Articles | Volume 18, issue 20
https://doi.org/10.5194/gmd-18-7831-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-18-7831-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Handling discontinuities in numerical ODE methods for Lagrangian oceanography
Jenny M. Mørk
CORRESPONDING AUTHOR
Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
SINTEF Ocean, Trondheim, Norway
Tor Nordam
SINTEF Ocean, Trondheim, Norway
Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
Siren Rühs
Leibniz Institute for Baltic Sea Research Warnemünde (IOW), Rostock, Germany
Related authors
No articles found.
Claudio M. Pierard, Siren Rühs, Laura Gómez-Navarro, Michael Charles Denes, Florian Meirer, Thierry Penduff, and Erik van Sebille
Nonlin. Processes Geophys., 32, 411–438, https://doi.org/10.5194/npg-32-411-2025, https://doi.org/10.5194/npg-32-411-2025, 2025
Short summary
Short summary
Particle-tracking simulations compute how ocean currents transport material. However, initializing these simulations is often ad hoc. Here, we explore how two different strategies (releasing particles over space or over time) compare. Specifically, we compare the variability in particle trajectories to the variability of particles computed in a 50-member ensemble simulation. We find that releasing the particles over 20 weeks gives variability that is most like that in the ensemble.
Siren Rühs, Ton van den Bremer, Emanuela Clementi, Michael C. Denes, Aimie Moulin, and Erik van Sebille
Ocean Sci., 21, 217–240, https://doi.org/10.5194/os-21-217-2025, https://doi.org/10.5194/os-21-217-2025, 2025
Short summary
Short summary
Simulating the transport of floating particles on the ocean surface is crucial for solving many societal issues. Here, we investigate how the representation of wind-generated surface waves impacts particle transport simulations. We find that different wave-driven processes can alter transport patterns and that commonly adopted approximations are not always adequate. This suggests that ideally coupled ocean–wave models should be used for surface particle transport simulations.
Tor Nordam, Ruben Kristiansen, Raymond Nepstad, Erik van Sebille, and Andy M. Booth
Geosci. Model Dev., 16, 5339–5363, https://doi.org/10.5194/gmd-16-5339-2023, https://doi.org/10.5194/gmd-16-5339-2023, 2023
Short summary
Short summary
We describe and compare two common methods, Eulerian and Lagrangian models, used to simulate the vertical transport of material in the ocean. They both solve the same transport problems but use different approaches for representing the underlying equations on the computer. The main focus of our study is on the numerical accuracy of the two approaches. Our results should be useful for other researchers creating or using these types of transport models.
Alan D. Fox, Patricia Handmann, Christina Schmidt, Neil Fraser, Siren Rühs, Alejandra Sanchez-Franks, Torge Martin, Marilena Oltmanns, Clare Johnson, Willi Rath, N. Penny Holliday, Arne Biastoch, Stuart A. Cunningham, and Igor Yashayaev
Ocean Sci., 18, 1507–1533, https://doi.org/10.5194/os-18-1507-2022, https://doi.org/10.5194/os-18-1507-2022, 2022
Short summary
Short summary
Observations of the eastern subpolar North Atlantic in the 2010s show exceptional freshening and cooling of the upper ocean, peaking in 2016 with the lowest salinities recorded for 120 years. Using results from a high-resolution ocean model, supported by observations, we propose that the leading cause is reduced surface cooling over the preceding decade in the Labrador Sea, leading to increased outflow of less dense water and so to freshening and cooling of the eastern subpolar North Atlantic.
Jens Zinke, Takaaki K. Watanabe, Siren Rühs, Miriam Pfeiffer, Stefan Grab, Dieter Garbe-Schönberg, and Arne Biastoch
Clim. Past, 18, 1453–1474, https://doi.org/10.5194/cp-18-1453-2022, https://doi.org/10.5194/cp-18-1453-2022, 2022
Short summary
Short summary
Salinity is an important and integrative measure of changes to the water cycle steered by changes to the balance between rainfall and evaporation and by vertical and horizontal movements of water parcels by ocean currents. However, salinity measurements in our oceans are extremely sparse. To fill this gap, we have developed a 334-year coral record of seawater oxygen isotopes that reflects salinity changes in the globally important Agulhas Current system and reveals its main oceanic drivers.
Arne Biastoch, Franziska U. Schwarzkopf, Klaus Getzlaff, Siren Rühs, Torge Martin, Markus Scheinert, Tobias Schulzki, Patricia Handmann, Rebecca Hummels, and Claus W. Böning
Ocean Sci., 17, 1177–1211, https://doi.org/10.5194/os-17-1177-2021, https://doi.org/10.5194/os-17-1177-2021, 2021
Short summary
Short summary
The Atlantic Meridional Overturning Circulation (AMOC) quantifies the impact of the ocean on climate and climate change. Here we show that a high-resolution ocean model is able to realistically simulate ocean currents. While the mean representation of the AMOC depends on choices made for the model and on the atmospheric forcing, the temporal variability is quite robust. Comparing the ocean model with ocean observations, we able to identify that the AMOC has declined over the past two decades.
Christina Schmidt, Franziska U. Schwarzkopf, Siren Rühs, and Arne Biastoch
Ocean Sci., 17, 1067–1080, https://doi.org/10.5194/os-17-1067-2021, https://doi.org/10.5194/os-17-1067-2021, 2021
Short summary
Short summary
We estimate Agulhas leakage, water flowing from the Indian Ocean to the South Atlantic, in an ocean model with two different tools. The mean transport, variability and trend of Agulhas leakage is simulated comparably with both tools, emphasising the robustness of our method. If the experiments are designed differently, the mean transport of Agulhas leakage is altered, but not the trend. Agulhas leakage waters cool and become less salty south of Africa resulting in a density increase.
Tor Nordam and Rodrigo Duran
Geosci. Model Dev., 13, 5935–5957, https://doi.org/10.5194/gmd-13-5935-2020, https://doi.org/10.5194/gmd-13-5935-2020, 2020
Short summary
Short summary
In applied oceanography, a common task is to calculate the trajectory of objects floating at the sea surface or submerged in the water. We have investigated different numerical methods for doing such calculations and discuss the benefits and challenges of some common methods. We then propose a small change to some common methods that make them more efficient for this particular application. This will allow researchers to obtain more accurate answers with fewer computer resources.
Cited articles
Abascal, A. J., Castanedo, S., Fernández, V., and Medina, R.: Backtracking drifting objects using surface currents from high-frequency (HF) radar technology, Ocean Dynam., 62, 1073–1089, https://doi.org/10.1007/s10236-012-0546-4, 2012. a
Abraham, E. R. and Bowen, M. M.: Chaotic stirring by a mesoscale surface-ocean flow, Chaos: An Interdisciplinary Journal of Nonlinear Science, 12, 373–381, https://doi.org/10.1063/1.1481615, 2002. a
Aghito, M., Calgaro, L., Dagestad, K.-F., Ferrarin, C., Marcomini, A., Breivik, Ø., and Hole, L. R.: ChemicalDrift 1.0: an open-source Lagrangian chemical-fate and transport model for organic aquatic pollutants, Geosci. Model Dev., 16, 2477–2494, https://doi.org/10.5194/gmd-16-2477-2023, 2023. a
Blanke, B. and Raynaud, S.: Kinematics of the Pacific Equatorial Undercurrent: An Eulerian and Lagrangian Approach from GCM Results, J. Phys. Oceanogr., 27, 1038–1053, https://doi.org/10.1175/1520-0485(1997)027<1038:KOTPEU>2.0.CO;2, 1997. a, b
Blanke, B., Speich, S., Madec, G., and Döös, K.: A Global Diagnostic of Interocean Mass Transfers, J. Phys. Oceanogr., 31, 1623–1632, https://doi.org/10.1175/1520-0485(2001)031<1623:AGDOIM>2.0.CO;2, 2001. a
Bogacki, P. and Shampine, L. F.: A 3 (2) pair of Runge-Kutta formulas, Appl. Math. Lett., 2, 321–325, https://doi.org/10.1016/0893-9659(89)90079-7, 1989. a
Bower, A., Lozier, S., Biastoch, A., Drouin, K., Foukal, N., Furey, H., Lankhorst, M., Rühs, S., and Zou, S.: Lagrangian Views of the Pathways of the Atlantic Meridional Overturning Circulation, J. Geophys. Res.-Oceans, 124, 5313–5335, https://doi.org/10.1029/2019JC015014, 2019. a
Breivik, Ø., Moerman, B., Dagestad, K.-F., Nordam, T., Hope, G., Hole, L. R., Allen, A. A., and Stone, L. D.: The Bayesian backtracking problem in oceanic drift modelling, Ocean Model., 102505, https://doi.org/10.1016/j.ocemod.2025.102505, 2025. a, b, c
Butcher, J. C.: On Runge-Kutta processes of high order, J. Aust. Math. Soc., 4, 179–194, https://doi.org/10.1017/S1446788700023387, 1964. a
Cividanes, M., Aguiar-González, B., Gómez, M., Herrera, A., Martínez, I., Pham, C. K., Pérez, L., and Machín, F.: Lagrangian tracking of long-lasting plastic tags: From lobster fisheries in the USA and Canada to Macaronesia, Mar. Pollut. Bull., 198, 115908, https://doi.org/10.1016/j.marpolbul.2023.115908, 2024. a
Cunningham, H. J., Higgins, C., and van den Bremer, T. S.: The Role of the Unsteady Surface Wave-Driven Ekman–Stokes Flow in the Accumulation of Floating Marine Litter, J. Geophys. Res.-Oceans, 127, e2021JC018106, https://doi.org/10.1029/2021JC018106, 2022. a
D'Asaro, E. A., Shcherbina, A. Y., Klymak, J. M., Molemaker, J., Novelli, G., Guigand, C. M., Haza, A. C., Haus, B. K., Ryan, E. H., Jacobs, G. A., Huntley, H. S., Laxague, N. J. M., Chen, S., Judt, F., McWilliams, J. C., Barkan, R., Kirwan, A. D., Poje, A. C., and Özgökmen, T. M.: Ocean convergence and the dispersion of flotsam, P. Natl. A. Sci. USA, 115, 1162–1167, https://doi.org/10.1073/pnas.1718453115, 2018. a, b
Dawson, M. N., Gupta, A. S., and England, M. H.: Coupled biophysical global ocean model and molecular genetic analyses identify multiple introductions of cryptogenic species, P. Natl. A. Sci. USA, 102, 11968–11973, https://doi.org/10.1073/pnas.0503811102, 2005. a
de Vries, P. and Döös, K.: Calculating Lagrangian Trajectories Using Time-Dependent Velocity Fields, J. Atmos. Ocean. Tech., 18, 1092–1101, https://doi.org/10.1175/1520-0426(2001)018<1092:CLTUTD>2.0.CO;2, 2001. a
Dormand, J. and Prince, P.: A family of embedded Runge-Kutta formulae, J. Comput. Appl. Math., 6, 19–26, https://doi.org/10.1016/0771-050X(80)90013-3, 1980. a
Dormand, J. and Prince, P.: A reconsideration of some embedded Runge—Kutta formulae, J. Comput. Appl. Math., 15, 203–211, https://doi.org/10.1016/0377-0427(86)90027-0, 1986. a
Drévillon, M., Greiner, E., Paradis, D., Payan, C., Lellouche, J.-M., Reffray, G., Durand, E., Law-Chune, S., and Cailleau, S.: A strategy for producing refined currents in the Equatorial Atlantic in the context of the search of the AF447 wreckage, Ocean Dynam., 63, 63–82, https://doi.org/10.1007/s10236-012-0580-2, 2013. a
Drouin, K. L., Mariano, A., Ryan, E. H., and Laurindo, L. C.: Lagrangian simulation of oil trajectories in the Florida Straits, Mar. Pollut. Bull., 140, 204–218, https://doi.org/10.1016/j.marpolbul.2019.01.031, 2019. a, b, c
Döös, K., Jönsson, B., and Kjellsson, J.: Evaluation of oceanic and atmospheric trajectory schemes in the TRACMASS trajectory model v6.0, Geosci. Model Dev., 10, 1733–1749, https://doi.org/10.5194/gmd-10-1733-2017, 2017. a, b, c
Enright, W., Jackson, K., Nørsett, S. P., and Thomsen, P.: Effective solution of discontinuous IVPs using a Runge-Kutta formula pair with interpolants, Appl. Math. Comput., 27, 313–335, https://doi.org/10.1016/0096-3003(88)90030-6, 1988. a, b
Euler, L.: Institutiones calculi integralis, 1768. a
Fedorov, A., Budyansky, M., Belonenko, T., Prants, S., Uleysky, M. Y., and Bashmachnikov, I.: Lagrangian modeling of water circulation in the Lofoten Basin, Dynam. Atmos. Oceans, 96, 101258, https://doi.org/10.1016/j.dynatmoce.2021.101258, 2021. a, b
Fifani, G., Baudena, A., Fakhri, M., Baaklini, G., Faugère, Y., Morrow, R., Mortier, L., and d'Ovidio, F.: Drifting Speed of Lagrangian Fronts and Oil Spill Dispersal at the Ocean Surface, Remote Sens., 13, 4499, https://doi.org/10.3390/rs13224499, 2021. a
Galt, J. A. and Payton, D. L.: The use of receptor mode trajectory analysis techniques for contingency planning, in: International Oil Spill Conference Proceedings, Vol. 1983, 307–311, American Petroleum Institute, https://doi.org/10.7901/2169-3358-1983-1-307, 1983. a
Guerrini, F., Mari, L., and Casagrandi, R.: The dynamics of microplastics and associated contaminants: Data-driven Lagrangian and Eulerian modelling approaches in the Mediterranean Sea, Sci. Total Environ., 777, 145944, https://doi.org/10.1016/j.scitotenv.2021.145944, 2021. a
Hairer, E. and Wanner, G.: Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems, Springer-Verlag Berlin Heidelberg, ISBN 3-540-60452-9, 1996. a
Hairer, E., Nørsett, S. P., and Wanner, G.: Solving Ordinary Differential Equations I: Nonstiff Problems, 1st edn., Springer-Verlag Berlin Heidelberg, ISBN 978-3-662-12609-7, 1987. a
Hairer, E., Wanner, G., and Lubich, C.: Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, Springer-Verlag Berlin Heidelberg, ISBN 3-540-30663-3, 2006. a
Kaandorp, M. L. A., Dijkstra, H. A., and van Sebille, E.: Closing the Mediterranean Marine Floating Plastic Mass Budget: Inverse Modeling of Sources and Sinks, Environ. Sci. Technol., 54, 11980–11989, https://doi.org/10.1021/acs.est.0c01984, 2020. a
Kloeden, P. E. and Platen, E.: Stochastic differential equations, corrected 3rd printing edn., Springer, Berlin, Heidelberg, ISBN 3-540-54062-8, 1999. a
Koshel, K. V. and Prants, S. V.: Chaotic advection in the ocean, Phys-Usp+, 49, 1151, https://doi.org/10.1070/PU2006v049n11ABEH006066, 2006. a
Lapidus, L. and Seinfeld, J. H.: Numerical Solution of Ordinary Differential Equations, Academic Press, New York, London, ISBN 0080955835, 1971. a
Lekien, F. and Marsden, J.: Tricubic interpolation in three dimensions, Int. J. Numer. Meth. Eng., 63, 455–471, https://doi.org/10.1002/nme.1296, 2005. a, b
Lekien, F., Coulliette, C., and Marsden, J.: Lagrangian Structures in Very High-Frequency Radar Data and Optimal Pollution Timing, in: AIP Conf. Proc., Vol. 676, 162–168, American Institute of Physics, https://doi.org/10.1063/1.1612209, 2003. a
Marsh, R., Ivchenko, V. O., Skliris, N., Alderson, S., Bigg, G. R., Madec, G., Blaker, A. T., Aksenov, Y., Sinha, B., Coward, A. C., Le Sommer, J., Merino, N., and Zalesny, V. B.: NEMO–ICB (v1.0): interactive icebergs in the NEMO ocean model globally configured at eddy-permitting resolution, Geosci. Model Dev., 8, 1547–1562, https://doi.org/10.5194/gmd-8-1547-2015, 2015. a
Menezes, V. V.: Advective pathways and transit times of the Red Sea Overflow Water in the Arabian Sea from Lagrangian simulations, Prog. Oceanog., 199, 102697, https://doi.org/10.1016/j.pocean.2021.102697, 2021. a
Nepstad, R., Nordam, T., Ellingsen, I. H., Eisenhauer, L., Litzler, E., and Kotzakoulakis, K.: Impact of flow field resolution on produced water transport in Lagrangian and Eulerian models, Mar. Pollut. Bull., 182, 113928, https://doi.org/10.1016/j.marpolbul.2022.113928, 2022. a
Nordam, T. and Mørk, J. M.: jennymmo/discontinuity-handling: v1.3, Zenodo [code, data set], https://doi.org/10.5281/zenodo.15781959, 2025. a, b, c, d
Nordam, T., Beegle-Krause, C., Skancke, J., Nepstad, R., and Reed, M.: Improving oil spill trajectory modelling in the Arctic, Mar. Pollut. Bull., 140, 65–74, https://doi.org/10.1016/j.marpolbul.2019.01.019, 2019. a
North, E. W., Adams, E., Schlag, Z. Z., Sherwood, C. R., He, R. R., Hyun, K. H., and Socolofsky, S. A.: Simulating Oil Droplet Dispersal From the Deepwater Horizon Spill With a Lagrangian Approach, 217–226, American Geophysical Union (AGU), ISBN 9781118666753, https://doi.org/10.1029/2011GM001102, 2011. a
Onink, V., Wichmann, D., Delandmeter, P., and van Sebille, E.: The Role of Ekman Currents, Geostrophy, and Stokes Drift in the Accumulation of Floating Microplastic, J. Geophys. Res.-Oceans, 124, 1474–1490, https://doi.org/10.1029/2018JC014547, 2019. a, b
Onink, V., Jongedijk, C. E., Hoffman, M. J., van Sebille, E., and Laufkötter, C.: Global simulations of marine plastic transport show plastic trapping in coastal zones, Environ. Res. Lett., 16, 064053, https://doi.org/10.1088/1748-9326/abecbd, 2021. a, b
Povinec, P., Gera, M., Holý, K., Hirose, K., Lujaniené, G., Nakano, M., Plastino, W., Sýkora, I., Bartok, J., and Gažák, M.: Dispersion of Fukushima radionuclides in the global atmosphere and the ocean, Appl. Radiat. Isotopes, 81, 383–392, https://doi.org/10.1016/j.apradiso.2013.03.058, 2013. a
Prants, S. V., Budyansky, M. V., Fayman, P. A., Uleysky, M. Y., and Didov, A. A.: Lagrangian Oil Spill Simulation in Peter the Great Bay (Sea of Japan) with a High-Resolution ROMS Model, Pure Appl. Geophys., 180, 551–568, https://doi.org/10.1007/s00024-022-03197-4, 2023. a
Reijnders, D., Denes, M. C., Rühs, S., Breivik, O., Nordam, T., and van Sebille, E.: Stability Bias in Lagrangian Backtracking in Divergent Flows, ESS Open Archive, https://doi.org/10.22541/essoar.172408257.70342970/v1, 2024. a, b
Romanò, F. and Kuhlmann, H. C.: Finite-size Lagrangian coherent structures in thermocapillary liquid bridges, Phys. Rev. Fluids, 3, 094302, https://doi.org/10.1103/PhysRevFluids.3.094302, 2018. a
Sayol, J., Orfila, A., Simarro, G., Conti, D., Renault, L., and Molcard, A.: A Lagrangian model for tracking surface spills and SaR operations in the ocean, Environ. Modell. Softw., 52, 74–82, https://doi.org/10.1016/j.envsoft.2013.10.013, 2014. a
Siegel, D. A., Kinlan, B. P., Gaylord, B., and Gaines, S. D.: Lagrangian descriptions of marine larval dispersion, Mar. Ecol. Prog. Ser., 260, 83–96, https://doi.org/10.3354/meps260083, 2003. a
Simantiris, N., Avlonitis, M., and Theocharis, A.: Simulation of the transport of marine microplastic particles in the Ionian Archipelago (NE Ionian Sea) using a Lagrangian model and the control mechanisms affecting their transport, J. Hazard. Mater., 437, 129349, https://doi.org/10.1016/j.jhazmat.2022.129349, 2022. a, b
Strand, K. O., Huserbråten, M., Dagestad, K.-F., Mauritzen, C., Grøsvik, B. E., Nogueira, L. A., Melsom, A., and Röhrs, J.: Potential sources of marine plastic from survey beaches in the Arctic and Northeast Atlantic, Sci. Total Environ., 790, 148009, https://doi.org/10.1016/j.scitotenv.2021.148009, 2021. a, b
Suneel, V., Ciappa, A., and Vethamony, P.: Backtrack modeling to locate the origin of tar balls depositing along the west coast of India, Sci. Total Environ., 569, 31–39, https://doi.org/10.1016/j.scitotenv.2016.06.101, 2016. a
van Duinen, B., Kaandorp, M. L., and Van Sebille, E.: Identifying marine sources of beached plastics through a Bayesian framework: Application to southwest Netherlands, Geophys. Res. Lett., 49, e2021GL097214, https://doi.org/10.1029/2021GL097214, 2022. a
van Sebille, E., Griffies, S. M., Abernathey, R., Adams, T. P., Berloff, P., Biastoch, A., Blanke, B., Chassignet, E. P., Cheng, Y., Cotter, C. J., Deleersnijder, E., Döös, K., Drake, H. F., Drijfhout, S., Gary, S. F., Heemink, A. W., Kjellsson, J., Koszalka, I. M., Lange, M., Lique, C., MacGilchrist, G. A., Marsh, R., Mayorga Adame, C. G., McAdam, R., Nencioli, F., Paris, C. B., Piggott, M. D., Polton, J. A., Rühs, S., Shah, S. H., Thomas, M. D., Wang, J., Wolfram, P. J., Zanna, L., and Zika, J. D.: Lagrangian ocean analysis: Fundamentals and practices, Ocean Modell., 121, 49–75, https://doi.org/10.1016/j.ocemod.2017.11.008, 2018. a
Visser, A. W.: Lagrangian modelling of plankton motion: From deceptively simple random walks to Fokker–Planck and back again, J. Marine Syst., 70, 287–299, https://doi.org/10.1016/j.jmarsys.2006.07.007, 2008. a
Wilson, J., Miller, S., and Mukherjee, D.: A Lagrangian Approach Towards Quantitative Analysis of Flow-mediated Infection Transmission in Indoor Spaces with Application to SARS-COV-2, Int. J. Comput. Fluid D., 35, 727–742, https://doi.org/10.1080/10618562.2021.1991328, 2021. a
Woods, J.: The Lagrangian Ensemble metamodel for simulating plankton ecosystems, Prog. Oceanog., 67, 84–159, https://doi.org/10.1016/j.pocean.2005.04.003, 2005. a
Short summary
A common task in applied oceanography is to calculate the trajectories of floating objects in the ocean. We propose an alteration to some common numerical methods to improve their performance in such computations, and compare results with and without this alteration. This will help researchers to ensure they obtain a higher accuracy in their results without compromising on computer resources.
A common task in applied oceanography is to calculate the trajectories of floating objects in...