., 2020; Wenner et al., 2021; Chmiel et al., 2021)
developed classification models using traditional feature en-
gineering strategies. Therefore, in the baseline model, we fol-
lowed a similar approach to Provost et al. (2017), which clas-
sified seismic events generated by landslides and extracted a
set of 71 expert-engineered seismic attributes. Specifically,
we used a subset of 22 waveform, 17 spectral and 18 spec-
trogram attributes (see Tables B1, B2 and B3 for more de-
tails). We extracted these from the frequency-filtered (1 to
10Hz) 10s seismic signals for all sensors separately. Addi-
tionally, we did not include network or polarity-related at-
tributes since we aimed at developing models for a single-
sensor setting and our study site was equipped with one-
component Sensors.

4.2 Autoencoder features

The autoencoder concept was first introduced by Rumelhart
et al. (1986) and has since been adapted for various applica-
tions (Xugang et al., 2013; Mousavi et al., 2019; Gu et al.,
2021). The architecture consists of an encoder and a de-
coder. The encoder compresses the input signal to a lower-
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dimensional embedding, i.e. the latent (feature) vectors. The
decoder decompresses these feature vectors to the original
input dimension. Overall, the autoencoder is trained by learn-
ing to reconstruct the input signals. Thus, by design, the en-
coder feature vectors are optimised to preserve the most dis-
tinctive information characterising a given input signal so
that the decoder can reconstruct it. During inference, given
that the autoencoder’s purpose is to extract features for a clas-
sification process on top, the decoder can be discarded. The
classifiers, which are trained separately, use solely the feature
vectors.

4.2.1 Architecture

In the temporal autoencoder (TAE) we considered the seis-
mic time series data, hence the name. It was developed
for seismic waveform signals of 10s, normalised by their
maximum absolute amplitude. When dealing with time se-
ries data, common choices of computational units are one-
dimensional convolutions (Kiranyaz et al., 2021) and recur-
rent units such as the long short-term memory cells (LSTM;
Hochreiter and Schmidhuber, 1997). Thus, we implemented
the encoder as a sequence of 3 convolutional layers and
one LSTM cell layer learning temporal dynamics. The best
model based on the optimisation procedure (Sect. 4.2.4 and
Table E2) was composed of convolutions with kernel size 20
(or 0.1 s) and stride 10. This implementation of stride reduces
the initial input length of 2000 samples (200 Hz x 10s) to
200, 20, and 2 within each encoder layer. Similarly, the tun-
ing procedure suggested 32 filters in the first convolutional
layer, which we then doubled in each consecutive layer. In
the last encoder layer, the LSTM cell summarises the output
of the convolutions, i.e. two 128-dimensional vectors, to a
feature vector of 32 dimensions (32 features). The decoder
sequentially repeats this latent vector twice and applies three
transposed convolutions with kernel size 20 and stride 10
to decompress the sequence back to its original length, i.e.
2000. Starting at 128 filters, we halved them in each decoder
layer to reach 32 channels. To reduce this number to the num-
ber of input channels, i.e. 1, we applied a convolutional layer
with kernel size 3 and stride 1 in the decoder output layer.

In addition, we used batch normalisation (BN) (Ioffe and
Szegedy, 2015) in all encoder and decoder layers, except for
the decoder output layer, to stabilise and accelerate training.
As an activation function, we used the leaky rectified lin-
ear unit (leaky ReLU; Xu et al., 2015), which outperformed
the tangent hyperbolic function (Tanh) during model optimi-
sation. The only exception is again the output layer, where
we replaced the leaky ReLU with the Tanh function to out-
put values in the same range as the normalised input sig-
nals, which is [—1, 1]. In summary, Fig. 5 gives a simpli-
fied overview of this architecture comprising 514 337 learn-
able parameters (226 848 in the encoder). This architecture
is relatively small in the number of trainable parameters and,
therefore, well adapted to the size of our dataset.
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Figure 4. Overview of the three methods to infer avalanche probabilities. The blue elements depict the feature extraction. During inference,
the decoder of the autoencoders is discarded, and only the encoder is used to extract features. The orange parts show the classification
using random forest models. The predictions are shown in pink for the given seismic window (the same as in the top left of Fig. 2). Left:
The temporal autoencoder (TAE) feature classification; middle: The baseline classification using engineered seismic attributes; right: The
spectral autoencoder (SAE) feature classification.
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Figure 5. Illustration of the temporal autoencoder architecture. The encoder comprises one-dimensional convolutional layers (kernels in
blue) with leaky ReLU activation and batch normalisation followed by a long short-term memory cell (LSTM, pink). The decoder uses
one-dimensional transposed convolutions to decompress the extracted encoder features (highlighted in orange) and reconstruct the input

signal.
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— fully connected -
layers

Figure 6. Illustration of the spectral autoencoder architecture. The
encoder and decoder are a sequence of compressing and decom-
pressing fully connected linear layers (dashed blue lines). Each
layer uses the hyperbolic tangent (Tanh) activation function and
layer normalisation. The extracted features are shown in orange.

The second autoencoder implementation operates in the
spectral domain, hence named spectral autoencoder (SAE).
We used the fast Fourier transform (FFT) to convert the fil-
tered 10 s seismic signals into the frequency domain. Thus,
the input data to this model contained the amplitude spectrum
normalised using the min-max normalisation. In contrast to
the temporal autoencoder, we replaced the aforementioned
computational units, i.e. convolutions and LSTM cells, with
fully connected layers. Through hyper-parameter optimisa-
tion (Sect. 4.2.4 and Table E4), we designed the encoder and
decoder to comprise three fully connected linear layers each.
The hidden dimensions in the encoder evolved from 200 to
139, 78 and 16 (feature dimension). The decoder was a mir-
rored version of the encoder. Based on parameter tuning we
used the Tanh function as non-linearity in all layers (Table
E4). Moreover, we applied layer normalisation (LN) in each
layer with the exception of the output layer. Figure 6 illus-
trates a simplified version of this architecture summing up
to 81330 learnable weights (40589 in the encoder). As for
the TAE, this architecture is even smaller and thus also well
adapted to the size of the dataset.

4.2.2 Training regime

A training step in neural network optimisation starts with
sampling a batch of predefined size from the dataset. For
sampling, given that our dataset was severely imbalanced
(Fig. 3), we used the so-called weighted random sampler,
as implemented in PyTorch (Paszke et al., 2019). This sam-
pling method oversamples the minority (avalanche) class and
thus prevents the model from biasing towards the majority
(noise) class. The sampling process relies on user-defined
class weights, which allows the user to control the expected
number of minority class (avalanche) samples within each
batch. Therefore, we assigned the following relative weight
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to each sample of the avalanche class (w,y), while we as-
signed the noise samples a weight of one (wn, =1). In-
ternally, the sampling method rescales and interprets these
weights as probabilities.

Nl’l() Pav

== ()
Nav 1_Pav

Way

P,y is the user-defined expected portion of avalanches per
batch, e.g. 0.5 for evenly balanced batches, while N,, and
Npo are the number of avalanche and noise samples respec-
tively. The batch is then passed through the entire network
(forward pass) to produce the output (prediction). The output
is compared to the target and the mean squared error (MSE)
reconstruction loss is computed (see Eq. C1). The network
weights are then optimised by computing the gradients of
the loss function and propagating them back through the net-
work (back-propagation) using the Adam optimizer (Kingma
and Ba, 2014) with a specified learning rate. After, the next
batch is passed to the network repeatedly until all batches in
the dataset have been seen once, which defines an epoch. The
entire process is then again repeated for a certain number of
epochs. Figure E1 in the appendix illustrates the training and
validation progress per training epoch for the temporal (TAE)
and spectral autoencoder (SAE).

Following our hyper-parameter tuning strategy, we found
the temporal autoencoder training optimal with an expected
portion of avalanches per batch of Py, = 0.6, a learning rate
of 1 x 10™* and a batch size of 128 (Table E3). The model
was trained for 120 epochs, i.e. iterations through the entire
dataset, with early stopping when the class-separation met-
rics (Sect. 4.2.3) started decreasing. Additionally, we applied
data augmentation by randomly shifting the 10s signals by
0 to 1s to either the right or left to reduce overfitting in
the avalanche class and for better generalisation (Zhu et al.,
2020). Similarly, in the spectral autoencoder training, we
used an expected portion of P,y = 0.5 avalanches per batch,
a learning rate of 1 x 10~* and a batch size of 128 (Table ES).
Moreover, we found five training epochs to be optimal.

4.2.3 Validation

In addition to the training regime (Sect. 4.2.2), we defined a
validation routine for comparing different autoencoder archi-
tectures and settings in the model optimisation (Sect. 4.2.4).
By definition, the autoencoder performance can be measured
with its reconstruction loss. However, given a decent recon-
struction, we aimed to find the best input features for the
later classification. Hence, we evaluated the autoencoders
based on the avalanche and noise class separation within
the latent (feature) space. We calculated the silhouette score
(Rousseeuw, 1987) and the Calinski-Harabasz index (Cal-
inski and Harabasz, 1974) based on the feature embedding
location and their given expert labels (see Appendix C3). We
selected the best autoencoder by searching for the highest-
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ranking combination of silhouette score, Calinski-Harabasz
index and the mean squared error loss.

4.2.4 Model selection

Developing neural networks involves tuning network hyper-
parameters, such as the number of layers, kernel sizes of
convolutions or hidden dimensions. Therefore, we used the
three training folds in Fig. 3 to run 3-fold cross-validation.
Using three folds reduces the impact of data variability and
yields more reliable performance estimates. Next, we defined
a grid of hyper-parameter combinations (Table D1) and iter-
atively trained the resulting model configurations on two and
evaluated them on the left-out fold. We selected the model
showing the best average performance over all three folds
according to the predefined validation metrics (Sect. 4.2.3).
Besides the internal network parameters, we applied the
same procedure to tune the parameters of the training regime
(Sect. 4.2.2). Concretely, we searched for the optimal number
of expected avalanche samples in each batch (P,, in Eq. 1),
the learning rate and the batch size. Details of this process
can be found in the Appendix E.

4.3 Feature classification

Foremost, this work aims to detect avalanches in seismic
recordings. Therefore, the previous extraction of distinctive
features was only an intermediate step. To classify these fea-
tures, we developed three random forest classifiers — one per
feature extraction method. We tuned them for the baseline,
the temporal and the spectral autoencoder features separately
to infer class probabilities (see Fig. 4).

4.3.1 Random forest model

The random forest model is a widely used algorithm for clas-
sification in general and for seismic event detection in partic-
ular (Provost et al., 2017; Li et al., 2018; Chmiel et al., 2021),
as it is favourable when dealing with high-dimensional fea-
tures and heterogeneous (e.g. engineered features) input data.
The algorithm was introduced by Breiman (2001) and be-
longs to the class of ensemble methods. During training, sev-
eral decision trees (estimators) are grown. Each tree is grown
on a different bootstrap sample of the original dataset, i.e.
a random draw with replacement. Instead of using the en-
tire set of features in the original dataset, a random subset
is assigned to each node in the tree individually. The split
(branch) is based on a single feature from this random subset,
which is optimal under a specified splitting criterion, such as
the Gini information criterion (Breiman, 2017) when dealing
with categorical (classification) splitting problems.

4.3.2 Cross-validation

In search of the best hyper-parameters of this tree-growing
algorithm, e.g. the maximal number of estimators (trees), we
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used a randomised grid search with 3-fold cross-validation.
This method evaluates hyper-parameter combinations by it-
eratively fitting the random forest model to two of the three
training folds (Fig. 3) and validating it on the left-out fold.
As a scoring function, we chose the avalanche class Fi-score
to weight the avalanche precision and recall uniformly and
averaged this score across the three folds. This optimisation
process was applied with the three feature sets individually,
i.e. the baseline and autoencoder features, to find the random
forests presented in Table D1.

4.3.3 Inference and post-processing

During inference, a (test) feature vector is first passed sepa-
rately to each decision tree in the random forest. Each tree
applies its learned sequence of decision rules and classifies
the feature vector as either avalanche or noise. Then, each
tree’s classification is aggregated by computing the mean.
For instance, assuming 90 out of 100 trees classified a given
feature vector as an avalanche, this sample was assigned
an avalanche probability of 0.9, estimated as the fraction of
votes within the forest. This process, known as ensembling,
is why the random forest algorithm is considered an ensem-
ble method. The only parameter to define was a probabil-
ity threshold above which, we classified the sample as an
avalanche. We used the default threshold of 0.5, which means
a sample was classified as an avalanche if at least half of the
trees agreed on this classification. Hence, for a single 10s
seismic signal, the random forest models provided both a bi-
nary classification (avalanche or noise) and the probability
for each class.

Then, in the first post-processing step, we leveraged the ar-
ray of five seismic sensors deployed at our study site and ag-
gregated the per-sensor model output probabilities, comput-
ing a multi-sensor avalanche probability for each 10s win-
dow. The array-based avalanche probability was calculated
as the mean of the individual probabilities from each sen-
sor. In the second post-processing step, we revisited the of-
fline avalanche activity monitoring or dataset labelling ob-
jective by evaluating the classifiers on entire events rather
than single 10 s windows. Therefore, we considered an event
an avalanche if at least two (overlapping) consecutive win-
dows (i.e. 2 x 10s — 0.5 x 10s = 15 s of an event) had been
positively predicted. Given that the shortest avalanche in the
dataset was 13's, we considered this boundary feasible. The
reason for not aggregating the probabilities over the event
length or similar was that in a continuous application, such
as avalanche activity monitoring or labelling of an unanno-
tated dataset, the event length is unknown.

With this post-processing, we could evaluate the perfor-
mance of the random forest classifiers based on single-
sensor, sensor array-based and event-based detections.

Geosci. Model Dev., 18, 8751-8776, 2025
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5 Results

After model development completion, we evaluated the base-
line, the temporal autoencoder (TAE) and the spectral au-
toencoder (SAE) on the unseen test fold (top bar in Fig. 3). To
assess the models’ stability, we trained and tested them using
20 different random seeds, i.e. powers of two starting with
29, Therefore, we calculated the mean and standard deviation
of all metrics, while for specific result analysis, e.g. Fig. 10,
we used the random seed for which a the model showed the
highest avalanche Fj-score (25 for the baseline, 216 for both
autoencoders).

5.1 Single-sensor predictions

As a first step, we evaluated the detection performance
of each model’s single-sensor predictions on the 10s seis-
mic signals. The true positive rates (or avalanche re-
call) were similar across the models (Fig. 8), i.e. between
67.3% (£1.4%) and 69.8% (1.8 %), indicating that ap-
proximately 30% of all avalanche windows were missed.
Nevertheless, the avalanche recall was highest for the TAE
features classification. Regarding the true negative rates (or
specificities), i.e. the probability that an actual noise event
will be predicted as noise, we noted that the TAE features
classification showed the lowest rate of 83.0% (4+1.0%)
and, therefore also showed the lowest avalanche precision
of 0.33(£0.01), compared to 0.52(%0.00) for the base-
line and 0.44 (£0.01) for the SAE (Table 1). Thus, we ex-
pect this model to produce comparably more false alarms
(false positives) at a rate of 17.0% (£1.0%). Overall, the
macro-average Fi-score reached values of 0.76(£0.00),
0.67 (£0.01) and 0.73 (0.00) for the baseline, the TAE fea-
tures and the SAE feature classification respectively (Ta-
ble 1).

Additionally, since the feature extraction and its informa-
tion content are core concepts of this study, we visualised
part of the latent spaces in Fig. 7. As earthquakes account for
a significant proportion of the noise class (31 %) and labels
were available anyway, we showed them separately. This vi-
sualisation provided some insights into the organisation of
the latent spaces. For instance, all models spatially separated
avalanche and earthquake samples.

5.2 Sensor array-based predictions

In addition to the predictions on the individual 10 s windows,
we aggregated the single-sensor predictions over the five sen-
sors in the seismic array by averaging the single-sensor out-
put probabilities, resulting in improved model performance
(Fig. 9). The macro-average Fi-scores increased by 2.6 %
(baseline), 4.5 % (TAE) and 5.5 % (SAE). This improvement
particularly originated from lower false positive rates, while
the rate of missed avalanche windows remained at about
30% in all models. After aggregation, the baseline and the
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Table 1. Classification metrics on the (unseen) test fold data com-
prising 1335 avalanche and 11 135 noise samples for the three fea-
ture sets. Due to the strong class imbalance, the weighted averages
of the metrics are not shown.

Model Class Precision Recall Fy
Avalanche  0.524+0.00 0.67£0.00 0.58£+0.00
. Noise 0.96£0.00 0.92+0.00 0.94+0.00
Baseline
Macro Avg  0.74+0.00 0.80£0.00 0.76+0.00
Accuracy 0.90 £0.00
Avalanche  0.33+0.01 0.70+£0.02 0.45+0.01
Noise 0.96+0.00 0.83+0.01 0.89+0.01
TAE
Macro Avg  0.64+0.01 0.77+£0.01 0.67+0.01
Accuracy 0.82+0.01
Avalanche  0.44+0.01 0.67+0.01 0.54+0.01
Noise 0.96+£0.00 0.90£0.00 0.93+0.00
SAE
Macro Avg  0.70+£0.00 0.79£0.01 0.73+0.00
Accuracy 0.87 £0.00

SAE feature classification yielded similar performance in the
classification metrics (see Table 2). The TAE feature classifi-
cation, however, still showed approximately double the num-
ber of false alarms, i.e. 308 (14.0% = 0.8 %), compared to
the other models despite this improvement. The sensor array-
based aggregation further enabled us to investigate how pre-
dictions evolve over an entire seismic signal (Fig. 10). For the
avalanche shown in Figs. 1 and 2 (left), the models were un-
certain in the starting phase, when the avalanche amplitudes
slowly emerged from the background noise signal. However,
as the signal became more energetic, the avalanche proba-
bility increased for all models. Overall, this post-processing
strategy reduced the number of false alarms and slightly im-
proved the avalanche recall.

5.3 Event-based predictions

Besides the single-sensor and array-based predictions
(Sect. 5.1 and 5.2), we investigated the predictions on an
event basis to close the gap to avalanche activity assessment
and provide a broader outlook. For this, we assigned an event
to the avalanche class if two consecutive 10 s windows (50 %
overlap) of the sensor array-based predictions were detected
as avalanche signals. This post-processing led to the results
in Fig. E2 and Table E6 in the Appendix E2. Although the
overall performance of the three models decreased by about
5% (see Table E6), the true positive rates (avalanche re-
call) increased significantly to 81.4% (£1.1%) (baseline),
84.8 % (£2.6 %) (TAE) and 89.3 % (£4.3 %) (SAE). Hence,
by applying this step, the spectral autoencoder could success-
fully detect 89.3 % (4.3 %) of all avalanches in the test fold.
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Figure 7. Test set latent space visualisation of the most important features according to the impurity-based feature importance (value in
parenthesis) of the random forest models for the baseline (left), the TAE features (middle) and the SAE features (right). In the left plot,
DISTQ3Q1 is the mean distance between the 3rd and the 1st quartile of all FFTs as a function of time, ES[2] and ES[3] is the energy in the
frequency band [5, 7] Hz and [6, 9] Hz respectively (features 57, 35 and 36 in Tables B3 and B2). The axis labels starting with the letter “F”
in the middle and right plot represent a specific autoencoder feature carrying no explicit physical meaning.
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Figure 8. Confusion matrices of the binary classification results for the three feature sets on the held-out test fold data, including all five
sensors. The rows indicate the true (expert) labels, while the columns provide the predicted labels of the random forest classifiers. The colours

code the percentage values.

6 Discussion

So far, we compared the performance of the baseline, an
expert-engineered seismic attribute classification, and the au-
toencoder feature classifications based on a dataset contain-
ing 10 s seismic signals in a single-sensor, sensor array-based
and event-based setting. In the single-sensor setting, the
models missed approximately 30 % of all avalanche windows
and produced false alerts at rates between 7.6 % (£0.1 %)
and 17.0% (£1.0%). With the sensor array-based aggrega-
tion, we observed a reduction in false alarms and a slight
improvement in avalanche recall. In the event-based setting,
we compromised an improvement in avalanche recall with
an increase in false alarms. Moreover, we noticed that the
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automatically learned features, specifically the ones from the
spectral autoencoder, performed comparably to the baseline.
Hence, the results showed that spectral input information
seemed favourable. In the following, we contextualise the
results by investigating the detection errors and their possi-
ble origins. Therefore, we summarise the model development
(Sect. 6.1) and focus on the false predictions of the models
to find potential limitations (Sect. 6.2 and 6.3). Finally, we
argue about the applicability of these models (Sect. 6.4) and
compare the results to previous work (Sect. 6.5).

6.1 Model performance and limitations

The quality and size of the dataset strongly influence deep
learning models. The relatively small size constrained us to
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Figure 9. Results on the held-out test fold data after applying a probabilistic aggregation of the single-sensor 10 s predictions over the five
sensors of the sensor array. The rows indicate the true (expert) labels, while the columns provide the predicted labels of the random forest

classifiers. The colours code the percentage values.

Table 2. Classification metrics on the (unseen) test fold data com-
prising 267 avalanche and 2202 noise samples after probabilistic
aggregation over the five sensors. Due to the strong class imbalance
and bias towards the noise class, the weighted averages of the met-
rics are not shown.

Model Class Precision Recall Fi
Avalanche  0.56+0.01 0.67£0.00 0.61+0.00
. Noise 0.96£0.00 0.934+0.00 0.95+0.00
Baseline
Macro Avg  0.76+0.00 0.80£0.00 0.78+0.00
Accuracy 0.91 +£0.00
Avalanche  0.38+0.01 0.71£0.02 0.49+0.01
Noise 0.96+£0.00 0.86+0.01 0.91+0.00
TAE
Macro Avg  0.67+0.01 0.78+£0.01 0.70+0.01
Accuracy 0.84 £0.01
Avalanche  0.524+0.01 0.70£0.01 0.60+0.01
Noise 0.96+£0.00 0.924+0.00 0.94+£0.00
SAE
Macro Avg  0.744+0.01 0.81£0.01 0.77+0.01
Accuracy 0.90 £0.00

design autoencoder architectures with few trainable parame-
ters. In addition, we used each sensor independently to com-
pensate for dataset size, as each sensor can be considered a
different view of the same event. However, this came at the
cost of introducing correlation among dataset samples as the
sensors were installed nearby (Fig. 1) and thus recorded very
similar signals, yet not necessarily adding much new and en-
riching information to the dataset. Given that the dataset will
increase in the upcoming winters, we will consider incorpo-
rating the five sensors as distinct channels in a convolutional
and/or recurrent model in future studies. With this, the sen-
sor array-based aggregation and fusion would be implicitly
implemented into the model.

Another aspect to consider was our approach to normalise
each 10s seismic window independently. Normalising in-
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Figure 10. Waveform and spectrogram generated by the avalanche
in Fig. 1 and the array-based output probabilities for each model
over the entire avalanche signal (bottom). The signals have been fil-
tered from 1 to 10 Hz corresponding to the input frequency band of
the models. In pink, the same 10 s seismic window as in Fig. 2 (left)
and Fig. 4 is shown and the according probabilities are highlighted
(lower plot). The probabilities are computed as the average of the
single-sensor probabilities predicted every 5s (10s windows with
50 % of overlap). The manually defined event onset and end are
highlighted in dashed grey lines (upper plot), and the classification
threshold 0.5 is in orange (lower plot).

put data has proven crucial when training neural networks
(Sola and Sevilla, 1997). The temporal autoencoder, in par-
ticular, therefore lost information on absolute and relative
amplitudes. Yet, both autoencoders could still capture signal
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Figure 11. Sensor array-based output probabilities of the random forest models for their respective input features plotted against expert
avalanche scores. The blue dashed line indicates the threshold applied to the expert scores to assign avalanche class labels.

characteristics and remarkably showed similar patterns when
looking at continuous predictions and comparing with the
baseline (see Fig. 10). Alternatively, a normalisation over the
entire signal before applying the windowing algorithm could
be envisioned to preserve information on relative amplitudes.
However, this normalisation is not applicable during an on-
line inference, as it would require looking ahead at the ampli-
tudes of the incoming waveforms. Therefore, it is not prac-
tical for (near) real-time signal classification. Alternatively,
normalising by a characteristic value of the training dataset
is unfavourable considering the heterogeneity of the data and
a future implementation at another study site with potentially
completely different characteristics. Also, note that normalis-
ing by class characteristics of the training data would violate
the unsupervised learning regime.

Further, the separation of the feature extraction and classi-
fication process was driven by the dataset at hand and the suc-
cess of representation learning in various applications (Ben-
gio et al., 2013; Langkvist et al., 2014). Considering the data,
the unsupervised feature extraction was not constrained by
class labels (only the model selection and hyper-parameter
tuning of the classifiers were), an advantage when dealing
with non-ground-truth labels (two-thirds of the avalanches
were neither verified by the radar nor the cameras). The ap-
plied expert labelling to the non-verified events was subject
to an unknown degree of subjectivity and belief. We found
the average agreement rate of the avalanche expert probabil-
ities to be 58 %, meaning two experts agreed on 58 % of the
avalanches. In addition, having decided upon a hard thresh-
old to convert expert scores to class labels further blurred
the boundaries between the avalanche and noise class, po-
tentially including minor avalanches in the noise class (false
negatives). Apart from the event label uncertainty, we con-
sidered the subjectivity of manually defining event onset and
end and the uncertainty of adopting the event labels to the
10s snippets after applying the windowing algorithm. Due
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to the attenuation of avalanche signals with the distance to
the sensors and the low initial energy of avalanches, some
10s windows containing primarily background noise within
an avalanche event were inevitably mislabelled (false posi-
tives). This particularly applies to a signal’s starting and end-
ing sections (see the upper plot in Fig. 10).

In summary, all of the above led to the conclusion to ex-
plicitly separate the feature extraction from the classification
and implement an unsupervised learning approach, which is
more robust to uncertainty and noise in the labels and could
leverage more unlabelled data. In contrast, a fully supervised
neural network might suffer from the relatively low number
of labels and bias, tending to overfit these expert labels rather
than learn avalanche characteristic patterns in seismic sig-
nals. Moreover, the developed autoencoder approaches of-
fered better comparability with the baseline model, i.e. fea-
ture engineering.

This separation then allowed us to analyse a lower-
dimensional embedding of the dataset by inspecting the fea-
ture space distributions (Fig. 7). As labels for earthquakes
were available, we visualised them separately. Moreover,
earthquake and avalanche signals can be similar in the time
domain (Heck et al., 2018b), thus we wanted to investigate
them in the feature domain. Overall, the three event types, i.e.
avalanches, earthquakes and rest, varied in the encoding lo-
cations, yet also showed considerable overlap. Interestingly
though, the avalanche and earthquake signals were well sep-
arated (blue and orange in Fig. 7). The rest (grey) resem-
bled a connecting cloud between avalanche and earthquake
signals. The reason for this might be two-fold; first, the het-
erogeneity of these noise events by potentially comprising
minor avalanches and low magnitude earthquakes (false neg-
atives), and second, the strong attenuation in some sections
of avalanche signals resulting in low amplitude avalanche
windows. The former noise class heterogeneity originated
from comprising different sources in comparable amplitude
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ranges, e.g., earthquakes, aeroplanes or strong wind. How-
ever, these various sources are definitive to be expected and
need to be considered in a real-time detection system.

Despite actually having earthquake labels, we opted for
a binary classification. In an early stage, we trained mod-
els with three classes (earthquake separately), without seeing
an increase in overall model performance. This came as no
surprise when looking at the clear separation of the earth-
quake from the avalanche samples in latent space. More-
over, training a model to also classify earthquakes was out
of scope as these can be detected with other methods. Thus,
we did not consider earthquakes a separate class in the clas-
sification. However, considering the avalanche class, inves-
tigations could also be conducted by differentiating between
type and size in future implementations. Since the primary
goal of this study was to develop and compare models to de-
tect avalanches regardless of their type or size, we trained
the models considering all the recorded avalanches. There-
fore, we ensured that various avalanche types were included
in the train and test set by separating them based on appropri-
ate dates (Sect. 3.3). According to radar and image data, most
avalanches detected at our study site ranged between sizes 2
and 3, based on the European avalanche size classification
(EAWS, 2021). Given that seismic patterns of avalanches are
influenced by the avalanche type (Pérez-Guillén et al., 2016),
an alternative approach could be to develop two independent
models to detect dry-snow and wet-snow avalanches sepa-
rately. However, the current dataset was too small to further
categorise the avalanche events by size and type, and accu-
rate ground-truth data was often also missing. Instead, we
focused on the given and analysed the misclassification of
the current models.

Finally, to obtain an intuition and analyse how the super-
vised random forest classifiers related to the expert scores,
we plotted the expert scores of potential avalanche signals
against the model’s output probabilities (Fig. 11). Overall,
the output probabilities positively increased with the expert
scores. As expected, we also noted the highest uncertainty
at the selected threshold (dotted blue line in Fig. 11). When
comparing the feature sets, the classification with the base-
line features yielded more apparent steps over expert scores
and more distinctive probabilities for the highest and low-
est expert scores. A measure to mitigate having to deal with
such noisy labels in future works might be to include verified
avalanches solely and discard the non-verified ones for train-
ing the models. However, the unsupervised autoencoders are
entirely independent of any labels or class information. Thus,
by considering only verified avalanches, we would not re-
duce class ambiguity from the autoencoder’s perspective, but
the dataset size and with it, valuable information might be
lost.
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6.2 Missed avalanche windows

As avalanches were this work’s main objective, we first anal-
ysed the missed avalanche windows, i.e. the false negatives
(FNs). Looking again at Fig. 11, we accredited the relatively
high number of outliers (FNs) in the expert score of 3, i.e.
verified avalanches, to the nature of mass movement signals.
Concretely, avalanche signals slowly emerge from the back-
ground noise due to source-receiver distance and the low
generation of energy in the initial and very end stages of
avalanche motion, resulting in the typical spindle-shape sig-
nal with a relatively low signal-to-noise ratio at the beginning
and end of the signal (Surifiach et al., 2001; van Herwijnen
and Schweizer, 2011; Pérez-Guillén et al., 2016). We suspect
the models had difficulties correctly classifying these parts of
an avalanche signal producing FN predictions. Further, the
manual definition of event onset and end was rather gener-
ous in including the entire avalanche signal with parts char-
acterised by very low amplitudes and potentially also some
background noise was included. For instance, Fig. 12 shows
a comparison of the time series of sensor array-based pre-
dictions for each model with the misclassified onset of an
avalanche event in the left plot, while in the right, the end
portion was characterised by a very low signal-to-noise ra-
tio and hence misclassified. In Fig. 12 (left), the first few
time windows from 10s to approx. 35 s are arguably rather
noisy, as suggested by the model probabilities. Though as the
signal strength increases, model probabilities also increase.
Concretely, if we considered the first five predictions or time
windows, this sample accounts for 5 (non) FNs in the results
in Fig. 9 and 25 (5 sensors x 5 windows) in Fig. 8 per model.
The sensor array-based prediction aggregation did not reduce
these missed “avalanche” windows (Fig. 9) since all the sen-
sors predicted low probabilities of being an avalanche. Thus,
we were left with approximately 30 % FNs in all three mod-
els.

6.3 False alarms

The second type of error, i.e. false positives (FPs) or false
alarms, showed greater variation in numbers across the three
models. With 7.6 % (£0.1 %) (Fig. 8), the baseline produced
the least amount of false positives. Predicting with the TAE
features resulted in roughly twice as many false positives,
with the SAE feature prediction in between. However, we
observed a significant improvement in these errors when
aggregating over the sensor array (Fig. 9). This suggested
that the five recordings of some noise events showed sub-
stantial variations across the sensor array, which we filtered
by this averaging. As the noise class is highly dominant
(11135 windows) and, for instance, 10 % FPs result in ap-
proximately 1000 FP samples (compared to 1335 avalanche
samples), the avalanche precision of all three models is rela-
tively low with 0.52 (£0.00) (baseline), 0.33 (£0.01) (TAE)
and 0.44 (£0.01) (SAE) (Table 1). We therefore analysed the
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Figure 12. Waveform and spectrogram generated by avalanches triggered on 2 February 2022 at 18:14 UTC (left) and 7 February 2022 at
04:07 (right). The signals have been filtered from 1 to 10 Hz corresponding to the input frequency band of the models. At the bottom, a
comparison of the sensor array-based probabilities of each model over the entire length of the avalanche signal is shown. The manually
defined event onset and end are highlighted in dashed grey lines (upper plot), and the classification threshold 0.5 is in orange (lower plot).

origins of FPs to find potential tendencies or failure cases
(Fig. 13). Most FPs, i.e. 77 % (baseline), 66 % (TAE) and
72% (SAE), were generated by windows either carrying a
non-zero avalanche score or belonging to an earthquake.
Interestingly, the highest portion of false positives fell to
windows with an avalanche score of 0.5, i.e. “one” expert
thought it might be an avalanche. This could indicate that
minor-size avalanches, or larger avalanches that flowed at the
detection limits of the system, were not well recognised by
the experts yet by the models. Considering the earthquakes,
the test fold comprised a total of 3880 earthquake windows,
of which only 132 (Seismic), 214 (TAE) and 146 (SAE) were
misclassified as avalanches, i.e. 3.4 %, 5.5 % and 3.8 %. This
underscored the earlier observation of good separation be-
tween avalanches and earthquakes in the latent spaces. The
remaining approx. 30 % FPs in all models originated from
unknown sources.

First, our results thus showed that using an array of sensors
helped to reduce the number of false avalanche detections by
averaging the single-sensor predictions. This can be viewed
as model ensembling and is generally known to improve re-
sults (Mohammed and Kora, 2023). Second, including fre-
quency domain features tended to show fewer FPs. Third, an
interesting and positive finding was that the models rarely
confused earthquakes for avalanches (on average 4.2 % of all
earthquake windows). Moreover, the models generated false
alerts to a similar extent to previous studies in avalanche
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Figure 13. Analysis of origins for false positives as a percentage of
the total amount of false positives per model.

detection (Bessason et al., 2007; Rubin et al., 2012; Ham-
mer et al., 2017; Heck et al., 2018a). In pursuit of reduc-
ing the number of false alerts, one might consider including
other types of recordings, e.g. infrasound data (Mayer et al.,
2020). In addition, considering longer seismic windows in
future implementations might help reduce the number of
false alerts. However, this would require more avalanche data
to start with and to train models.
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6.4 Applicability to early warning and monitoring
systems

In a potential early-warning operation, a practical model
must detect all key parts of the signal, particularly the on-
set, to identify avalanche movement in its early stages and
trigger an appropriate alert. The current classifiers, which of-
ten failed to capture these avalanche onsets, may not yet be
suitable for this purpose. To improve early-warning models,
future studies should focus on examining avalanche onsets
in more detail and developing specialised models that target
these specific signal windows. For avalanche activity mon-
itoring, false negatives at the start or end of each event are
not very problematic. As long as the most energetic part of
the signal is well detected, the overall avalanche activity can
still be accurately recorded. However, when assessing over-
all avalanche activity, missed detections can be problematic.
Therefore, we further post-processed the sensor array-based
predictions (Fig. 9) to formulate event-based predictions
(Sect. 5.3) and give a broader outlook. In theory, this should
eliminate the FNs in the tails of the actual signal and pro-
vide us with event-based detectors. For instance, in Fig. 12,
the models then would detect avalanches with this post-
processing. And indeed, in Fig. E2, we observed a drastic
reduction in missed avalanches for the three models, which
achieved a high true positive rate of 81.4% (1.1 %) (base-
line), 84.8 % (+2.6 %) (TAE) and 89.3 % (+4.3 %) (SAE).

In conclusion, we observed that the models struggled to
detect the starting and ending of an event (Fig. 12). We ar-
gued that this behaviour was reasonable and, in part, desir-
able as these parts of an event often resemble background
noise. However, in most cases, the entire (unique) event was
detected (Fig. E2). Thus, the models could be implemented in
an avalanche activity assessment process or to annotate large
datasets in the future by being aware of their limitations and
the fact that they tend to produce too many avalanche de-
tections. Another compelling prerequisite for avalanche ac-
tivity monitoring in future studies is the transferability to
other study sites. We would expect variations in the detec-
tion performance to arise from different configurations in the
study site setup, sensor location and configuration, and the
characteristics of the terrain and the avalanches. Therefore,
also implementing specialised data augmentation techniques
to increase the variety and number of the avalanche record-
ings, e.g. seismic data augmentation techniques (Zhu et al.,
2020) or generative models (Wang et al., 2021), might help
to make the classifiers more robust to changing environments
and setups.

6.5 Comparison to previous studies
To conclude, we put our results in a broader context by com-
paring them with previous studies. Provost et al. (2017) used

a random forest model based on 71 engineered seismic at-
tributes to classify landslides. They reported stunning true
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positive rates of 94 %, 93 % and 94 % for the rockfall, quake
and earthquake class and a true negative rate of 92 % for
the noise class. Therefore, we adopted their feature extrac-
tion approach as our baseline model, though our dataset dif-
fered significantly. They used non-windowed signals from
an evenly distributed dataset comprising 418 rockfalls, 239
quakes, 407 earthquakes, and 395 noise events. Moreover,
they included polarity and network attributes in the features,
which for the classification turned out to be most important.
However, with 92 % true negative rate, their model is com-
parably prone to producing FPs (false alerts) as the models
in this study were. For avalanche detection, several studies
also presented the approach of feature engineering and sub-
sequent classification (Bessason et al., 2007; Rubin et al.,
2012; Hammer et al., 2017; Heck et al., 2018a). Rubin et al.
(2012) used 10 engineered features in the frequency domain
and tested 12 classification models, of which the decision
stump classifier showed the highest overall accuracy of 0.93.
However, the model showed a poor precision of 0.13, pro-
ducing many more false alerts compared to our classifiers.
Heck et al. (2018a) used the same avalanche catalogue of 283
avalanches, of which 25 were confirmed and the rest were la-
belled by three experts. They implemented engineered tem-
poral and spectral features and used an HMM as a classi-
fier. Similar to most previous studies, they also noted high
values of FPs. Moreover, they observed improvements when
aggregating single-sensor to sensor array-based predictions
as we did in this study. In conclusion, based on the results of
this and previous studies, we expect that an avalanche pre-
dictor based on solely seismic data will always produce false
alarms, as it remains a difficult task to identify low-energy
avalanche signals. Therefore, installing a secondary seismic
detection system near the avalanche path would be advanta-
geous in mitigating false alarms. However, given the terrain
characteristics at our study site (Fig. 1), where avalanches
can occur along multiple paths, a single additional detection
system may not be sufficient to detect all events. Alterna-
tively, integrating a complementary detection system like an
infrasound system could be beneficial but less cost-effective.

7 Conclusions

We proposed two autoencoder-based feature extractors and
retrieved a set of standard engineered seismic attributes
(Provost et al., 2017) to train three random forest classifiers
for avalanche detection. We compiled and annotated a dataset
from seismic avalanche data recorded during two winter sea-
sons in Davos, Switzerland. While in earlier studies, seis-
mic data classification mostly followed the approach of engi-
neering well-defined signal attributes to train classifiers, the
proposed autoencoder models bridged the gap to a purely
learned (automatic) pipeline.

Overall, the classifiers achieved macro-average Fj-scores
ranging from 0.70(%0.01) to 0.78 (£0.00) with avalanche
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recall values ranging from 0.67 (£0.00) to 0.71(%0.02).
Moreover, the results clearly suggested that including fea-
tures from the frequency domain improves model perfor-
mance. Further, as we observed that the models often mis-
classified the onset and end of avalanche signals but not
the most energetic signal parts, we proposed a straightfor-
ward post-processing step. By imposing that at least two
consecutive prediction windows, i.e. 15s, must be posi-
tive for an entire event to be positive, we drastically re-
duced the missed avalanches (false negatives). This crite-
rion significantly improved the avalanche recall, ranging
from 0.81 (£0.01) to 0.89 (£0.04). Lastly, contrary to pre-
vious expectations, earthquakes were rarely mistaken for
avalanches at our study site.

Revisiting the primary objective of advancing and au-
tomating avalanche detection through seismic monitoring
systems, we believe that both the baseline implementation
and the novel autoencoder-based approaches for avalanche
data analysis bear strong potential for future implementa-
tions. We demonstrated that autoencoders can learn charac-
teristic avalanche features from merely 84 seismic avalanche
signals and are performing equally on an avalanche detec-
tion task as expert-engineered features, which have been
studied and applied for over a decade, optimised and fine-
tuned through various studies. Therefore, we argue that as
seismic datasets grow, i.e. with more (diverse) avalanche
signals available for learning, unsupervised representation
learning methods could potentially surpass the conventional
feature engineering approach in the future. In conclusion,
the proposed methods represent a step towards enhancing
the throughput of avalanche detection systems and the au-
tomatic and continuous documentation of events. Acquiring
avalanche detections from such systems across different lo-
cations spanning wider areas has the potential to improve and
validate avalanche warning services. This, however, necessi-
tates future work on investigating the scalability and trans-
ferability of such methods to new environments.

Appendix A: Dataset
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Table A1l. Detailed view on the applied splits of the dataset. For each fold, the table shows the number of respective events. The folds were
picked consecutive in time, with a minor exception in the test fold, which included the 2nd of February from fold 3. This balanced the number
of events in the folds more evenly.

Fold Date Avalanches  Earthquakes Noise
1 13-28 January 2021 17 39 196
2 29 January—24 May 2021 16 39 100
3 10 January—4 February 2022 (excl. 2 February 2022) 18 39 138
4 6 February—17 May 2022 (incl. 2 February 2022) 33 66 211
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Appendix B: Seismic attributes

The implemented engineered feature extraction followed the
work of Provost et al. (2017) and Turner et al. (2021). In con-
trast, by using bandpass-filtered signals (1-10 Hz), we mod-
ified the attributes correspondingly. Also, we discarded net-
work and polarity-related attributes as we developed models
for a single-sensor setting, and our study site only used one-
component sensors. In summary, we extracted 22 waveform
attributes (Table B1), 17 spectral (Table B2) and 18 spectro-

gram attributes (Table B3).

Table B1. Waveform attributes extracted from the 10 s seismic signals.

Number

Description

Ratio of the mean and median over the maximum of the normalised envelop signal

Ratio between ascending and descending time

Kurtosis of the raw signal

Kurtosis of the envelope

Skewness of the raw signal

Skewness of the envelope

Number of peaks in the autocorrelation function

Energy in the first third part of the autocorrelation function
Energy in the remaining part of the autocorrelation function
Ratio of 10 and 9

Energy of the signal filtered in [1, 3], [3, 6], [5, 7], [6,9] and [8, 10] Hz
Kaurtosis of the signal in [1, 3], [3, 6], [5, 7], [6, 9] and [8, 10] Hz

RMS between the decreasing part of the signal and 1 (f) = Ymax — 7 fY—rr;T':axt

Table B2. Spectral attributes extracted from the 10 s seismic signals.

Geosci. Model Dev., 18, 8751-8776, 2025

Number Description

23-24 Mean and Max of the FFT

25 Frequency at the maximum

26-27 Central frequency of the 1st quartile and 2nd quartile
28-29 Median and Variance of the normalised FFT

30 Number of peaks

31 Number of peaks in the autocorrelation function
32 Mean value for the peaks

33-37 Energy in [1, 3], [3, 61, [5, 7], [6,9] and [8, 10] Hz
38 Spectral centroid

39 Gyration radius

40 Spectral centroid width
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Table B3. Spectrogram attributes extracted from the 10 s seismic signals.

Number  Description

41 Kurtosis of the maximum of all fast Fourier transforms (FFTs) over time

42 Kurtosis of the maximum of all FFTs as a function of time

43 Mean ratio between the maximum and the mean of all FFTs

44 Mean ratio between the maximum and the median of all FFTs

45-47 Number of peaks in the curve showing the temporal evolution of the FFTs maximum (45), mean (46) and median (47)
48 Ratio between 45 and 46

49 Ratio between 46 and 47

50 Number of peaks in the curve of the temporal evolution of the FFTs central frequency

51 Number of peaks in the curve of the temporal evolution of the FFTs maximum frequency

52 Ratio between 50 and 51

53 Mean distance between the curves of the temporal evolution of the FFTs maximum frequency and mean frequency
54 Mean distance between the curves of the temporal evolution of the FFTs maximum frequency and median frequency
55 Mean distance between the 1st quartile and the median of all FFTs as a function of time

56 Mean distance between the 3rd quartile and the median of all FFTs as a function of time

57 Mean distance between the 3rd quartile and the 1st quartile of all FFTs as a function of time

Appendix C: Metrics

We used the reconstruction, classification and clustering met-
rics defined here to evaluate the autoencoders and the classi-
fiers.

C1 Reconstruction metrics

Since autoencoders aim at reconstructing a given input signal
v, they are trained using a reconstruction loss. In this study,
we implemented the mean squared error loss (MSE), which
is defined for a batch of size B as follows.

1 B—-1
MSE(y, )= = > (i =3’ (C1)
i=0

y is the autoencoder’s predicted output, i.e., the reconstruc-
tion.

C2 Classification metrics

Various metrics exist to evaluate binary classification prob-
lems. All are tailored to specific objectives. For instance, the
precision is chosen when false alerts, i.e. false positives, are
critical, the recall is sensitive to missed events, i.e. false neg-
atives, and the F-score combines both to form the harmonic
mean as follows:

Precision x Recall
Fi=2x — (C2)
Precision + Recall

The macro average summarises the per-class results within
a single value. This value is an unweighted mean over the
given classes and ensures that the values are not biased to-
wards the majority class.

M F | XK: F1 here K =2 (C3)
acro — = — X , where =
1 K pamt k
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C3 Clustering metrics

A natural metric choice when evaluating autoencoders is the
reconstruction loss, e.g. the mean squared error, on which we
trained the autoencoders in this work. In pursuit of good au-
toencoder features for later classification, however, we aimed
to optimise the latent space representation. Since a good re-
construction does not necessarily imply a sufficient separa-
tion in latent space, we explored clustering metrics to com-
pare the latent space distribution of different models with the
given (expert) labels. We, therefore, implemented the silhou-
ette score (Rousseeuw, 1987) and the Calinski—Harabasz in-
dex (Caliniski and Harabasz, 1974). These scores are usually
used to evaluate clustering algorithms that predict classes,
e.g. k-means. The silhouette score computes the mean intra-
cluster and inter-cluster distances per sample. For instance,
given a sample, it calculates the distance to the cluster it is
part of (a) and the distance to the nearest cluster it is not part
of (b) and forms the sample score:

b—a

= max(a, b) €4

After taking the mean over all samples, the silhouette score
ranges from —1 (worst) to 1 (best). The Calinski—Harabasz
index, or variance ratio criterion, on the other hand, is the ra-
tio of between- and within-cluster dispersion. The between-
cluster dispersion is defined as the weighted sum of squared
Euclidean distances of the cluster centroids and the over-
all centroid (higher better). The within-cluster dispersion is
given as the sum of the squared Euclidean distance of the
samples and their respective cluster centre (lower better).
Thus, a good clustering algorithm is supposed to yield a high
Calinski—Harabasz score.
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Appendix D: Random forest optimisation

Table D1. Selected random forest models.

Parameter Baseline TAE SAE
Number of Estimators 512 512 512
Maximum Depth 8 8 8
Maximum Number of Features log2 sqrt sqrt
Maximum Number of Samples 0.1 0.2 0.2
Class Weight Balanced
Criterion Gini

Bootstrap True

Appendix E: Autoencoder optimisation

To select the autoencoder hyper-parameters, we opted first to
optimise model intrinsic parameters, such as hidden dimen-
sions or the number of layers, instead of training strategy pa-
rameters. This separation reduced the computation time.

The temporal autoencoder architecture optimisation
proved to be more sensitive and critical. First, we optimised
the kernel size, stride, number of filters, feature dimension
and activation function. We observed that the kernel size
and stride combinations of (20, 10) and (8, 4) showed the
best clustering metrics. Moreover, concerning the non-linear
activation, the leaky ReL.U outperformed the Tanh function
in most tests. Since the overall performance was not satis-
fying, we tested the weighted random sampler (Sect. 4.2.2
with 50 % expected avalanches in each batch. This addition
to the training strategy showed a considerable improvement
for most models with kernel size 20 and stride 10. Although
using a kernel size of 8 and stride of 4 tended to show better
clustering metrics, the reconstruction of the signals was com-
parably poor. Based on these observations, we implemented
a kernel size of 20 and stride of 10. Also, we found the fea-
ture dimension 32 better suited than 64 or 16. Lastly, we se-
lected 32, 64, and 128 filters within each encoder layer. See
Table E2 for a summary of the best 10 models of this process
and Table E1 for the selected autoencoders. Having defined
the intrinsic parameters, we tested different training strate-
gies. In particular, we optimised the learning rate, the batch
size and the expected portion of avalanches per batch. This
test led to values of 1 x 10~%, 128 and 0.6 for the temporal
autoencoder (Table E3). Finally, we found that augmenting
the data by randomly shifting input samples by O to 1 s to the
left or right improved robustness.
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Table E1. Selected autoencoders.

Parameter TAE SAE
Number of Weights 514337 81330
Feature Dimension 32 16
Hidden Dimension [200, 20, 2] [139, 78, 16]
Filters [32, 64, 128] -
Number of Layers 3 3
Kernel Size 20 -
Stride 10 -
Expected Avalanche Portion in Batch 0.6 0.5
Learning Rate 1x10™4 1x1074
Batch Size 128 128

While optimising the spectral autoencoder, we found
faster convergence. We started by testing combinations of
the number of layers with hidden dimensions, feature dimen-
sions and activation functions. Table E4 shows the results
for the best eight models. We foremost noted that 16 fea-
tures were optimal for this task. Moreover, we observed that
the Tanh activation function was favourable in comparable
architectures. Finally, we selected the model highlighted in
bold since it showed a good compromise between the number
of weights in the network and performance. Following the
same training strategy as for the temporal autoencoder, we
optimised the learning rate, the batch size and the expected
portion of avalanches per batch. In contrast to the temporal
autoencoder, we used an expected portion of 0.5 avalanches
within a batch, a learning rate of 1 x 10~ and a batch size of
128 (Table ES5).
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Table E2. Summary of the TAE hyper-parameter optimisation. Only the models for which all three metrics are ranked in the top 20 are
shown. The best metrics and the selected model are highlighted in bold.

Weights Filters in Feature Kernel Stride Augmentation Silhouette Calinski-Harabasz ~ MSE
first Layer ~Dimension Size Score Index
109 865 8 64 8 4  False 0.191 849.959 0.078
109 865 8 64 8 4  False 0.024 357.494  0.073
109 865 8 64 8 4 True 0.018 345.684  0.076
156 945 16 32 20 10  False 0.033 374.174  0.06
156 945 16 32 20 10 True 0.011 567.276  0.055
514337 32 32 20 10 True —0.072 368.876  0.054
514337 32 32 20 10  False 0.061 333.174  0.061
514337 32 32 20 10  True 0.041 613917 0.054
625185 32 64 20 10  False —0.095 292,78  0.063
625185 32 64 20 10 True —0.105 307.477  0.064

Table E3. Summary of the TAE learning rate and batch size optimisation. The best metrics and the selected model are highlighted in bold.

batch Ir  Silhouette Score  Calinski—-Harabasz Index = MSE
16 1x1073 —0.093 259.029 0.057
32 1x1073 —0.123 191.291 0.058
16 0.0001 0.019 435901 0.053
32 0.0001 —0.006 460.183  0.055
64 0.0001 0.013 525.536  0.054
128 0.0001 0.051 696.984 0.054
16 0.001 0.039 352.668 0.051
32 0.001 0.011 373.105 0.053
64 0.001 0.034 381.183  0.052
128 0.001 0.007 347.923  0.052

Table E4. Summary of the SAE hyper-parameter optimisation. Only the models for which all three metrics are ranked in the top 10 are
shown. A “default” hidden dimension indicates that the dimensions in the layers of the encoder linearly decrease from the input dimension
(200) to the feature dimension. The best clustering metrics and the selected model are highlighted in bold.

Weights  Layers Feature  Activation Hidden Silhouette  Calinski-Harabasz ~ MSE
Dimension  Function Dimensions Score Index
47552 2 16 Tanh default 0.227 1205952 0.014
47552 2 16 leaky ReLU  default 0.218 1088.234  0.012
70880 2 64  Tanh default 0.198 999475  0.014
81330 3 16 Tanh default 0.224 1237.579 0.013
81330 3 16 leaky ReLU  default 0.217 1015.357 0.012
112432 4 16 Tanh default 0.238 1111.027  0.013
112432 4 16  leaky ReLU  default 0.223 1013.013  0.012
146 120 5 16  leaky ReLU  default 0.223 968.953  0.012
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Table ES. Summary of the SAE learning rate and batch size optimisation. Only the top ten models are shown. The best clustering metrics
and the selected model are highlighted in bold.

batch Ir Silhouette Score  Calinski-Harabasz Index =~ MSE
16 1x1079 0.216 1295.275 0.015
32 1x1073 0.225 1337.226  0.015
128 1x1073 0.219 1339.248 0.015
16 0.0001 0.25 1062.001  0.009
32 0.0001 0.24 1131.993  0.009
64 0.0001 0.241 1283.843  0.013
128 0.0001 0.245 1391.865 0.014
16 0.001 0.268 872.865 0.009
32 0.001 0.272 831.938  0.009
64 0.001 0.261 852.354  0.009
E1 Learning curves
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Figure E1. Learning curves of the TAE (left) and SAE (right). The blue line shows the mean squared error (MSE) loss on the training set,
while the orange line shows the loss progression on the held-out test set (Fold 4 in Fig. 3).

E2 Event-based prediction results
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Figure E2. Confusion matrices of the results for the three feature sets aggregated on event level. The rows indicate the true (expert) labels,
while the columns provide the predicted labels of the random forest classifiers. The colours code the percentage numbers.
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Table E6. Classification metrics on the (unseen) test fold data com-
prising 33 avalanche and 275 noise samples after the aggregation
over entire events of the sensor array-based predictions. Due to
the strong class imbalance and bias towards the noise class, the
weighted averages of the metrics are not shown.

Model Class Precision Recall Fi
Avalanche  042+0.01 0.814+0.01 0.56+0.01
. Noise 0.97+0.00 0.87+0.01 0.92£0.00
Baseline
Macro Avg  0.70£0.01 0.84+£0.01 0.74+0.01
Accuracy 0.86 £0.01
Avalanche  0.27£0.01 0.85+0.03 0.41+0.01
TAE Noise 098+0.00 0.724+0.01 0.83+0.01
Macro Avg  0.63+£0.01 0.79+£0.02 0.62+0.01
Accuracy 0.74+£0.01
Avalanche  0.394+0.01 0.89+0.04 0.54+0.02
Noise 0.98+0.01 0.83+0.01 0.90+0.01
SAE
Macro Avg  0.68+£0.01 0.86+£0.02 0.72+0.01
Accuracy 0.84 £0.01

Code and data availability. The code to reproduce the results
and test the models is available on Zenodo (Simeon, 2025,
https://doi.org/10.5281/zenodo.15001358). It is predominately
written in Python using the PyTorch library (Paszke et al., 2019)
for the autoencoder design, the random forest implementation of
the Scikit-learn library (Pedregosa et al., 2011), the Pandas li-
brary (McKinney, 2010) for handling the data and more standard
Python libraries such as NumPy (Harris et al., 2020) and SciPy
(Virtanen et al., 2020). Additionally, the event catalogue with the
raw seismic waveforms is found on Zenodo (Simeon et al., 2025,
https://doi.org/10.5281/zenodo.14892926).
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