Articles | Volume 18, issue 21 
            
                
                    
                    
            
            
            https://doi.org/10.5194/gmd-18-8047-2025
                    © Author(s) 2025. This work is distributed under 
the Creative Commons Attribution 4.0 License.
                the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-18-8047-2025
                    © Author(s) 2025. This work is distributed under 
the Creative Commons Attribution 4.0 License.
                the Creative Commons Attribution 4.0 License.
An overview of FRIDA v2.1: a feedback-based, fully coupled, global integrated assessment model of climate and humans
William Schoenberg
CORRESPONDING AUTHOR
                                            
                                    
                                            System Dynamics Group, University of Bergen, P.O. Box 7802, 5020 Bergen, Norway
                                        
                                    
                                            isee systems inc., 24 Hanover St. Suite 8A, Lebanon, New Hampshire 03766, USA
                                        
                                    Benjamin Blanz
                                            Research Unit Sustainability and Climate Risks, University of Hamburg, Grindelberg 5, 20144 Hamburg, Germany
                                        
                                    Jefferson K. Rajah
                                            System Dynamics Group, University of Bergen, P.O. Box 7802, 5020 Bergen, Norway
                                        
                                    Beniamino Callegari
                                            School of Economics, Innovation and Technology, Kristiania University of Applied Sciences, Oslo, Norway
                                        
                                    Christopher Wells
                                            School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, United Kingdom
                                        
                                    Jannes Breier
                                            Potsdam Institute for Climate Impact Research, Telegrafenberg A31, 14473 Potsdam, Germany
                                        
                                    Martin B. Grimeland
                                            School of Economics, Innovation and Technology, Kristiania University of Applied Sciences, Oslo, Norway
                                        
                                    Andreas Nicolaidis Lindqvist
                                            Stockholm Resilience Centre, Stockholm University, Albanovägen 28, 106 91 Stockholm, Sweden
                                        
                                    
                                            RISE Research Institutes of Sweden, Ideon Beta5, Scheelevägen 17, 22370, Lund, Sweden
                                        
                                    Lennart Ramme
                                            Max-Planck-Institute for Meteorology, Bundesstraße 53, 20146 Hamburg, Germany
                                        
                                    Chris Smith
                                            Department of Water and Climate, Vrije Universiteit Brussel, 1050 Brussels, Belgium
                                        
                                    
                                            Energy, Climate and Environment Program, International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria
                                        
                                    
                                            Max-Planck-Institute for Meteorology, Bundesstraße 53, 20146 Hamburg, Germany
                                        
                                    Sarah Mashhadi
                                            Department of Ocean and Ice, Norwegian Meteorological Institute, 0313 Blindern, Oslo
                                        
                                    Adakudlu Muralidhar
                                            Department of Ocean and Ice, Norwegian Meteorological Institute, 0313 Blindern, Oslo
                                        
                                    Cecilie Mauritzen
                                            Department of Ocean and Ice, Norwegian Meteorological Institute, 0313 Blindern, Oslo
                                        
                                    Related authors
Jefferson K. Rajah, Benjamin Blanz, Birgit Kopainsky, and William Schoenberg
                                    Geosci. Model Dev., 18, 5997–6022, https://doi.org/10.5194/gmd-18-5997-2025, https://doi.org/10.5194/gmd-18-5997-2025, 2025
                                    Short summary
                                    Short summary
                                            
                                                Climate models often exclude human behaviour. We introduce a model that includes economic, social, and environmental factors that influence dietary choices. This helps us understand how behaviour shifts impact future emissions and climate conditions. By considering a range of plausible behaviours, we provide a more accurate picture of potential outcomes, improving representations in climate models.
                                            
                                            
                                        Christopher Wells, Benjamin Blanz, Lennart Ramme, Jannes Breier, Beniamino Callegari, Adakudlu Muralidhar, Jefferson K. Rajah, Andreas Nicolaidis Lindqvist, Axel E. Eriksson, William Alexander Schoenberg, Alexandre C. Köberle, Lan Wang-Erlandsson, Cecilie Mauritzen, and Chris Smith
                                        EGUsphere, https://doi.org/10.5194/egusphere-2025-2756, https://doi.org/10.5194/egusphere-2025-2756, 2025
                                    Short summary
                                    Short summary
                                            
                                                Computer models built to study future developments of human activity and climate change often exclude the impacts of climate change. Here, we include these effects in a new model. We create functions connecting changes in global temperature, carbon dioxide, and sea level to energy supply and demand, food systems, mortality, economic damages, and other important quantities. Including these effects will allow us to explore their impact on future changes in the human and climate realms.
                                            
                                            
                                        Lennart Ramme, Benjamin Blanz, Christopher Wells, Tony E. Wong, William Schoenberg, Chris Smith, and Chao Li
                                        EGUsphere, https://doi.org/10.5194/egusphere-2025-1875, https://doi.org/10.5194/egusphere-2025-1875, 2025
                                    Short summary
                                    Short summary
                                            
                                                We present FRISIA version 1.0, a model to represent the impacts of future sea level rise (SLR) in integrated assessment models (IAMs). FRISIA can reproduce the impacts calculated by a more detailed spatially resolved model. Furthermore, the inclusion of previously uncaptured coastal feedback in FRISIA leads to emerging new behaviour. Our model improves the represenation of SLR impacts in IAMs, contributing to better projections of the world's socio-economic evolution under climate change.
                                            
                                            
                                        Jannes Breier, Luana Schwarz, Hannah Prawitz, Werner von Bloh, Christoph Müller, Stephen Björn Wirth, Max Bechthold, Dieter Gerten, and Jonathan F. Donges
                                        EGUsphere, https://doi.org/10.5194/egusphere-2025-4475, https://doi.org/10.5194/egusphere-2025-4475, 2025
                                    This preprint is open for discussion and under review for Geoscientific Model Development (GMD). 
                                    Short summary
                                    Short summary
                                            
                                                We present a new modelling framework that links global vegetation and agricultural modelling with human decision-making processes in an integrated simulation approach. This makes it possible to explore how farming practices and environmental changes influence each other over time. By combining climate, land use, and social dynamics in one system, the framework opens new ways to study food security, climate adaptation strategies, and long-term impacts.
                                            
                                            
                                        Magali Verkerk, Thomas J. Aubry, Chris Smith, Peter O. Hopcroft, Michael Sigl, Jessica E. Tierney, Kevin Anchukaitis, Matthew Osman, Anja Schmidt, and Matthew Toohey
                                    Clim. Past, 21, 1755–1778, https://doi.org/10.5194/cp-21-1755-2025, https://doi.org/10.5194/cp-21-1755-2025, 2025
                                    Short summary
                                    Short summary
                                            
                                                Large volcanic eruptions can trigger global cooling, affecting human societies. Using ice-core records and simple climate model to simulate volcanic effect over the last 8500 years, we show that volcanic eruptions cool the climate by 0.12 °C on average. By comparing model results with temperature recorded by tree rings over the last 1000 years, we demonstrate that our models can predict the large-scale cooling caused by volcanic eruptions and can be used in cases of large eruptions in the future.
                                            
                                            
                                        Luana Schwarz, Jannes Breier, Hannah Prawitz, Max Bechthold, Werner von Bloh, Sara M. Constantino, Dieter Gerten, Jobst Heitzig, Ronja Hotz, Leander John, Christoph Müller, Johan Rockström, and Jonathan F. Donges
                                        EGUsphere, https://doi.org/10.5194/egusphere-2025-4079, https://doi.org/10.5194/egusphere-2025-4079, 2025
                                    This preprint is open for discussion and under review for Earth System Dynamics (ESD). 
                                    Short summary
                                    Short summary
                                            
                                                We present a novel global model that links farmer decisions with ecological processes to explore how agricultural systems co-evolve. Unlike previous tools, it captures feedbacks between society and nature at up-to planetary scale. We find that conservation practices can restore soil health and support stable harvests. Adoption spreads through learning and norms, showing how regeneration at the farm scale can ripple outward, contributing to global sustainability and Earth system resilience.
                                            
                                            
                                        Ryan Kramer, Chris Smith, and Timothy Andrews
                                        EGUsphere, https://doi.org/10.5194/egusphere-2025-4378, https://doi.org/10.5194/egusphere-2025-4378, 2025
                                    This preprint is open for discussion and under review for Geoscientific Model Development (GMD). 
                                    Short summary
                                    Short summary
                                            
                                                Natural or anthropogenic activities can cause a perturbation in Earth’s radiative energy budget known as a radiative forcing, which induces a climate response. Diagnosing radiative forcing and its uncertainty is foundational to understanding past and future climate change. Here we outline the protocol for the second iteration of the Radiative Forcing Model Intercomparison Project (RFMIP2.0), which provides a standardized method for diagnosing radiative forcing across Global Climate Models.
                                            
                                            
                                        Jefferson K. Rajah, Benjamin Blanz, Birgit Kopainsky, and William Schoenberg
                                    Geosci. Model Dev., 18, 5997–6022, https://doi.org/10.5194/gmd-18-5997-2025, https://doi.org/10.5194/gmd-18-5997-2025, 2025
                                    Short summary
                                    Short summary
                                            
                                                Climate models often exclude human behaviour. We introduce a model that includes economic, social, and environmental factors that influence dietary choices. This helps us understand how behaviour shifts impact future emissions and climate conditions. By considering a range of plausible behaviours, we provide a more accurate picture of potential outcomes, improving representations in climate models.
                                            
                                            
                                        Benjamin M. Sanderson, Victor Brovkin, Rosie A. Fisher, David Hohn, Tatiana Ilyina, Chris D. Jones, Torben Koenigk, Charles Koven, Hongmei Li, David M. Lawrence, Peter Lawrence, Spencer Liddicoat, Andrew H. MacDougall, Nadine Mengis, Zebedee Nicholls, Eleanor O'Rourke, Anastasia Romanou, Marit Sandstad, Jörg Schwinger, Roland Séférian, Lori T. Sentman, Isla R. Simpson, Chris Smith, Norman J. Steinert, Abigail L. S. Swann, Jerry Tjiputra, and Tilo Ziehn
                                    Geosci. Model Dev., 18, 5699–5724, https://doi.org/10.5194/gmd-18-5699-2025, https://doi.org/10.5194/gmd-18-5699-2025, 2025
                                    Short summary
                                    Short summary
                                            
                                                This study investigates how climate models warm in response to simplified carbon emissions trajectories, refining the understanding of climate reversibility and commitment. Metrics are defined for warming response to cumulative emissions and for the cessation of emissions or ramp-down to net-zero and net-negative levels. Results indicate that previous concentration-driven experiments may have overstated the Zero Emissions Commitment due to emissions rates exceeding historical levels.
                                            
                                            
                                        Max Bechthold, Wolfram Barfuss, André Butz, Jannes Breier, Sara M. Constantino, Jobst Heitzig, Luana Schwarz, Sanam N. Vardag, and Jonathan F. Donges
                                    Earth Syst. Dynam., 16, 1365–1390, https://doi.org/10.5194/esd-16-1365-2025, https://doi.org/10.5194/esd-16-1365-2025, 2025
                                    Short summary
                                    Short summary
                                            Social norms are a major influence on human behaviour. In natural resource use models, norms are often included in a simplistic way leading to “black or white” sustainability outcomes. We find that a dynamic representation of norms, including social groups, determines more nuanced states of the environment in a stylised model of resource use while also defining the success of attempts to manage the system, suggesting the importance of representing both aspects well in coupled models.
                                            Alejandro Romero-Prieto, Camilla Mathison, and Chris Smith
                                        EGUsphere, https://doi.org/10.5194/egusphere-2025-2691, https://doi.org/10.5194/egusphere-2025-2691, 2025
                                    This preprint is open for discussion and under review for Geoscientific Model Development (GMD). 
                                    Short summary
                                    Short summary
                                            
                                                Simple Climate Models (SCMs) are widely used tools to explore how Earth’s climate may change in the future. In recent decades, the number and types of SCMs have increased significantly, hindering efforts to understand cross-model differences. In this study, we provide an overview of the main principles guiding climate simulation by SCMs, as well as a description of most high-profile SCMs. This work offers a clear reference to support the informed use of these important tools.
                                            
                                            
                                        Paul T. Griffiths, Laura J. Wilcox, Robert J. Allen, Vaishali Naik, Fiona M. O'Connor, Michael Prather, Alex Archibald, Florence Brown, Makoto Deushi, William Collins, Stephanie Fiedler, Naga Oshima, Lee T. Murray, Bjørn H. Samset, Chris Smith, Steven Turnock, Duncan Watson-Parris, and Paul J. Young
                                    Atmos. Chem. Phys., 25, 8289–8328, https://doi.org/10.5194/acp-25-8289-2025, https://doi.org/10.5194/acp-25-8289-2025, 2025
                                    Short summary
                                    Short summary
                                            The Aerosol Chemistry Model Intercomparison Project (AerChemMIP) aimed to quantify the climate and air quality impacts of aerosols and chemically reactive gases. We review its contribution to AR6 (Sixth Assessment Report of the Intergovernmental Panel on Climate Change) and the wider understanding of the role of these species in climate and climate change. We identify challenges and provide recommendations to improve the utility and uptake of climate model data, detailed summary tables of CMIP6 models, experiments, and emergent diagnostics.
Christopher Wells, Benjamin Blanz, Lennart Ramme, Jannes Breier, Beniamino Callegari, Adakudlu Muralidhar, Jefferson K. Rajah, Andreas Nicolaidis Lindqvist, Axel E. Eriksson, William Alexander Schoenberg, Alexandre C. Köberle, Lan Wang-Erlandsson, Cecilie Mauritzen, and Chris Smith
                                        EGUsphere, https://doi.org/10.5194/egusphere-2025-2756, https://doi.org/10.5194/egusphere-2025-2756, 2025
                                    Short summary
                                    Short summary
                                            
                                                Computer models built to study future developments of human activity and climate change often exclude the impacts of climate change. Here, we include these effects in a new model. We create functions connecting changes in global temperature, carbon dioxide, and sea level to energy supply and demand, food systems, mortality, economic damages, and other important quantities. Including these effects will allow us to explore their impact on future changes in the human and climate realms.
                                            
                                            
                                        Lennart Ramme, Benjamin Blanz, Christopher Wells, Tony E. Wong, William Schoenberg, Chris Smith, and Chao Li
                                        EGUsphere, https://doi.org/10.5194/egusphere-2025-1875, https://doi.org/10.5194/egusphere-2025-1875, 2025
                                    Short summary
                                    Short summary
                                            
                                                We present FRISIA version 1.0, a model to represent the impacts of future sea level rise (SLR) in integrated assessment models (IAMs). FRISIA can reproduce the impacts calculated by a more detailed spatially resolved model. Furthermore, the inclusion of previously uncaptured coastal feedback in FRISIA leads to emerging new behaviour. Our model improves the represenation of SLR impacts in IAMs, contributing to better projections of the world's socio-economic evolution under climate change.
                                            
                                            
                                        Piers M. Forster, Chris Smith, Tristram Walsh, William F. Lamb, Robin Lamboll, Christophe Cassou, Mathias Hauser, Zeke Hausfather, June-Yi Lee, Matthew D. Palmer, Karina von Schuckmann, Aimée B. A. Slangen, Sophie Szopa, Blair Trewin, Jeongeun Yun, Nathan P. Gillett, Stuart Jenkins, H. Damon Matthews, Krishnan Raghavan, Aurélien Ribes, Joeri Rogelj, Debbie Rosen, Xuebin Zhang, Myles Allen, Lara Aleluia Reis, Robbie M. Andrew, Richard A. Betts, Alex Borger, Jiddu A. Broersma, Samantha N. Burgess, Lijing Cheng, Pierre Friedlingstein, Catia M. Domingues, Marco Gambarini, Thomas Gasser, Johannes Gütschow, Masayoshi Ishii, Christopher Kadow, John Kennedy, Rachel E. Killick, Paul B. Krummel, Aurélien Liné, Didier P. Monselesan, Colin Morice, Jens Mühle, Vaishali Naik, Glen P. Peters, Anna Pirani, Julia Pongratz, Jan C. Minx, Matthew Rigby, Robert Rohde, Abhishek Savita, Sonia I. Seneviratne, Peter Thorne, Christopher Wells, Luke M. Western, Guido R. van der Werf, Susan E. Wijffels, Valérie Masson-Delmotte, and Panmao Zhai
                                    Earth Syst. Sci. Data, 17, 2641–2680, https://doi.org/10.5194/essd-17-2641-2025, https://doi.org/10.5194/essd-17-2641-2025, 2025
                                    Short summary
                                    Short summary
                                            
                                                In a rapidly changing climate, evidence-based decision-making benefits from up-to-date and timely information. Here we compile monitoring datasets to track real-world changes over time. To make our work relevant to policymakers, we follow methods from the Intergovernmental Panel on Climate Change (IPCC). Human activities are increasing the Earth's energy imbalance and driving faster sea-level rise compared to the IPCC assessment.
                                            
                                            
                                        William Lamb, Robbie Andrew, Matthew Jones, Zebedee Nicholls, Glen Peters, Chris Smith, Marielle Saunois, Giacomo Grassi, Julia Pongratz, Steven Smith, Francesco Tubiello, Monica Crippa, Matthew Gidden, Pierre Friedlingstein, Jan Minx, and Piers Forster
                                        Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-188, https://doi.org/10.5194/essd-2025-188, 2025
                                    Preprint under review for ESSD 
                                    Short summary
                                    Short summary
                                            
                                                This study explores why global greenhouse gas (GHG) emissions estimates vary. Key reasons include different coverage of gases and sectors, varying definitions of anthropogenic land use change emissions, and the Paris Agreement not covering all emission sources. The study highlights three main ways emissions data is reported, each with different objectives and resulting in varying global emission totals. It emphasizes the need for transparency in choosing datasets and setting assessment scopes.
                                            
                                            
                                        Camilla Mathison, Eleanor J. Burke, Gregory Munday, Chris D. Jones, Chris J. Smith, Norman J. Steinert, Andy J. Wiltshire, Chris Huntingford, Eszter Kovacs, Laila K. Gohar, Rebecca M. Varney, and Douglas McNeall
                                    Geosci. Model Dev., 18, 1785–1808, https://doi.org/10.5194/gmd-18-1785-2025, https://doi.org/10.5194/gmd-18-1785-2025, 2025
                                    Short summary
                                    Short summary
                                            
                                                We present PRIME (Probabilistic Regional Impacts from Model patterns and Emissions), which is designed to take new emissions scenarios and rapidly provide regional impact information. PRIME allows large ensembles to be run on multi-centennial timescales, including the analysis of many important variables for impact assessments. Our evaluation shows that PRIME reproduces the climate response for known scenarios, providing confidence in using PRIME for novel scenarios.
                                            
                                            
                                        Detlef van Vuuren, Brian O'Neill, Claudia Tebaldi, Louise Chini, Pierre Friedlingstein, Tomoko Hasegawa, Keywan Riahi, Benjamin Sanderson, Bala Govindasamy, Nico Bauer, Veronika Eyring, Cheikh Fall, Katja Frieler, Matthew Gidden, Laila Gohar, Andrew Jones, Andrew King, Reto Knutti, Elmar Kriegler, Peter Lawrence, Chris Lennard, Jason Lowe, Camila Mathison, Shahbaz Mehmood, Luciana Prado, Qiang Zhang, Steven Rose, Alexander Ruane, Carl-Friederich Schleussner, Roland Seferian, Jana Sillmann, Chris Smith, Anna Sörensson, Swapna Panickal, Kaoru Tachiiri, Naomi Vaughan, Saritha Vishwanathan, Tokuta Yokohata, and Tilo Ziehn
                                        EGUsphere, https://doi.org/10.5194/egusphere-2024-3765, https://doi.org/10.5194/egusphere-2024-3765, 2025
                                    Short summary
                                    Short summary
                                            
                                                We propose a set of six plausible 21st century emission scenarios, and their multi-century extensions, that will be used by the international community of climate modeling centers to produce the next generation of climate projections. These projections will support climate, impact and mitigation researchers, provide information to practitioners to address future risks from climate change, and contribute to policymakers’ considerations of the trade-offs among various levels of mitigation.
                                            
                                            
                                        Chris Smith, Donald P. Cummins, Hege-Beate Fredriksen, Zebedee Nicholls, Malte Meinshausen, Myles Allen, Stuart Jenkins, Nicholas Leach, Camilla Mathison, and Antti-Ilari Partanen
                                    Geosci. Model Dev., 17, 8569–8592, https://doi.org/10.5194/gmd-17-8569-2024, https://doi.org/10.5194/gmd-17-8569-2024, 2024
                                    Short summary
                                    Short summary
                                            
                                                Climate projections are only useful if the underlying models that produce them are well calibrated and can reproduce observed climate change. We formalise a software package that calibrates the open-source FaIR simple climate model to full-complexity Earth system models. Observations, including historical warming, and assessments of key climate variables such as that of climate sensitivity are used to constrain the model output.
                                            
                                            
                                        Benjamin M. Sanderson, Ben B. B. Booth, John Dunne, Veronika Eyring, Rosie A. Fisher, Pierre Friedlingstein, Matthew J. Gidden, Tomohiro Hajima, Chris D. Jones, Colin G. Jones, Andrew King, Charles D. Koven, David M. Lawrence, Jason Lowe, Nadine Mengis, Glen P. Peters, Joeri Rogelj, Chris Smith, Abigail C. Snyder, Isla R. Simpson, Abigail L. S. Swann, Claudia Tebaldi, Tatiana Ilyina, Carl-Friedrich Schleussner, Roland Séférian, Bjørn H. Samset, Detlef van Vuuren, and Sönke Zaehle
                                    Geosci. Model Dev., 17, 8141–8172, https://doi.org/10.5194/gmd-17-8141-2024, https://doi.org/10.5194/gmd-17-8141-2024, 2024
                                    Short summary
                                    Short summary
                                            
                                                We discuss how, in order to provide more relevant guidance for climate policy, coordinated climate experiments should adopt a greater focus on simulations where Earth system models are provided with carbon emissions from fossil fuels together with land use change instructions, rather than past approaches that have largely focused on experiments with prescribed atmospheric carbon dioxide concentrations. We discuss how these goals might be achieved in coordinated climate modeling experiments.
                                            
                                            
                                        Robert J. Allen, Xueying Zhao, Cynthia A. Randles, Ryan J. Kramer, Bjørn H. Samset, and Christopher J. Smith
                                    Atmos. Chem. Phys., 24, 11207–11226, https://doi.org/10.5194/acp-24-11207-2024, https://doi.org/10.5194/acp-24-11207-2024, 2024
                                    Short summary
                                    Short summary
                                            
                                                Present-day methane shortwave absorption mutes 28% (7–55%) of the surface warming associated with its longwave absorption. The precipitation increase associated with the longwave radiative effects of the present-day methane perturbation is also muted by shortwave absorption but not significantly so.  Methane shortwave absorption also impacts the magnitude of its climate feedback parameter, largely through the cloud feedback.
                                            
                                            
                                        Donghuan Li, Tianjun Zhou, Youcun Qi, Liwei Zou, Chao Li, Wenxia Zhang, and Xiaolong Chen
                                    Atmos. Chem. Phys., 24, 7347–7358, https://doi.org/10.5194/acp-24-7347-2024, https://doi.org/10.5194/acp-24-7347-2024, 2024
                                    Short summary
                                    Short summary
                                            
                                                Two sets of climate model simulations are used to investigate the dynamic and thermodynamic factors of future change in cold extremes in East Asia. Dynamic factor accounted for over 80 % of cold-month temperature anomalies in past 50 years. The intensity of cold extreme is expected to decrease by 5 ℃, with thermodynamic factor contributing ~ 75 % by the end of the 21st century. Changes in dynamic factor are driven by an upward trend of positive Arctic Oscillation-like sea level pressure pattern.
                                            
                                            
                                        Malte Meinshausen, Carl-Friedrich Schleussner, Kathleen Beyer, Greg Bodeker, Olivier Boucher, Josep G. Canadell, John S. Daniel, Aïda Diongue-Niang, Fatima Driouech, Erich Fischer, Piers Forster, Michael Grose, Gerrit Hansen, Zeke Hausfather, Tatiana Ilyina, Jarmo S. Kikstra, Joyce Kimutai, Andrew D. King, June-Yi Lee, Chris Lennard, Tabea Lissner, Alexander Nauels, Glen P. Peters, Anna Pirani, Gian-Kasper Plattner, Hans Pörtner, Joeri Rogelj, Maisa Rojas, Joyashree Roy, Bjørn H. Samset, Benjamin M. Sanderson, Roland Séférian, Sonia Seneviratne, Christopher J. Smith, Sophie Szopa, Adelle Thomas, Diana Urge-Vorsatz, Guus J. M. Velders, Tokuta Yokohata, Tilo Ziehn, and Zebedee Nicholls
                                    Geosci. Model Dev., 17, 4533–4559, https://doi.org/10.5194/gmd-17-4533-2024, https://doi.org/10.5194/gmd-17-4533-2024, 2024
                                    Short summary
                                    Short summary
                                            
                                                The scientific community is considering new scenarios to succeed RCPs and SSPs for the next generation of Earth system model runs to project future climate change. To contribute to that effort, we reflect on relevant policy and scientific research questions and suggest categories for representative emission pathways. These categories are tailored to the Paris Agreement long-term temperature goal, high-risk outcomes in the absence of further climate policy and worlds “that could have been”.
                                            
                                            
                                        Piers M. Forster, Chris Smith, Tristram Walsh, William F. Lamb, Robin Lamboll, Bradley Hall, Mathias Hauser, Aurélien Ribes, Debbie Rosen, Nathan P. Gillett, Matthew D. Palmer, Joeri Rogelj, Karina von Schuckmann, Blair Trewin, Myles Allen, Robbie Andrew, Richard A. Betts, Alex Borger, Tim Boyer, Jiddu A. Broersma, Carlo Buontempo, Samantha Burgess, Chiara Cagnazzo, Lijing Cheng, Pierre Friedlingstein, Andrew Gettelman, Johannes Gütschow, Masayoshi Ishii, Stuart Jenkins, Xin Lan, Colin Morice, Jens Mühle, Christopher Kadow, John Kennedy, Rachel E. Killick, Paul B. Krummel, Jan C. Minx, Gunnar Myhre, Vaishali Naik, Glen P. Peters, Anna Pirani, Julia Pongratz, Carl-Friedrich Schleussner, Sonia I. Seneviratne, Sophie Szopa, Peter Thorne, Mahesh V. M. Kovilakam, Elisa Majamäki, Jukka-Pekka Jalkanen, Margreet van Marle, Rachel M. Hoesly, Robert Rohde, Dominik Schumacher, Guido van der Werf, Russell Vose, Kirsten Zickfeld, Xuebin Zhang, Valérie Masson-Delmotte, and Panmao Zhai
                                    Earth Syst. Sci. Data, 16, 2625–2658, https://doi.org/10.5194/essd-16-2625-2024, https://doi.org/10.5194/essd-16-2625-2024, 2024
                                    Short summary
                                    Short summary
                                            
                                                This paper tracks some key indicators of global warming through time, from 1850 through to the end of 2023. It is designed to give an authoritative estimate of global warming to date and its causes. We find that in 2023, global warming reached 1.3 °C and is increasing at over 0.2 °C per decade. This is caused by all-time-high greenhouse gas emissions.
                                            
                                            
                                        Bjorn Stevens, Stefan Adami, Tariq Ali, Hartwig Anzt, Zafer Aslan, Sabine Attinger, Jaana Bäck, Johanna Baehr, Peter Bauer, Natacha Bernier, Bob Bishop, Hendryk Bockelmann, Sandrine Bony, Guy Brasseur, David N. Bresch, Sean Breyer, Gilbert Brunet, Pier Luigi Buttigieg, Junji Cao, Christelle Castet, Yafang Cheng, Ayantika Dey Choudhury, Deborah Coen, Susanne Crewell, Atish Dabholkar, Qing Dai, Francisco Doblas-Reyes, Dale Durran, Ayoub El Gaidi, Charlie Ewen, Eleftheria Exarchou, Veronika Eyring, Florencia Falkinhoff, David Farrell, Piers M. Forster, Ariane Frassoni, Claudia Frauen, Oliver Fuhrer, Shahzad Gani, Edwin Gerber, Debra Goldfarb, Jens Grieger, Nicolas Gruber, Wilco Hazeleger, Rolf Herken, Chris Hewitt, Torsten Hoefler, Huang-Hsiung Hsu, Daniela Jacob, Alexandra Jahn, Christian Jakob, Thomas Jung, Christopher Kadow, In-Sik Kang, Sarah Kang, Karthik Kashinath, Katharina Kleinen-von Königslöw, Daniel Klocke, Uta Kloenne, Milan Klöwer, Chihiro Kodama, Stefan Kollet, Tobias Kölling, Jenni Kontkanen, Steve Kopp, Michal Koran, Markku Kulmala, Hanna Lappalainen, Fakhria Latifi, Bryan Lawrence, June Yi Lee, Quentin Lejeun, Christian Lessig, Chao Li, Thomas Lippert, Jürg Luterbacher, Pekka Manninen, Jochem Marotzke, Satoshi Matsouoka, Charlotte Merchant, Peter Messmer, Gero Michel, Kristel Michielsen, Tomoki Miyakawa, Jens Müller, Ramsha Munir, Sandeep Narayanasetti, Ousmane Ndiaye, Carlos Nobre, Achim Oberg, Riko Oki, Tuba Özkan-Haller, Tim Palmer, Stan Posey, Andreas Prein, Odessa Primus, Mike Pritchard, Julie Pullen, Dian Putrasahan, Johannes Quaas, Krishnan Raghavan, Venkatachalam Ramaswamy, Markus Rapp, Florian Rauser, Markus Reichstein, Aromar Revi, Sonakshi Saluja, Masaki Satoh, Vera Schemann, Sebastian Schemm, Christina Schnadt Poberaj, Thomas Schulthess, Cath Senior, Jagadish Shukla, Manmeet Singh, Julia Slingo, Adam Sobel, Silvina Solman, Jenna Spitzer, Philip Stier, Thomas Stocker, Sarah Strock, Hang Su, Petteri Taalas, John Taylor, Susann Tegtmeier, Georg Teutsch, Adrian Tompkins, Uwe Ulbrich, Pier-Luigi Vidale, Chien-Ming Wu, Hao Xu, Najibullah Zaki, Laure Zanna, Tianjun Zhou, and Florian Ziemen
                                    Earth Syst. Sci. Data, 16, 2113–2122, https://doi.org/10.5194/essd-16-2113-2024, https://doi.org/10.5194/essd-16-2113-2024, 2024
                                    Short summary
                                    Short summary
                                            
                                                To manage Earth in the Anthropocene, new tools, new institutions, and new forms of international cooperation will be required. Earth Virtualization Engines is proposed as an international federation of centers of excellence to empower all people to respond to the immense and urgent challenges posed by climate change.
                                            
                                            
                                        Stephanie Fiedler, Vaishali Naik, Fiona M. O'Connor, Christopher J. Smith, Paul Griffiths, Ryan J. Kramer, Toshihiko Takemura, Robert J. Allen, Ulas Im, Matthew Kasoar, Angshuman Modak, Steven Turnock, Apostolos Voulgarakis, Duncan Watson-Parris, Daniel M. Westervelt, Laura J. Wilcox, Alcide Zhao, William J. Collins, Michael Schulz, Gunnar Myhre, and Piers M. Forster
                                    Geosci. Model Dev., 17, 2387–2417, https://doi.org/10.5194/gmd-17-2387-2024, https://doi.org/10.5194/gmd-17-2387-2024, 2024
                                    Short summary
                                    Short summary
                                            
                                                Climate scientists want to better understand modern climate change. Thus, climate model experiments are performed and compared. The results of climate model experiments differ, as assessed in the latest Intergovernmental Panel on Climate Change (IPCC) assessment report. This article gives insights into the challenges and outlines opportunities for further improving the understanding of climate change. It is based on views of a group of experts in atmospheric composition–climate interactions.
                                            
                                            
                                        Christopher D. Wells, Matthew Kasoar, Majid Ezzati, and Apostolos Voulgarakis
                                    Atmos. Chem. Phys., 24, 1025–1039, https://doi.org/10.5194/acp-24-1025-2024, https://doi.org/10.5194/acp-24-1025-2024, 2024
                                    Short summary
                                    Short summary
                                            
                                                Human-driven emissions of air pollutants, mostly caused by burning fossil fuels, impact both the climate and human health. Millions of deaths each year are caused by air pollution globally, and the future trends are uncertain. Here, we use a global climate model to study the effect of African pollutant emissions on surface level air pollution, and resultant impacts on human health, in several future emission scenarios. We find much lower health impacts under cleaner, lower-emission futures.
                                            
                                            
                                        Robert E. Kopp, Gregory G. Garner, Tim H. J. Hermans, Shantenu Jha, Praveen Kumar, Alexander Reedy, Aimée B. A. Slangen, Matteo Turilli, Tamsin L. Edwards, Jonathan M. Gregory, George Koubbe, Anders Levermann, Andre Merzky, Sophie Nowicki, Matthew D. Palmer, and Chris Smith
                                    Geosci. Model Dev., 16, 7461–7489, https://doi.org/10.5194/gmd-16-7461-2023, https://doi.org/10.5194/gmd-16-7461-2023, 2023
                                    Short summary
                                    Short summary
                                            
                                                Future sea-level rise projections exhibit multiple forms of uncertainty, all of which must be considered by scientific assessments intended to inform decision-making. The Framework for Assessing Changes To Sea-level (FACTS) is a new software package intended to support assessments of global mean, regional, and extreme sea-level rise. An early version of FACTS supported the development of the IPCC Sixth Assessment Report sea-level projections.
                                            
                                            
                                        Olivia Linke, Johannes Quaas, Finja Baumer, Sebastian Becker, Jan Chylik, Sandro Dahlke, André Ehrlich, Dörthe Handorf, Christoph Jacobi, Heike Kalesse-Los, Luca Lelli, Sina Mehrdad, Roel A. J. Neggers, Johannes Riebold, Pablo Saavedra Garfias, Niklas Schnierstein, Matthew D. Shupe, Chris Smith, Gunnar Spreen, Baptiste Verneuil, Kameswara S. Vinjamuri, Marco Vountas, and Manfred Wendisch
                                    Atmos. Chem. Phys., 23, 9963–9992, https://doi.org/10.5194/acp-23-9963-2023, https://doi.org/10.5194/acp-23-9963-2023, 2023
                                    Short summary
                                    Short summary
                                            
                                                Lapse rate feedback (LRF) is a major driver of the Arctic amplification (AA) of climate change. It arises because the warming is stronger at the surface than aloft. Several processes can affect the LRF in the Arctic, such as the omnipresent temperature inversion. Here, we compare multimodel climate simulations to Arctic-based observations from a large research consortium to broaden our understanding of these processes, find synergy among them, and constrain the Arctic LRF and AA.
                                            
                                            
                                        Christopher D. Wells, Lawrence S. Jackson, Amanda C. Maycock, and Piers M. Forster
                                    Earth Syst. Dynam., 14, 817–834, https://doi.org/10.5194/esd-14-817-2023, https://doi.org/10.5194/esd-14-817-2023, 2023
                                    Short summary
                                    Short summary
                                            
                                                There are many possibilities for future emissions, with different impacts in different places. Complex models can study these impacts but take a long time to run, even on powerful computers. Simple methods can be used to reduce this time by estimating the complex model output, but these are not perfect. This study looks at the accuracy of one of these techniques, showing that there are limitations to its use, especially for low-emission future scenarios.
                                            
                                            
                                        Mark D. Zelinka, Christopher J. Smith, Yi Qin, and Karl E. Taylor
                                    Atmos. Chem. Phys., 23, 8879–8898, https://doi.org/10.5194/acp-23-8879-2023, https://doi.org/10.5194/acp-23-8879-2023, 2023
                                    Short summary
                                    Short summary
                                            
                                                The primary uncertainty in how strongly Earth's climate has been perturbed by human activities comes from the unknown radiative impact of aerosol changes.  Accurately quantifying these forcings – and their sub-components – in climate models is crucial for understanding the past and future simulated climate. In this study we describe biases in previously published estimates of aerosol radiative forcing in climate models and provide corrected estimates along with code for users to compute them.
                                            
                                            
                                        Piers M. Forster, Christopher J. Smith, Tristram Walsh, William F. Lamb, Robin Lamboll, Mathias Hauser, Aurélien Ribes, Debbie Rosen, Nathan Gillett, Matthew D. Palmer, Joeri Rogelj, Karina von Schuckmann, Sonia I. Seneviratne, Blair Trewin, Xuebin Zhang, Myles Allen, Robbie Andrew, Arlene Birt, Alex Borger, Tim Boyer, Jiddu A. Broersma, Lijing Cheng, Frank Dentener, Pierre Friedlingstein, José M. Gutiérrez, Johannes Gütschow, Bradley Hall, Masayoshi Ishii, Stuart Jenkins, Xin Lan, June-Yi Lee, Colin Morice, Christopher Kadow, John Kennedy, Rachel Killick, Jan C. Minx, Vaishali Naik, Glen P. Peters, Anna Pirani, Julia Pongratz, Carl-Friedrich Schleussner, Sophie Szopa, Peter Thorne, Robert Rohde, Maisa Rojas Corradi, Dominik Schumacher, Russell Vose, Kirsten Zickfeld, Valérie Masson-Delmotte, and Panmao Zhai
                                    Earth Syst. Sci. Data, 15, 2295–2327, https://doi.org/10.5194/essd-15-2295-2023, https://doi.org/10.5194/essd-15-2295-2023, 2023
                                    Short summary
                                    Short summary
                                            
                                                This is a critical decade for climate action, but there is no annual tracking of the level of human-induced warming. We build on the Intergovernmental Panel on Climate Change assessment reports that are authoritative but published infrequently to create a set of key global climate indicators that can be tracked through time. Our hope is that this becomes an important annual publication that policymakers, media, scientists and the public can refer to.
                                            
                                            
                                        Christopher D. Wells, Matthew Kasoar, Nicolas Bellouin, and Apostolos Voulgarakis
                                    Atmos. Chem. Phys., 23, 3575–3593, https://doi.org/10.5194/acp-23-3575-2023, https://doi.org/10.5194/acp-23-3575-2023, 2023
                                    Short summary
                                    Short summary
                                            
                                                The climate is altered by greenhouse gases and air pollutant particles, and such emissions are likely to change drastically in the future over Africa. Air pollutants do not travel far, so their climate effect depends on where they are emitted. This study uses a climate model to find the climate impacts of future African pollutant emissions being either high or low. The particles absorb and scatter sunlight, causing the ground nearby to be cooler, but elsewhere the increased heat causes warming.
                                            
                                            
                                        Leonidas Linardakis, Irene Stemmler, Moritz Hanke, Lennart Ramme, Fatemeh Chegini, Tatiana Ilyina, and Peter Korn
                                    Geosci. Model Dev., 15, 9157–9176, https://doi.org/10.5194/gmd-15-9157-2022, https://doi.org/10.5194/gmd-15-9157-2022, 2022
                                    Short summary
                                    Short summary
                                            
                                                In Earth system modelling, we are facing the challenge of making efficient use of very large machines, with millions of cores. To meet this challenge we will need to employ multi-level and multi-dimensional parallelism. Component concurrency, being a function parallel technique, offers an additional dimension to the traditional data-parallel approaches. In this paper we examine the behaviour of component concurrency and identify the conditions for its optimal application.
                                            
                                            
                                        Jarmo S. Kikstra, Zebedee R. J. Nicholls, Christopher J. Smith, Jared Lewis, Robin D. Lamboll, Edward Byers, Marit Sandstad, Malte Meinshausen, Matthew J. Gidden, Joeri Rogelj, Elmar Kriegler, Glen P. Peters, Jan S. Fuglestvedt, Ragnhild B. Skeie, Bjørn H. Samset, Laura Wienpahl, Detlef P. van Vuuren, Kaj-Ivar van der Wijst, Alaa Al Khourdajie, Piers M. Forster, Andy Reisinger, Roberto Schaeffer, and Keywan Riahi
                                    Geosci. Model Dev., 15, 9075–9109, https://doi.org/10.5194/gmd-15-9075-2022, https://doi.org/10.5194/gmd-15-9075-2022, 2022
                                    Short summary
                                    Short summary
                                            
                                                Assessing hundreds or thousands of emission scenarios in terms of their global mean temperature implications requires standardised procedures of infilling, harmonisation, and probabilistic temperature assessments. We here present the open-source 
                                            
                                        climate-assessmentworkflow that was used in the IPCC AR6 Working Group III report. The paper provides key insight for anyone wishing to understand the assessment of climate outcomes of mitigation pathways in the context of the Paris Agreement.
Johannes Quaas, Hailing Jia, Chris Smith, Anna Lea Albright, Wenche Aas, Nicolas Bellouin, Olivier Boucher, Marie Doutriaux-Boucher, Piers M. Forster, Daniel Grosvenor, Stuart Jenkins, Zbigniew Klimont, Norman G. Loeb, Xiaoyan Ma, Vaishali Naik, Fabien Paulot, Philip Stier, Martin Wild, Gunnar Myhre, and Michael Schulz
                                    Atmos. Chem. Phys., 22, 12221–12239, https://doi.org/10.5194/acp-22-12221-2022, https://doi.org/10.5194/acp-22-12221-2022, 2022
                                    Short summary
                                    Short summary
                                            
                                                Pollution particles cool climate and offset part of the global warming. However, they are washed out by rain and thus their effect responds quickly to changes in emissions. We show multiple datasets to demonstrate that aerosol emissions and their concentrations declined in many regions influenced by human emissions, as did the effects on clouds. Consequently, the cooling impact on the Earth energy budget became smaller. This change in trend implies a relative warming.
                                            
                                            
                                        Lennart Ramme and Jochem Marotzke
                                    Clim. Past, 18, 759–774, https://doi.org/10.5194/cp-18-759-2022, https://doi.org/10.5194/cp-18-759-2022, 2022
                                    Short summary
                                    Short summary
                                            
                                                After the Marinoan snowball Earth, the climate warmed rapidly due to enhanced greenhouse conditions, and the freshwater inflow of melting glaciers caused a strong stratification of the ocean. Our climate simulations reveal a potentially only moderate global temperature increase and a break-up of the stratification within just a few thousand years. The findings give insights into the environmental conditions relevant for the geological and biological evolution during that time.
                                            
                                            
                                        Nicholas J. Leach, Stuart Jenkins, Zebedee Nicholls, Christopher J. Smith, John Lynch, Michelle Cain, Tristram Walsh, Bill Wu, Junichi Tsutsui, and Myles R. Allen
                                    Geosci. Model Dev., 14, 3007–3036, https://doi.org/10.5194/gmd-14-3007-2021, https://doi.org/10.5194/gmd-14-3007-2021, 2021
                                    Short summary
                                    Short summary
                                            
                                                This paper presents an update of the FaIR simple climate model, which can estimate the impact of anthropogenic greenhouse gas and aerosol emissions on the global climate. This update aims to significantly increase the structural simplicity of the model, making it more understandable and transparent. This simplicity allows it to be implemented in a wide range of environments, including Excel. We suggest that it could be used widely in academia, corporate research, and education.
                                            
                                            
                                        Yawei Qu, Apostolos Voulgarakis, Tijian Wang, Matthew Kasoar, Chris Wells, Cheng Yuan, Sunil Varma, and Laura Mansfield
                                    Atmos. Chem. Phys., 21, 5705–5718, https://doi.org/10.5194/acp-21-5705-2021, https://doi.org/10.5194/acp-21-5705-2021, 2021
                                    Short summary
                                    Short summary
                                            
                                                The meteorological effect of aerosols on tropospheric ozone is investigated using global atmospheric modelling. We found that aerosol-induced meteorological effects act to reduce modelled ozone concentrations over China, which brings the simulation closer to observed levels. Our work sheds light on understudied processes affecting the levels of tropospheric gaseous pollutants and provides a basis for evaluating such processes using a combination of observations and model sensitivity experiments.
                                            
                                            
                                        Gillian Thornhill, William Collins, Dirk Olivié, Ragnhild B. Skeie, Alex Archibald, Susanne Bauer, Ramiro Checa-Garcia, Stephanie Fiedler, Gerd Folberth, Ada Gjermundsen, Larry Horowitz, Jean-Francois Lamarque, Martine Michou, Jane Mulcahy, Pierre Nabat, Vaishali Naik, Fiona M. O'Connor, Fabien Paulot, Michael Schulz, Catherine E. Scott, Roland Séférian, Chris Smith, Toshihiko Takemura, Simone Tilmes, Kostas Tsigaridis, and James Weber
                                    Atmos. Chem. Phys., 21, 1105–1126, https://doi.org/10.5194/acp-21-1105-2021, https://doi.org/10.5194/acp-21-1105-2021, 2021
                                    Short summary
                                    Short summary
                                            
                                                We find that increased temperatures affect aerosols and reactive gases by changing natural emissions and their rates of removal from the atmosphere. Changing the composition of these species in the atmosphere affects the radiative budget of the climate system and therefore amplifies or dampens the climate response of climate models of the Earth system. This study found that the largest effect is a dampening of climate change as warmer temperatures increase the emissions of cooling aerosols.
                                            
                                            
                                        Gillian D. Thornhill, William J. Collins, Ryan J. Kramer, Dirk Olivié, Ragnhild B. Skeie, Fiona M. O'Connor, Nathan Luke Abraham, Ramiro Checa-Garcia, Susanne E. Bauer, Makoto Deushi, Louisa K. Emmons, Piers M. Forster, Larry W. Horowitz, Ben Johnson, James Keeble, Jean-Francois Lamarque, Martine Michou, Michael J. Mills, Jane P. Mulcahy, Gunnar Myhre, Pierre Nabat, Vaishali Naik, Naga Oshima, Michael Schulz, Christopher J. Smith, Toshihiko Takemura, Simone Tilmes, Tongwen Wu, Guang Zeng, and Jie Zhang
                                    Atmos. Chem. Phys., 21, 853–874, https://doi.org/10.5194/acp-21-853-2021, https://doi.org/10.5194/acp-21-853-2021, 2021
                                    Short summary
                                    Short summary
                                            
                                                This paper is a study of how different constituents in the atmosphere, such as aerosols and gases like methane and ozone, affect the energy balance in the atmosphere. Different climate models were run using the same inputs to allow an easy comparison of the results and to understand where the models differ. We found the effect of aerosols is to reduce warming in the atmosphere, but this effect varies between models. Reactions between gases are also important in affecting climate.
                                            
                                            
                                        Zebedee R. J. Nicholls, Malte Meinshausen, Jared Lewis, Robert Gieseke, Dietmar Dommenget, Kalyn Dorheim, Chen-Shuo Fan, Jan S. Fuglestvedt, Thomas Gasser, Ulrich Golüke, Philip Goodwin, Corinne Hartin, Austin P. Hope, Elmar Kriegler, Nicholas J. Leach, Davide Marchegiani, Laura A. McBride, Yann Quilcaille, Joeri Rogelj, Ross J. Salawitch, Bjørn H. Samset, Marit Sandstad, Alexey N. Shiklomanov, Ragnhild B. Skeie, Christopher J. Smith, Steve Smith, Katsumasa Tanaka, Junichi Tsutsui, and Zhiang Xie
                                    Geosci. Model Dev., 13, 5175–5190, https://doi.org/10.5194/gmd-13-5175-2020, https://doi.org/10.5194/gmd-13-5175-2020, 2020
                                    Short summary
                                    Short summary
                                            
                                                Computational limits mean that we cannot run our most comprehensive climate models for all applications of interest. In such cases, reduced complexity models (RCMs) are used. Here, researchers working on 15 different models present the first systematic community effort to evaluate and compare RCMs: the Reduced Complexity Model Intercomparison Project (RCMIP). Our research ensures that users of RCMs can more easily evaluate the strengths, weaknesses and limitations of their tools.
                                            
                                            
                                        Cited articles
                        
                        Adakudlu, M.: Codes and data for producing Figure 10 in Schoenberg et al. (2025) (FRIDA v2.1), Zenodo [code and data set], https://doi.org/10.5281/zenodo.15517312, 2025. 
                    
                
                        
                        Alberti, M., Asbjornsen, H., Baker, L. A., Brozovic, N., Drinkwater, L. E., Drzyzga, S. A., Jantz, C. A., Fragoso, J., Holland, D. S., Kohler, T. A., Liu, J., McConnell, W. J., Maschner, H. D. G., Millington, J. D. A., Monticino, M., Podestá, G., Pontius, R. G., Redman, C. L., Reo, N. J., Sailor, D., and Urquhart, G.: Research on Coupled Human and Natural Systems (CHANS): Approach, Challenges, and Strategies, Bulletin Ecologic Soc America, 92, 218–228, https://doi.org/10.1890/0012-9623-92.2.218, 2011. 
                    
                
                        
                        Allen, R. G. and FAO (Eds.): Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements, Food and Agriculture Organization of the United Nations, Rome, 300 pp., ISBN 92-5-104219-5, 1998. 
                    
                
                        
                        Avtar, R., Blickle, K. S., Chakrabarti, R., Janakiraman, J., and Pinkovskiy, M. L.: Understanding the Linkages between Climate Change and Inequality in the United States, Economic Policy Review, 29, 1–39, 2023. 
                    
                
                        
                        Bamberg, S. and Möser, G.: Twenty years after Hines, Hungerford, and Tomera: A new meta-analysis of psycho-social determinants of pro-environmental behaviour, Journal of Environmental Psychology, 27, 14–25, https://doi.org/10.1016/j.jenvp.2006.12.002, 2007. 
                    
                
                        
                        Barlas, Y.: Formal aspects of model validity and validation in system dynamics, Syst. Dyn. Rev., 12, 183–210, https://doi.org/10.1002/(SICI)1099-1727(199623)12:3%253C183::AID-SDR103%253E3.0.CO;2-4, 1996. 
                    
                
                        
                        Barlas, Y. and Yasarcan, H.: Goal setting, evaluation, learning and revision: A dynamic modeling approach, Evaluation and Program Planning, 29, 79–87, https://doi.org/10.1016/j.evalprogplan.2005.08.003, 2006. 
                    
                
                        
                        Bastidas-Arteaga, E. and Stewart, M. G.: Damage risks and economic assessment of climate adaptation strategies for design of new concrete structures subject to chloride-induced corrosion, Structural Safety, 52, 40–53, https://doi.org/10.1016/j.strusafe.2014.10.005, 2015. 
                    
                
                        
                        Beckage, B., Moore, F. C., and Lacasse, K.: Incorporating human behaviour into Earth system modelling, Nat. Hum. Behav., 6, 1493–1502, https://doi.org/10.1038/s41562-022-01478-5, 2022. 
                    
                
                        
                        Berndsen, M. and van der Pligt, J.: Risks of meat: the relative impact of cognitive, affective and moral concerns, Appetite, 44, 195–205, https://doi.org/10.1016/j.appet.2004.10.003, 2005. 
                    
                
                        
                        Breach, P. A. and Simonovic, S. P.: ANEMI3: An updated tool for global change analysis, PLoS ONE, 16, e0251489, https://doi.org/10.1371/journal.pone.0251489, 2021. 
                    
                
                        
                        Bressler, R. D., Moore, F. C., Rennert, K., and Anthoff, D.: Estimates of country level temperature-related mortality damage functions, Sci. Rep., 11, 20282, https://doi.org/10.1038/s41598-021-99156-5, 2021. 
                    
                
                        
                        Burhenne, S., Jacob, D., and Henze, G. P.: Sampling Based on Sobol' Sequences for Monte Carlo Techniques Applied to Building Simulations, Building Simulation, 1816–1823, https://publications.ibpsa.org/conference/paper/?id=bs2011_1590 (last access: 22 October 2025), 2011. 
                    
                
                        
                        Calvin, K. and Bond-Lamberty, B.: Integrated human-earth system modeling – state of the science and future directions, Environ. Res. Lett., 13, 063006, https://doi.org/10.1088/1748-9326/aac642, 2018. 
                    
                
                        
                        Calvin, K., Bond-Lamberty, B., Clarke, L., Edmonds, J., Eom, J., Hartin, C., Kim, S., Kyle, P., Link, R., Moss, R., McJeon, H., Patel, P., Smith, S., Waldhoff, S., and Wise, M.: The SSP4: A world of deepening inequality, Global Environmental Change, 42, 284–296, https://doi.org/10.1016/j.gloenvcha.2016.06.010, 2017. 
                    
                
                        
                        Carattini, S., Heutel, G., and Melkadze, G.: Climate policy, financial frictions, and transition risk, Review of Economic Dynamics, 51, 778–794, https://doi.org/10.1016/j.red.2023.08.003, 2023. 
                    
                
                        
                        Cavana, R. Y., Dangerfield, B. C., Pavlov, O. V., Radzicki, M. J., and Wheat, I. D. (Eds.): Feedback Economics: Economic Modeling with System Dynamics, Springer International Publishing, Cham, https://doi.org/10.1007/978-3-030-67190-7, 2021. 
                    
                
                        
                        Chen, K., De Schrijver, E., Sivaraj, S., Sera, F., Scovronick, N., Jiang, L., Roye, D., Lavigne, E., Kyselý, J., Urban, A., Schneider, A., Huber, V., Madureira, J., Mistry, M. N., Cvijanovic, I., MCC Collaborative Research Network, Armstrong, B., Schneider, R., Tobias, A., Astrom, C., Guo, Y., Honda, Y., Abrutzky, R., Tong, S., De Sousa Zanotti Stagliorio Coelho, M., Saldiva, P. H. N., Correa, P. M., Ortega, N. V., Kan, H., Osorio, S., Orru, H., Indermitte, E., Jaakkola, J. J. K., Ryti, N., Pascal, M., Katsouyanni, K., Analitis, A., Mayvaneh, F., Entezari, A., Goodman, P., Zeka, A., Michelozzi, P., de'Donato, F., Hashizume, M., Alahmad, B., Diaz, M. H., De La Cruz Valencia, C., Overcenco, A., Houthuijs, D., Ameling, C., Rao, S., Carrasco-Escobar, G., Seposo, X., Da Silva, S. P., Holobaca, I. H., Acquaotta, F., Kim, H., Lee, W., Íñiguez, C., Forsberg, B., Ragettli, M. S., Guo, Y.-L. L., Pan, S.-C., Li, S., Colistro, V., Zanobetti, A., Schwartz, J., Dang, T. N., Van Dung, D., Carlsen, H. K., Cauchi, J. P., Achilleos, S., Raz, R., Gasparrini, A., and Vicedo-Cabrera, A. M.: Impact of population aging on future temperature-related mortality at different global warming levels, Nat. Commun., 15, 1796, https://doi.org/10.1038/s41467-024-45901-z, 2024. 
                    
                
                        
                        Cialdini, R. B.: Descriptive Social Norms as Underappreciated Sources of Social Control, Psychometrika, 72, 263–268, https://doi.org/10.1007/s11336-006-1560-6, 2007. 
                    
                
                        
                        Clarke, B., Otto, F., Stuart-Smith, R., and Harrington, L.: Extreme weather impacts of climate change: an attribution perspective, Environ. Res. Climate, 1, 012001, https://doi.org/10.1088/2752-5295/ac6e7d, 2022. 
                    
                
                        
                        Conveyor Computation: https://www.iseesystems.com/resources/help/v1-5/Content/08-Reference/05-Computational_Details/Conveyors.htm, last access: 21 April 2025. 
                    
                
                        
                        Dasgupta, S., Van Maanen, N., Gosling, S. N., Piontek, F., Otto, C., and Schleussner, C.-F.: Effects of climate change on combined labour productivity and supply: an empirical, multi-model study, The Lancet Planetary Health, 5, e455–e465, https://doi.org/10.1016/S2542-5196(21)00170-4, 2021. 
                    
                
                        
                        Diaz, D. B.: Estimating global damages from sea level rise with the Coastal Impact and Adaptation Model (CIAM), Climatic Change, 137, 143–156, https://doi.org/10.1007/s10584-016-1675-4, 2016. 
                    
                
                        
                        Di Vittorio, A. V., Sinha, E., Hao, D., Singh, B., Calvin, K. V., Shippert, T., Patel, P., and Bond-Lamberty, B.: E3SM-GCAM: A Synchronously Coupled Human Component in the E3SM Earth System Model Enables Novel Human-Earth Feedback Research, J Adv Model Earth Syst, 17, e2024MS004806, https://doi.org/10.1029/2024MS004806, 2025. 
                    
                
                        
                        Donges, J. F., Winkelmann, R., Lucht, W., Cornell, S. E., Dyke, J. G., Rockström, J., Heitzig, J., and Schellnhuber, H. J.: Closing the loop: Reconnecting human dynamics to Earth System science, The Anthropocene Review, 4, 151–157, https://doi.org/10.1177/2053019617725537, 2017. 
                    
                
                        
                        Donges, J. F., Lucht, W., Cornell, S. E., Heitzig, J., Barfuss, W., Lade, S. J., and Schlüter, M.: Taxonomies for structuring models for World–Earth systems analysis of the Anthropocene: subsystems, their interactions and social–ecological feedback loops, Earth Syst. Dynam., 12, 1115–1137, https://doi.org/10.5194/esd-12-1115-2021, 2021. 
                    
                
                        
                        Eberlein, R. L. and Thompson, J. P.: Precise modeling of aging populations, System Dynamics Review, 29, 87–101, https://doi.org/10.1002/sdr.1497, 2013. 
                    
                
                        
                        Edenhofer, O., Bauer, N., and Kriegler, E.: The impact of technological change on climate protection and welfare: Insights from the model MIND, Ecological Economics, 54, 277–292, https://doi.org/10.1016/j.ecolecon.2004.12.030, 2005. 
                    
                
                        
                        Eker, S., Reese, G., and Obersteiner, M.: Modelling the drivers of a widespread shift to sustainable diets, Nat. Sustain., 2, 725–735, https://doi.org/10.1038/s41893-019-0331-1, 2019. 
                    
                
                        
                        FAO: FAOSTAT: Crops and livestock products, https://www.fao.org/faostat/en/#data/QCL (last access: 22 October 2025), 2024a. 
                    
                
                        
                        FAO: FAOSTAT: Food Balances, https://www.fao.org/faostat/en/#data/FBS (last access: 22 October 2025), 2024b. 
                    
                
                        
                        Feng, F., Han, L., Jin, J., and Li, Y.: Climate Change Exposure and Bankruptcy Risk, British Journal of Management, 35, 1843–1866, https://doi.org/10.1111/1467-8551.12792, 2024. 
                    
                
                        
                        Forrester, J. W.: Industrial dynamics, M.I.T. Press, Cambridge, Mass, 464 pp., ISBN 1614275335, 1961. 
                    
                
                        
                        Franke, J. A., Müller, C., Elliott, J., Ruane, A. C., Jägermeyr, J., Balkovic, J., Ciais, P., Dury, M., Falloon, P. D., Folberth, C., François, L., Hank, T., Hoffmann, M., Izaurralde, R. C., Jacquemin, I., Jones, C., Khabarov, N., Koch, M., Li, M., Liu, W., Olin, S., Phillips, M., Pugh, T. A. M., Reddy, A., Wang, X., Williams, K., Zabel, F., and Moyer, E. J.: The GGCMI Phase 2 experiment: global gridded crop model simulations under uniform changes in CO2, temperature, water, and nitrogen levels (protocol version 1.0), Geosci. Model Dev., 13, 2315–2336, https://doi.org/10.5194/gmd-13-2315-2020, 2020. 
                    
                
                        
                        Fricko, O., Havlik, P., Rogelj, J., Klimont, Z., Gusti, M., Johnson, N., Kolp, P., Strubegger, M., Valin, H., Amann, M., Ermolieva, T., Forsell, N., Herrero, M., Heyes, C., Kindermann, G., Krey, V., McCollum, D. L., Obersteiner, M., Pachauri, S., Rao, S., Schmid, E., Schoepp, W., and Riahi, K.: The marker quantification of the Shared Socioeconomic Pathway 2: A middle-of-the-road scenario for the 21st century, Global Environmental Change, 42, 251–267, https://doi.org/10.1016/j.gloenvcha.2016.06.004, 2017. 
                    
                
                        
                        Fujimori, S., Hasegawa, T., Masui, T., Takahashi, K., Herran, D. S., Dai, H., Hijioka, Y., and Kainuma, M.: SSP3: AIM implementation of Shared Socioeconomic Pathways, Global Environmental Change, 42, 268–283, https://doi.org/10.1016/j.gloenvcha.2016.06.009, 2017. 
                    
                
                        
                        Fukase, E. and Martin, W.: Economic growth, convergence, and world food demand and supply, World Development, 132, 104954, https://doi.org/10.1016/j.worlddev.2020.104954, 2020. 
                    
                
                        
                        Godfray, H. C. J., Aveyard, P., Garnett, T., Hall, J. W., Key, T. J., Lorimer, J., Pierrehumbert, R. T., Scarborough, P., Springmann, M., and Jebb, S. A.: Meat consumption, health, and the environment, Science, 361, eaam5324, https://doi.org/10.1126/science.aam5324, 2018. 
                    
                
                        
                        Guo, D., Westra, S., and Maier, H. R.: Sensitivity of potential evapotranspiration to changes in climate variables for different Australian climatic zones, Hydrol. Earth Syst. Sci., 21, 2107–2126, https://doi.org/10.5194/hess-21-2107-2017, 2017. 
                    
                
                        
                        Hammerseng, G.: A Systematic Mapping of Meat Consumption Behaviours: Socio-Cultural Dimensions, Master Thesis, University of Bergen, Bergen, Norway, https://bora.uib.no/bora-xmlui/handle/11250/3175908 (last access: 22 October 2025), 2024. 
                    
                
                        
                        Hausfather, Z. and Peters, G. P.: Emissions – the “business as usual” story is misleading, Nature, 577, 618–620, https://doi.org/10.1038/d41586-020-00177-3, 2020. 
                    
                
                        
                        Held, H., Kriegler, E., Lessmann, K., and Edenhofer, O.: Efficient climate policies under technology and climate uncertainty, Energy Economics, 31, S50–S61, https://doi.org/10.1016/j.eneco.2008.12.012, 2009. 
                    
                
                        
                        Intergovernmental Panel on Climate Change (IPCC) (Ed.): Ocean, Cryosphere and Sea Level Change, in: Climate Change 2021 – The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, 1211–1362, https://doi.org/10.1017/9781009157896.011, 2023. 
                    
                
                        
                        Jones, C. I. and Williams, J. C.: Too much of a good thing? The economics of investment in R&D, Journal of economic growth, 5, 65–85, 2000. 
                    
                
                        
                        Kaiser, F. G., Hübner, G., and Bogner, F. X.: Contrasting the Theory of Planned Behavior With the Value-Belief-Norm Model in Explaining Conservation Behavior, Journal of Applied Social Psychology, 35, 2150–2170, https://doi.org/10.1111/j.1559-1816.2005.tb02213.x, 2005. 
                    
                
                        
                        Kapmeier, F., Sterman, J., Siegel, L., Eker, S., Fiddaman, T., Homer, J., Rooney-Varga, J., and Jones, A.: En-ROADS: A Global Energy and Climate Simulator to Support Strategic Thinking and Public Outreach, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-7608, https://doi.org/10.5194/egusphere-egu21-7608, 2021. 
                    
                
                        
                        Kirk, D.: Demographic Transition Theory, Population Studies, 50, 361–387, https://doi.org/10.1080/0032472031000149536, 1996. 
                    
                
                        
                        Kramer, D. B., Hartter, J., Boag, A. E., Jain, M., Stevens, K., Nicholas, K. A., McConnell, W. J., and Liu, and J.: Top 40 questions in coupled human and natural systems (CHANS) research, Ecology and Society, 22, https://doi.org/10.5751/ES-09429-220244, 2017. 
                    
                
                        
                        Kriegler, E., O'Neill, B. C., Hallegatte, S., Kram, T., Lempert, R. J., Moss, R. H., and Wilbanks, T.: The need for and use of socio-economic scenarios for climate change analysis: A new approach based on shared socio-economic pathways, Global Environmental Change, 22, 807–822, https://doi.org/10.1016/j.gloenvcha.2012.05.005, 2012. 
                    
                
                        
                        Kriegler, E., Bauer, N., Popp, A., Humpenöder, F., Leimbach, M., Strefler, J., Baumstark, L., Bodirsky, B. L., Hilaire, J., Klein, D., Mouratiadou, I., Weindl, I., Bertram, C., Dietrich, J.-P., Luderer, G., Pehl, M., Pietzcker, R., Piontek, F., Lotze-Campen, H., Biewald, A., Bonsch, M., Giannousakis, A., Kreidenweis, U., Müller, C., Rolinski, S., Schultes, A., Schwanitz, J., Stevanovic, M., Calvin, K., Emmerling, J., Fujimori, S., and Edenhofer, O.: Fossil-fueled development (SSP5): An energy and resource intensive scenario for the 21st century, Global Environmental Change, 42, 297–315, https://doi.org/10.1016/j.gloenvcha.2016.05.015, 2017. 
                    
                
                        
                        Leach, N. J., Jenkins, S., Nicholls, Z., Smith, C. J., Lynch, J., Cain, M., Walsh, T., Wu, B., Tsutsui, J., and Allen, M. R.: FaIRv2.0.0: a generalized impulse response model for climate uncertainty and future scenario exploration, Geosci. Model Dev., 14, 3007–3036, https://doi.org/10.5194/gmd-14-3007-2021, 2021. 
                    
                
                        
                        Lenton, T. M.: Land and ocean carbon cycle feedback effects on global warming in a simple Earth system model, Tellus B: Chemical and Physical Meteorology, 52, 1159, https://doi.org/10.3402/tellusb.v52i5.17097, 2000. 
                    
                
                        
                        Lesthaeghe, R.: The Unfolding Story of the Second Demographic Transition, Population & Development Rev, 36, 211–251, https://doi.org/10.1111/j.1728-4457.2010.00328.x, 2010. 
                    
                
                        
                        Li, Y., Sang, S., Mote, S., Rivas, J., and Kalnay, E.: Challenges and opportunities for modeling coupled human and natural systems, National Science Review, 10, nwad054, https://doi.org/10.1093/nsr/nwad054, 2023. 
                    
                
                        
                        Linder, N., Giusti, M., Samuelsson, K., and Barthel, S.: Pro-environmental habits: An underexplored research agenda in sustainability science, Ambio, 51, 546–556, https://doi.org/10.1007/s13280-021-01619-6, 2022. 
                    
                
                        
                        Liu, J., Dietz, T., Carpenter, S. R., Alberti, M., Folke, C., Moran, E., Pell, A. N., Deadman, P., Kratz, T., Lubchenco, J., Ostrom, E., Ouyang, Z., Provencher, W., Redman, C. L., Schneider, S. H., and Taylor, W. W.: Complexity of Coupled Human and Natural Systems, Science, 317, 1513–1516, https://doi.org/10.1126/science.1144004, 2007. 
                    
                
                        
                        Lunze, J.: Regelungstechnik. 1: Systemtheoretische Grundlagen, Analyse Und Entwurf Einschleifiger Regelungen: Mit 426 Abbildungen, 77 Beispielen, 186 Übungsaufgaben Sowie Einer Einführung in Das Programmsystem MATLAB/Jan Lunze, Springer Vieweg, Berlin, Heidelberg, https://doi.org/10.1007/978-3-540-68909-6_6 2020. 
                    
                
                        
                        Manfredo, M. J., Bruskotter, J. T., Teel, T. L., Fulton, D., Schwartz, S. H., Arlinghaus, R., Oishi, S., Uskul, A. K., Redford, K., Kitayama, S., and Sullivan, L.: Why social values cannot be changed for the sake of conservation, Conservation Biology, 31, 772–780, https://doi.org/10.1111/cobi.12855, 2017. 
                    
                
                        
                        Marquez-Ramos, L. and Mourelle, E.: Education and economic growth: an empirical analysis of nonlinearities, AEA, 27, 21–45, https://doi.org/10.1108/AEA-06-2019-0005, 2019. 
                    
                
                        
                        Milford, A. B., Le Mouël, C., Bodirsky, B. L., and Rolinski, S.: Drivers of meat consumption, Appetite, 141, 104313, https://doi.org/10.1016/j.appet.2019.06.005, 2019. 
                    
                
                        
                        Monteith, J. L.: Evaporation and environment, Symposia of the Society for Experimental Biology, 19, 205–234, 1965. 
                    
                
                        
                        Motesharrei, S., Rivas, J., Kalnay, E., Asrar, G. R., Busalacchi, A. J., Cahalan, R. F., Cane, M. A., Colwell, R. R., Feng, K., Franklin, R. S., Hubacek, K., Miralles-Wilhelm, F., Miyoshi, T., Ruth, M., Sagdeev, R., Shirmohammadi, A., Shukla, J., Srebric, J., Yakovenko, V. M., and Zeng, N.: Modeling Sustainability: Population, Inequality, Consumption, and Bidirectional Coupling of the Earth and Human Systems, Nat. Sci. Rev., nww081, https://doi.org/10.1093/nsr/nww081, 2016. 
                    
                
                        
                        Niemiec, R. M., Champine, V., Vaske, J. J., and Mertens, A.: Does the Impact of Norms Vary by Type of Norm and Type of Conservation Behavior? A Meta-Analysis, Society & Natural Resources, 33, 1024–1040, https://doi.org/10.1080/08941920.2020.1729912, 2020. 
                    
                
                        
                        O'Neill, B. C., Kriegler, E., Riahi, K., Ebi, K. L., Hallegatte, S., Carter, T. R., Mathur, R., and Van Vuuren, D. P.: A new scenario framework for climate change research: the concept of shared socioeconomic pathways, Climatic Change, 122, 387–400, https://doi.org/10.1007/s10584-013-0905-2, 2014. 
                    
                
                        
                        O'Neill, B. C., Carter, T. R., Ebi, K., Harrison, P. A., Kemp-Benedict, E., Kok, K., Kriegler, E., Preston, B. L., Riahi, K., Sillmann, J., Van Ruijven, B. J., Van Vuuren, D., Carlisle, D., Conde, C., Fuglestvedt, J., Green, C., Hasegawa, T., Leininger, J., Monteith, S., and Pichs-Madruga, R.: Achievements and needs for the climate change scenario framework, Nat. Clim. Chang., 10, 1074–1084, https://doi.org/10.1038/s41558-020-00952-0, 2020. 
                    
                
                        
                        Paich, M. and Sterman, J. D.: Boom, Bust, and Failures to Learn in Experimental Markets, Management Science, 39, 1439–1458, https://doi.org/10.1287/mnsc.39.12.1439, 1993. 
                    
                
                        
                        Pörtner, H., Roberts, D., Adams, H., Adelekan, I., Adler, C., Adrian, R., Aldunce, P., Ali, E., Begum, R., and Friedl, B.: Climate change 2022: impacts, adaptation and vulnerability (IPCC Technical Summary), Technical Summary, https://doi.org/10.1017/9781009325844.002, 2022. 
                    
                
                        
                        Powell, M. J.: The BOBYQA algorithm for bound constrained optimization without derivatives, University of Cambridge, Cambridge, UK, https://www.damtp.cam.ac.uk/user/na/NA_papers/NA2009_06.pdf (last access: 22 October 2025), 2009. 
                    
                
                        
                        Proto, E. and Rustichini, A.: A Reassessment of the Relationship between GDP and Life Satisfaction, PLoS ONE, 8, e79358, https://doi.org/10.1371/journal.pone.0079358, 2013. 
                    
                
                        
                        Rajah, J. K. and Kopainsky, B.: Human behavioural drivers of meat consumption: Using group model building to capture lived realities, in: Proceedings of the 2024 International System Dynamics Conference, International System Dynamics Conference 2024, Bergen, Norway, 4–8 August, https://proceedings.systemdynamics.org/2024/papers/T1103.pdf (last access: 22 October 2025), 2024. 
                    
                
                        
                        Rajah, J. K. and Kopainsky, B.: A systematic method to integrate co-produced causal loop diagrams based on feedback stories, System Dynamics Review, 41, e1794, https://doi.org/10.1002/sdr.1794, 2025. 
                    
                
                        
                        Rajah, J. K., Tusch, B., Hammerseng, G., and Kopainsky, B.: Conceptualising an endogenous representation of human behaviour change in a feedback-based, global-scale integrated assessment model, in: 17th Integrated Assessment Modeling Consortium Annual Meeting, 17th IAMC Annual Meeting, Seoul, Korea, https://doi.org/10.5281/zenodo.14202786, 2024. 
                    
                
                        
                        Rajah, J. K., Blanz, B., Kopainsky, B., and Schoenberg, W.: An endogenous modelling framework of dietary behavioural change in the fully coupled human-climate FRIDA v2.1 model, Geosci. Model Dev., 18, 5997–6022, https://doi.org/10.5194/gmd-18-5997-2025, 2025. 
                    
                
                        
                        Ramme, L., Blanz, B., Wells, C., Wong, T. E., Schoenberg, W., Smith, C., and Li, C.: Feedback-based sea level rise impact modelling for integrated assessment models with FRISIAv1.0, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2025-1875, 2025. 
                    
                
                        
                        Riahi, K., Van Vuuren, D. P., Kriegler, E., Edmonds, J., O'Neill, B. C., Fujimori, S., Bauer, N., Calvin, K., Dellink, R., Fricko, O., Lutz, W., Popp, A., Cuaresma, J. C., Kc, S., Leimbach, M., Jiang, L., Kram, T., Rao, S., Emmerling, J., Ebi, K., Hasegawa, T., Havlik, P., Humpenöder, F., Da Silva, L. A., Smith, S., Stehfest, E., Bosetti, V., Eom, J., Gernaat, D., Masui, T., Rogelj, J., Strefler, J., Drouet, L., Krey, V., Luderer, G., Harmsen, M., Takahashi, K., Baumstark, L., Doelman, J. C., Kainuma, M., Klimont, Z., Marangoni, G., Lotze-Campen, H., Obersteiner, M., Tabeau, A., and Tavoni, M.: The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview, Global Environmental Change, 42, 153–168, https://doi.org/10.1016/j.gloenvcha.2016.05.009, 2017. 
                    
                
                        
                        Robertson, S.: Transparency, trust, and integrated assessment models: An ethical consideration for the Intergovernmental Panel on Climate Change, WIREs Climate Change, 12, e679, https://doi.org/10.1002/wcc.679, 2021. 
                    
                
                        
                        Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M., and Tarantola, S.: Global Sensitivity Analysis. The Primer, 1st Edn., Wiley, https://doi.org/10.1002/9780470725184, 2007. 
                    
                
                        
                        Schaphoff, S., von Bloh, W., Rammig, A., Thonicke, K., Biemans, H., Forkel, M., Gerten, D., Heinke, J., Jägermeyr, J., Knauer, J., Langerwisch, F., Lucht, W., Müller, C., Rolinski, S., and Waha, K.: LPJmL4 – a dynamic global vegetation model with managed land – Part 1: Model description, Geosci. Model Dev., 11, 1343–1375, https://doi.org/10.5194/gmd-11-1343-2018, 2018. 
                    
                
                        
                        Schoenberg, W.: FRIDA v2.1 Endogenous Model Behavior (EMB) 100000 member ensemble (1.0.0), Zenodo [data set], https://doi.org/10.5281/zenodo.15396799, 2025. 
                    
                
                        
                        Schoenberg, W., Blanz, B., Ramme, L., Wells, C., Grimeland, M., Callegari, B., Breier, J., Rajah, J., Nicolaidis Lindqvist, A., Mashhadi, S., Muralidhar, A., and Eriksson, A.: FRIDA: Feedback-based knowledge Repository for IntegrateD Assessments (v2.1), Zenodo [code], https://doi.org/10.5281/zenodo.15310859, 2025. 
                    
                
                        
                        Schumpeter, J. A.: Capitalism, socialism and democracy, Harper Collins, New York, ISBN 0061330086, 1950. 
                    
                
                        
                        Schumpeter, J. A.: The Theory of Economic Development: An Inquiry Into Profits, Capital, Credit, Interest, and the Business Cycle, Transaction Publishers, 324 pp., ISBN 9780878556984, 1983. 
                    
                
                        
                        Schwartz, S. H.: Normative Influences on Altruism, in: Advances in Experimental Social Psychology, vol. 10, Elsevier, 221–279, https://doi.org/10.1016/S0065-2601(08)60358-5, 1977. 
                    
                
                        
                        Senge, P. M.: The Fifth Discipline: The Art and Practice of the Learning Organization, Random House Business Books, London, 445 pp., ISBN 0385517254, 2006. 
                    
                
                        
                        Shi, L., Feng, P., Wang, B., Li Liu, D., Cleverly, J., Fang, Q., and Yu, Q.: Projecting potential evapotranspiration change and quantifying its uncertainty under future climate scenarios: A case study in southeastern Australia, Journal of Hydrology, 584, 124756, https://doi.org/10.1016/j.jhydrol.2020.124756, 2020. 
                    
                
                        
                        Shove, E.: Beyond the ABC: Climate Change Policy and Theories of Social Change, Environ. Plan. A, 42, 1273–1285, https://doi.org/10.1068/a42282, 2010. 
                    
                
                        
                        Slangen, A. B. A., Adloff, F., Jevrejeva, S., Leclercq, P. W., Marzeion, B., Wada, Y., and Winkelmann, R.: A Review of Recent Updates of Sea-Level Projections at Global and Regional Scales, in: Integrative Study of the Mean Sea Level and Its Components,edited by: Cazenave, A., Champollion, N., Paul, F., and Benveniste, J., vol. 58, Springer International Publishing, Cham, 395–416, https://doi.org/10.1007/978-3-319-56490-6_ 17, 2017. 
                    
                
                        
                        Smith, C., Cummins, D. P., Fredriksen, H.-B., Nicholls, Z., Meinshausen, M., Allen, M., Jenkins, S., Leach, N., Mathison, C., and Partanen, A.-I.: fair-calibrate v1.4.1: calibration, constraining, and validation of the FaIR simple climate model for reliable future climate projections, Geosci. Model Dev., 17, 8569–8592, https://doi.org/10.5194/gmd-17-8569-2024, 2024. 
                    
                
                        
                        Smith, C. J., Forster, P. M., Allen, M., Leach, N., Millar, R. J., Passerello, G. A., and Regayre, L. A.: FAIR v1.3: a simple emissions-based impulse response and carbon cycle model, Geosci. Model Dev., 11, 2273–2297, https://doi.org/10.5194/gmd-11-2273-2018, 2018. 
                    
                
                        
                        Sobol', I. M. and Levitan, Yu. L.: A pseudo-random number generator for personal computers, Computers & Mathematics with Applications, 37, 33–40, https://doi.org/10.1016/S0898-1221(99)00057-7, 1999. 
                    
                
                        
                        Sparkman, G. and Walton, G. M.: Dynamic Norms Promote Sustainable Behavior, Even if It Is Counternormative, Psychol. Sci., 28, 1663–1674, https://doi.org/10.1177/0956797617719950, 2017. 
                    
                
                        
                        Stella Architect: https://iseesystems.com, last access: 21 April 2025. 
                    
                
                        
                        Sterman, J.: Business Dynamics: Systems Thinking and Modeling for a Complex World, Irwin/McGraw-Hill, Boston, 982 pp., ISBN 9780072389159, 2000. 
                    
                
                        
                        Sterman, J. D.: Systems Simulation. Expectation formation in behavioral simulation models, Syst. Res., 32, 190–211, https://doi.org/10.1002/bs.3830320304, 1987. 
                    
                
                        
                        Stewart, M. G., Wang, X., and Nguyen, M. N.: Climate change impact and risks of concrete infrastructure deterioration, Engineering Structures, 33, 1326–1337, https://doi.org/10.1016/j.engstruct.2011.01.010, 2011. 
                    
                
                        
                        Stoll-Kleemann, S. and Schmidt, U. J.: Reducing meat consumption in developed and transition countries to counter climate change and biodiversity loss: a review of influence factors, Regional Environmental Change, 17, 1261–1277, https://doi.org/10.1007/s10113-016-1057-5, 2017. 
                    
                
                        
                        Swedish Concrete: Industrial concrete – Guidance for climate improved concrete, Swedish Concrete, urn:nbn:se:trafikverket:diva-17864, https://urn.kb.se/resolve?urn=urn:nbn:se:trafikverket:diva-17864 (last access: 22 October 2025), 2022. 
                    
                
                        
                        Tilman, D., Balzer, C., Hill, J., and Befort, B. L.: Global food demand and the sustainable intensification of agriculture, Proc. Natl. Acad. Sci. USA, 108, 20260–20264, https://doi.org/10.1073/pnas.1116437108, 2011. 
                    
                
                        
                        Tol, R. S. J.: The double trade-off between adaptation and mitigation for sea level rise: an application of FUND, Mitig. Adapt. Strat. Glob. Change, 12, 741–753, https://doi.org/10.1007/s11027-007-9097-2, 2007. 
                    
                
                        
                        United Nations: World Population Prospects 2022: Summary of Results, United Nations, New York, 1 pp., https://www.un.org/development/desa/pd/sites/www.un.org.development.desa.pd/files/wpp2022_summary_of_results.pdf (last access: 22 October 2025), 2022. 
                    
                
                        
                        Vafeidis, A. T., Nicholls, R. J., McFadden, L., Tol, R. S. J., Hinkel, J., Spencer, T., Grashoff, P. S., Boot, G., and Klein, R. J. T.: A New Global Coastal Database for Impact and Vulnerability Analysis to Sea-Level Rise, Journal of Coastal Research, 244, 917–924, https://doi.org/10.2112/06-0725.1, 2008. 
                    
                
                        
                        van Valkengoed, A. M., Perlaviciute, G., and Steg, L.: Representing the drivers of lifestyle change in Integrated Assessment Models using theories from environmental psychology: introducing the Motivation, Agency, and Past Behaviour (MAP) framework, Environ. Res. Commun., 7, 032001, https://doi.org/10.1088/2515-7620/adb9bf, 2025. 
                    
                
                        
                        van Vuuren, D., O'Neill, B., Tebaldi, C., Chini, L., Friedlingstein, P., Hasegawa, T., Riahi, K., Sanderson, B., Govindasamy, B., Bauer, N., Eyring, V., Fall, C., Frieler, K., Gidden, M., Gohar, L., Jones, A., King, A., Knutti, R., Kriegler, E., Lawrence, P., Lennard, C., Lowe, J., Mathison, C., Mehmood, S., Prado, L., Zhang, Q., Rose, S., Ruane, A., Schleussner, C.-F., Seferian, R., Sillmann, J., Smith, C., Sörensson, A., Panickal, S., Tachiiri, K., Vaughan, N., Vishwanathan, S., Yokohata, T., and Ziehn, T.: The Scenario Model Intercomparison Project for CMIP7 (ScenarioMIP-CMIP7) , EGUsphere [preprint], https://doi.org/10.5194/egusphere-2024-3765, 2025. 
                    
                
                        
                        van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., Hurtt, G. C., Kram, T., Krey, V., Lamarque, J.-F., Masui, T., Meinshausen, M., Nakicenovic, N., Smith, S. J., and Rose, S. K.: The representative concentration pathways: an overview, Climatic Change, 109, 5, https://doi.org/10.1007/s10584-011-0148-z, 2011. 
                    
                
                        
                        Van Vuuren, D. P., Stehfest, E., Gernaat, D. E. H. J., Doelman, J. C., Van Den Berg, M., Harmsen, M., De Boer, H. S., Bouwman, L. F., Daioglou, V., Edelenbosch, O. Y., Girod, B., Kram, T., Lassaletta, L., Lucas, P. L., Van Meijl, H., Müller, C., Van Ruijven, B. J., Van Der Sluis, S., and Tabeau, A.: Energy, land-use and greenhouse gas emissions trajectories under a green growth paradigm, Global Environmental Change, 42, 237–250, https://doi.org/10.1016/j.gloenvcha.2016.05.008, 2017. 
                    
                
                        
                        Walker, R. and Wakeland, W.: Calibration of Complex System Dynamics Models: A Practioner's Report, in: Proceedings of the 29th International Conference of the System Dynamics Society, Washington DC, https://proceedings.systemdynamics.org/2011/proceed/papers/P1118.pdf (last access: 22 October 2025), 2011. 
                    
                
                        
                        Wang, X., Stewart, M. G., and Nguyen, M.: Impact of climate change on corrosion and damage to concrete infrastructure in Australia, Climatic Change, 110, 941–957, https://doi.org/10.1007/s10584-011-0124-7, 2012. 
                    
                
                        
                        Wells, C., Blanz, B., Ramme, L., Breier, J., Callegari, B., Muralidhar, A., Rajah, J. K., Lindqvist, A. N., Eriksson, A. E., Schoenberg, W. A., Köberle, A. C., Wang-Erlandsson, L., Mauritzen, C., and Smith, C.: The Representation of Climate Impacts in the FRIDAv2.1 Integrated Assessment Model, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2025-2756, 2025. 
                    
                
                        
                        Weyant, J.: Some Contributions of Integrated Assessment Models of Global Climate Change, Review of Environmental Economics and Policy, 11, 115–137, https://doi.org/10.1093/reep/rew018, 2017. 
                    
                
                        
                        Wilson, C., Guivarch, C., Kriegler, E., Van Ruijven, B., Van Vuuren, D. P., Krey, V., Schwanitz, V. J., and Thompson, E. L.: Evaluating process-based integrated assessment models of climate change mitigation, Climatic Change, 166, 3, https://doi.org/10.1007/s10584-021-03099-9, 2021. 
                    
                
                        
                        Wong, T. E., Ledna, C., Rennels, L., Sheets, H., Errickson, F. C., Diaz, D., and Anthoff, D.: Sea Level and Socioeconomic Uncertainty Drives High-End Coastal Adaptation Costs, Earth's Future, 10, e2022EF003061, https://doi.org/10.1029/2022EF003061, 2022. 
                    
                
                        
                        Wong-Parodi, G. and Berlin Rubin, N.: Exploring how climate change subjective attribution, personal experience with extremes, concern, and subjective knowledge relate to pro-environmental attitudes and behavioral intentions in the United States, Journal of Environmental Psychology, 79, 101728, https://doi.org/10.1016/j.jenvp.2021.101728, 2022. 
                    
                
                        
                        Woodard, D. L., Davis, S. J., and Randerson, J. T.: Economic carbon cycle feedbacks may offset additional warming from natural feedbacks, Proc. Natl. Acad. Sci. USA, 116, 759–764, https://doi.org/10.1073/pnas.1805187115, 2019. 
                    
                
                        
                        Ye, Q., Liu, Q., Swamy, D., Gao, L., Moallemi, E. A., Rydzak, F., and Eker, S.: FeliX 2.0: An integrated model of climate, economy, environment, and society interactions, Environmental Modelling & Software, 179, 106121, https://doi.org/10.1016/j.envsoft.2024.106121, 2024. 
                    
                
                        
                        Zeebe, R. E.: LOSCAR: Long-term Ocean-atmosphere-Sediment CArbon cycle Reservoir Model v2.0.4, Geosci. Model Dev., 5, 149–166, https://doi.org/10.5194/gmd-5-149-2012, 2012. 
                    
                Short summary
            The current crop of models assessed by the Intergovernmental Panel on Climate Change to produce their assessment reports lack endogenous process-based representations of climate-driven changes to human activities, limiting understanding of the feedback between climate and humans. FRIDA (Feedback-based knowledge Repository for IntegrateD Assessments) v2.1 integrates these systems and generate results that suggest standard scenarios the shared socioeconomic pathways baseline scenarios may overestimate economic growth, highlighting the importance of feedbacks for realistic projections and informed policymaking.
            The current crop of models assessed by the Intergovernmental Panel on Climate Change to produce...
            
         
 
                        
                                         
                        
                                         
                        
                                         
                        
                                         
                        
                                         
                        
                                         
                        
                                         
                        
                                         
                        
                                         
                        
                                         
                        
                                         
                        
                                         
                        
                                         
                        
                                         
                        
                                         
                        
                                         
                        
                                         
                        
                                         
                        
                                         
                        
                                         
                        
                                         
                        
                                         
                        
                                         
                        
                                         
                        
                                         
                        
                                         
                        
                                         
                        
                                         
                        
                                         
                        
                                         
             
             
            