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Abstract. In Lagrangian oceanography, numerical meth-
ods for Ordinary Differential Equations (ODEs) are used to
model particle transport. In many common applications, the
velocity field driving the particle transport is provided as out-
put from ocean models, on a discrete grid of points. Hence,
the velocity field must be interpolated. Depending on the
choice of interpolation, the velocity field or its derivatives
may have discontinuities. These discontinuities have impli-
cations for the accuracy of the numerical ODE methods em-
ployed.

We demonstrate that by using information about the lo-
cation of the discontinuities, we can take these into ac-
count, and improve numerical accuracy over standard inte-
gration methods that do not take discontinuities into account.
The commonly used combination of the fourth-order Runge-
Kutta method and linear interpolation of the velocity field,
in fact, only yields second-order accuracy with the standard
method. By accounting for discontinuities, we can achieve
several orders of magnitude better accuracy with the same
timestep. The implementation makes use of a combination
of known methods from the field of numerical integration of
ODEs. The implementation is quite flexible, agnostic to grid
layout and order of interpolation, and contributes only mod-
estly to the code complexity. Hence, the proposed technique
for handling discontinuities in interpolated velocity fields
could easily be adopted to a range of applications where nu-
merical accuracy or efficiency is of importance.

As an example where numerical accuracy is important, we
run a backtracking case for particles with known initial con-
ditions, and show that the method with discontinuity han-
dling is to a larger degree able to recover the correct initial

positions of the particles, compared to standard fourth-order
Runge-Kautta.

1 Introduction

Computations of particle trajectories through pre-calculated
velocity fields are frequently encountered, particularly in
oceanic and atmospheric transport simulations (van Sebille
et al., 2018). Examples include modelling the movement of
pollutants such as oil spills (Nordam et al., 2019; Drouin
et al., 2019; North et al., 2011), microplastic (Onink et al.,
2021, 2019; Kaandorp et al., 2020; Simantiris et al., 2022),
and chemicals (Nepstad et al., 2022; Aghito et al., 2023;
Povinec et al., 2013), as well as jellyfish (Dawson et al.,
2005), algae and plankton (Siegel et al., 2003; Woods, 2005;
Visser, 2008), and icebergs (Marsh et al., 2015). Particle tra-
jectory simulations are further used to analyse water volume
and air mass transport pathways associated with the general
circulation in the ocean and atmosphere (e.g. Bower et al.,
2019; Doos et al., 2017). Similar computations have even
been used in studies on the spread of respiratory diseases like
COVID-19 (Wilson et al., 2021).

Marine and atmospheric transport applications usually re-
quire computation of a large number of particle trajecto-
ries. A single trajectory is typically computed by numerically
solving an ordinary differential equation (ODE), and com-
puting a large number of trajectories can be quite computa-
tionally demanding. Therefore, it is of practical value to have
some kind of guidance on how to select numerical schemes
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to optimise the computations in terms of both accuracy and
computational cost.

In recent studies within Lagrangian oceanography one
finds a number of different integration methods, ranging from
the simple explicit Euler scheme (e.g. Sayol et al., 2014) to
higher-order methods, though a common choice seems to be
the classic fourth-order Runge-Kutta method with fixed time
step (see, e.g. Fedorov et al., 2021; Menezes, 2021; Drouin
et al.,, 2019; Onink et al., 2021). Some also make use of
embedded Runge-Kutta pairs with adaptive step size (see,
e.g. Guerrini et al., 2021; Simantiris et al., 2022) or the so-
called “analytical” methods that ensure volume conservation
(for velocity fields from volume-conserving models) or mass
conservation (for velocity fields for mass-conserving mod-
els) (Blanke and Raynaud, 1997; D66s et al., 2017). The lat-
ter methods avoid explicit time-stepping by analytically in-
tegrating particle trajectories between grid points, assuming
linear interpolation of the velocity fields. A notable common
feature is that there is limited discussion around the choice
of integration method.

We further note that in marine transport applications, the
velocity field in the ODE is represented by ocean currents
(and in some cases other fields such as wind or Stokes drift).
Advection in the ocean is known to be chaotic, at least on
some scales (Koshel and Prants, 2006; Abraham and Bowen,
2002). This means that nearby trajectories tend to separate
exponentially over time, and thus numerical errors in tra-
jectory integration will also grow exponentially in time. For
that reason it may be useful to resort to higher-order inte-
gration methods, or alternatively, low-order methods with
small time steps, especially when considering long integra-
tion times (months to years or even decades), to limit the ac-
cumulation and growth of numerical errors as far as possible.

In many applications, random increments are added to the
position or the velocity of the particles, to capture the effects
of sub-grid scale diffusion. Formally, one is then solving a
Stochastic Differential Equation (SDE), which requires dif-
ferent numerical methods (Kloeden and Platen, 1999). We
do not deal with diffusion in the current paper, but focus on
representing the advective processes resolved by a given un-
derlying velocity field.

Since the velocity field representing the ocean currents is
not continuous, but given at discrete times and spatial lo-
cations, it is also necessary to use interpolation to obtain
a velocity field that can be used in the integration. Inter-
polation introduces discontinuities in the velocity field it-
self or its derivatives, and hence the choice of interpolation
scheme may also affect both the accuracy and the compu-
tational effort of a given numerical integrator. Nevertheless,
there is hardly any discussion around the choice of interpola-
tion scheme in recent publications, and many authors do not
even mention it. Among those that do it seems that linear in-
terpolation is the most common choice (e.g. Cividanes et al.,
2024; Cunningham et al., 2022; Fifani et al., 2021; Onink
et al., 2019), followed by cubic (e.g. Prants et al., 2023; Fe-
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dorov et al., 2021; Drouin et al., 2019). In any case, it is not
common to state the reasoning behind a choice of interpola-
tion scheme or the implications of that choice.

In this paper, we build on an earlier study of numerical in-
tegrators for Lagrangian oceanography (Nordam and Duran,
2020), in which a scheme was introduced to deal with dis-
continuous partial derivatives along the time dimension. In
the current study, we tackle the issue of discontinuous par-
tial derivatives along the spatial dimensions, i.e., when cross-
ing cell boundaries in the velocity field. We investigate the
performance of some standard fixed-step Runge-Kutta meth-
ods, and compare their performance to modified methods de-
signed to handle the discontinuities in the interpolated veloc-
ity field. The methods are compared in terms of performance
when combined with different orders of spline interpolation,
and we also compare to the earlier results from Nordam and
Duran (2020).

In the next section, we will present some theory on the nu-
merical integration of ODEs with interpolated velocity fields.
We will introduce the integration and interpolation schemes
we use in this study, and give a brief description of how to
evaluate the error of a numerical integrator. In Sect. 3, we
discuss the consequence of discontinuities in the interpolated
velocity field or its derivatives for the accuracy of numerical
integration methods, and present how we modified the in-
tegration scheme to handle these discontinuities. Section 4
describes how the numerical experiments were performed,
including how the methods were implemented in code. The
results of experiments to investigate accuracy are presented
in Sect. 5, along with an example application (backtracking),
and a discussion of comparison to other methods. Finally, in
Sect. 6, we present some conclusions.

2 Theory

Finding a particle trajectory from a velocity field essentially
means solving an ODE on the form

dx

where f(x,1) is the particle velocity at position x and time
t. When the initial position x (fp) = x¢ is known one can use
numerical integration to find a solution for x(¢) for 7 > 1.
The concept of numerical integration has been around for
a very long time (see Euler, 1768, p. 200, for the origi-
nal description of the forward Euler scheme), and there is
a large body of literature on the topic (see, e.g., the clas-
sic reference Hairer et al. (2008)). Many different techniques
have also been developed, ranging from general methods that
are applicable to many different problems (see, e.g., Hairer
et al., 2008; Hairer and Wanner, 1996) to more specialised
schemes that have been developed to, e.g., respect specific
conservation laws (Hairer et al., 2006). In this paper, we will
consider selected fixed-step methods from the Runge-Kutta
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family, including the forward Euler method and the clas-
sic fourth-order Runge-Kutta, both of which are commonly
used in Lagrangian oceanography. To aid later discussion,
we will briefly introduce some notation and elementary con-
cepts from the theory of numerical integration of ODEs. For
additional details, the interested reader is referred to the the-
ory presented in Nordam and Duran (2020), which this pa-
per builds on, as well as the general literature (Hairer et al.,
2008).

A numerical integration method will solve Eq. (1) by tak-
ing repeated discrete steps in time, ¢. For fixed-step methods
t is incremented by the same amount / in every step, so that
after n steps we have

tn = 1o+ nh. 2

In this paper, we will use the notation convention where
xp denotes the numerical approximation to the solution for
the time #,,, while x (#,,) denotes the true solution for the same
time. We assume that there exists such a true solution and that
this solution is unique for a given initial condition (Hairer
et al., 2008, pp. 35-43), although in most cases where numer-
ical integration is used, the true solution x (#,) is unknown.

2.1 Error bounds

There are two important measures for the error in numeri-
cal integration. One is called the local error and the other
is called the global error, and both depend on the timestep,
h. The local error is the numerical error in a single step,
e(h) = x(t1) — x1, i.e., the difference between the numerical
approximation x1 and the exact solution evaluated at time #,
assuming zero error at time fo, that is x (zp) = xo. The global
error is the total error after N steps, at time ¢y, again assum-
ing zero error at time 7. Global error is thus given by (Hairer
et al., 2008, p. 159)

E(h) =x(tN) —xn. 3

It can be shown (Hairer et al., 2008, p. 157) that, when using
a Runge-Kutta method of order p for an ODE x = f(x, 1),
where the partial derivatives of f(x,¢) up to and including
order p exist and are continuous, the local error is bounded
by

lx(t1) — x1| < ChPTL, )

for some constant C. The constant C will depend on the
method, and on f (x, t), but not on the timestep 4. If the local
error e(h) scales as O(hP*!) then the global error E (h) will
scale as O(hP) (Hairer et al., 2008, pp. 160-162).

2.2 Error estimation

If the exact solution is unknown, the error must be estimated
by purely numerical means. Generally, the smaller the step
size h of a numerical integration method, the more accurate
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its solution, and as 4 — 0 the numerical solution ideally con-
verges toward the true solution. How fast the numerical solu-
tion converges depends on the order, p, of the method, where
higher order means faster convergence. The exact solution
can thus be approximated by a reference solution computed
using a high-order method with a very small timestep /ef
(see Nordam and Duran, 2020).

Note that computers have limited precision when storing
numbers and this in turn affects the accuracy of arithmetic
with floating-point numbers. For example, in double preci-
sion floats, which is probably the most commonly used type
for scientific computing, numbers are stored with approxi-
mately 16 significant digits, and any operation will tend to
pick up a rounding error in the last digit. As a result, when
h becomes very small, and the number of operations large,
the global error is dominated by accumulated round-off error
(see, e.g. Press et al., 2007, p. 10). Reducing the step size fur-
ther beyond this point will make the error increase rather than
decrease, due to the further accumulation of the round-off er-
ror when the number of arithmetic operations increases. The
size of the time step /. must therefore be chosen with some
care. We explain how we compute our reference solutions in
Appendix C.

2.3 Interpolation and discontinuities

The velocity fields used in Lagrangian oceanography are typ-
ically given by modelled ocean current velocity data at dis-
crete positions and times on a grid. Trajectory computations
require a velocity field that can be evaluated at arbitrary po-
sitions and times, and such a field can be obtained by in-
terpolating the modelled data. In this study, we have chosen
to interpolate the data using spline interpolation, with which
the current data is interpolated using several low-order poly-
nomials (de Boor, 2001). We have chosen to consider three
spline interpolation schemes of different order:

— second-order: linear interpolation;
— fourth-order: cubic spline interpolation;
— sixth-order: quintic spline interpolation.

Note that there exists more than one definition of the order
of interpolation, but the one used here is that the order of in-
terpolation is 1 plus the polynomial degree (de Boor, 2001,
p- 1). The key point is that spline interpolation of order m
creates an interpolant consisting of a piecewise polynomial
function of degree m — 1. At the knots, where two different
polynomial functions meet, the coefficients of the two poly-
nomials are chosen such that the spline has m —2 continuous
derivatives. Away from the knots, all partial derivatives exist
and are continuous (with the partial derivatives of order m or
higher being zero).

The locations of the discontinuities depend on the interpo-
lation scheme and the grid structure of the data points. For
the selected schemes in this study, the discontinuities will be
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Figure 1. Illustration of discontinuities in different grid structures
common in hydrodynamic models. If the current data is given on an
Arakawa A-grid (left panel) the discontinuities (dashed lines) in the
interpolated velocity field coincide with the model cell boundaries
(solid lines). If the current data is given on an Arakawa C-grid (right
panel) the discontinuities are at the boundaries of the corresponding
staggered u- and v-grids.

located at the data points!. In the temporal dimension (Nor-
dam and Duran, 2020), this is straightforward to handle, but
in the spatial dimension, we need to know the grid structure
of the velocity data. If the data is given on an Arakawa A-
grid, i.e., an unstaggered grid where all velocity vector com-
ponents are given in the corners of the grid cells, then the
discontinuities of the interpolated velocity field will coincide
with the hydrodynamic model cell boundaries. If instead the
data is on an Arakawa C-grid, i.e., a staggered grid where the
velocity components are given on the cell face centers, the
discontinuities will have different locations for the different
velocity components. That is, if we imagine that the u-points
and the v-points are corners of their own respective grids, the
interpolated velocity field will have discontinuities along the
boundaries of both these grids as illustrated in Fig. 1. Note
that this means that velocity fields on C-grids will have twice
(in 2D) as many discontinuities as A-grids. When we talk
about grid cells in the interpolated velocity field from now
on we will be referring to the cells bounded by the discon-
tinuities, not those of the underlying hydrodynamic model.
Data that have been produced on a C-grid, but interpolated to
cell centers prior to output and storage, are treated the same
as A-grid data.

Now, recall from Sect. 2.1 that the magnitude of the local
error of a Runge-Kutta method of order p is only bounded by
ChP*! when the right-hand side f(x,) of the ODE has p
continuous partial derivatives. This means that we need to be
conscious about our choice of interpolation scheme and inte-
grator when setting up a particle transport simulation. Since
linear interpolation results in discontinuous first derivatives,
in theory not even a first-order integrator is guaranteed to
have local error bounded by Eq. (4) when stepping across a
grid cell boundary.

IFor other schemes (of odd-numbered order) they can be else-
where (de Boor, 2001, Chap. VI).
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3 Integrators with discontinuity handling

In this section, we discuss the consequences of the fact that
the right-hand side of our ODE has discontinuous derivatives.
Furthermore, we present a modification that can be made
to any of the commonly used fixed-step Runge-Kutta meth-
ods, designed specifically for applications in Lagrangian
oceanography (or elsewhere) where interpolated velocity
fields are used.

In Sect. 2.1, we mentioned that in order for it to be guar-
anteed that a Runge-Kutta method of order p actually is pth-
order accurate, the right-hand side of the ODE must have
continuous derivatives up to and including order p. If this
requirement is not fulfilled, the numerical error may be far
larger than expected. As shown in Nordam and Duran (2020),
when the error in even just a single step is not bounded by
Eq. (4) this can dominate the global error, thus reducing the
overall order of the method. In such cases, the use of a higher-
order integration scheme is nonsensical as it is just more
computationally demanding without the expected benefit of
reduced error.

In Sect. 2.3, we saw that in order to have p continuous
derivatives we must have splines of order p 4 2. A solution
could thus be to combine a high-order ODE method with
an interpolation scheme of sufficiently high order. However,
higher-order spline interpolation is more computationally de-
manding without necessarily being a more faithful represen-
tation of the underlying ocean dynamics. In fact, linear in-
terpolation may be required for particle trajectory simula-
tions based on (i) finite-volume model output or (ii) finite-
difference model output, when trajectories are intended to
represent volume transport pathways. In these cases, the ve-
locity reconstruction between cell faces must preserve the
discrete flux balance, which implies a constant divergence
within each grid cell. Linear interpolation satisfies this con-
dition, whereas standard higher-order schemes (e.g., cubic or
spline interpolation) generally do not. This suggests that a
better approach might be to use low-order interpolation to-
gether with higher-order ODE methods, but somehow try to
handle the discontinuities.

Hairer et al. (2008, pp. 197-198) suggest three alternative
ways of dealing with discontinuities in f(x,?) or its deriva-
tives:

i. ignoring them, and letting a variable-step solver adjust
the step size to one that gives a small enough error,

ii. using a numerical integration routine that detects and
handles discontinuities,

iii. using information about the positions of the discontinu-
ities to stop and restart integration at these locations.

As mentioned, it is rare to see the implications of the
choice of interpolation and integration schemes discussed
in applied papers on Lagrangian particle transport. Among
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those that mention both integration and interpolation, we
have seen that a fixed-step integrator such as the classic
fourth-order Runge-Kutta combined with linear interpolation
seems the most common choice. This approach completely
ignores the question of discontinuities in the velocity field.
Some instead use variable-step methods, e.g., Dormand-
Prince 5(4) (Romano and Kuhlmann, 2018) or Runge-Kutta-
Fehlberg (Lekien et al., 2003), but even then there is typi-
cally no mention of discontinuities, which presumably means
that the first strategy listed above has been implicitly chosen.
However, this strategy is neither the most accurate nor the
most computationally efficient (Hairer et al., 1987, p. 181),
so many would most likely benefit from choosing a different
approach.

Enright et al. (1988) have developed a procedure follow-
ing the second strategy. Their approach has the benefit that
it requires no a priori knowledge about the discontinuities,
but instead uses a procedure that detects discontinuities au-
tomatically. This procedure was found to be not only more
efficient, but also more accurate than the first strategy listed
above. However, the automatic discontinuity detection is not
always completely reliable (Enright et al., 1988), so if the
locations of the discontinuities are known, the third strategy
might be a better choice. The third strategy has also been
found to be both faster and more accurate than the first strat-
egy by a considerable amount (Hairer et al., 2008, p. 198).
In Nordam and Duran (2020), an approach for stopping and
restarting at discontinuities in time was demonstrated. As
time, ¢, is the independent variable, this is fairly straightfor-
ward. In this paper, we develop a procedure for handling the
discontinuities also in the dependent variable (position). We
adapt and build on methods from the mathematical literature,
that are perhaps less well-known in the oceanographic com-
munity, and we demonstrate quite substantial improvements
in numerical accuracy using fairly typical example simula-
tions with modelled ocean currents as input.

3.1 Discontinuities in the temporal dimension

Assuming that the input data is given as snapshots of a vec-
tor field at certain known times, 7;, we know that the inter-
polated velocity field will have discontinuous derivatives at
times 7;. For a particle trajectory, x(¢), the time 7 is the in-
dependent variable, and when the discontinuities at 7; are
known it is very easy to stop and restart integration at these
times. If the 7; are equally spaced, thatis, T;+1—7; = AT for
all i, then for fixed-step integrators the simplest strategy is to
select a timestep & that divides AT evenly, and make sure
that 7y coincides with a 7;, in which case integration will
stop and restart at the discontinuities automatically without
any further intervention from the integrator. In Nordam and
Duran (2020) it was shown that stopping and restarting in-
tegration at the times 7; gives a substantial improvement in
accuracy, and is easily achieved at little cost by simply being
mindful of step size selection and the start time.
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Suppose that, for some reason, it is not possible to select
a step size & that divides AT evenly, or that the discontinu-
ities 7; are not evenly spaced. In that case, one must make a
small adjustment in steps that are found to cross discontinu-
ities: Assume that at time #,, the trajectory is at a position x,,.
Then the integrator makes a step of size &, from x,, to x4+
so that t,4+1 =1, + h,. If we have #, < T; < t,41 for any of
the known T7; then the trajectory has crossed a discontinuity
in the temporal dimension, and the time step 4, is adjusted
so that h,, = T; —t, for this step. The subsequent steps should
continue with the original step size until the next discontinu-
ity is reached.

It is important to note that, while implementing this logic
will ensure that integration is stopped and restarted at the
discontinuities regardless of the choice of time step, it will
also increase the total number of steps and hence the required
computational work. We would therefore recommend being
mindful about the choice of time step and start time, if pos-
sible.

3.2 Discontinuities in the spatial dimension

Since time is the independent variable, and position in space
is the dependent variable, it is less straightforward to han-
dle discontinuities along the spatial dimensions. Here, we
present the details of a procedure to stop and restart inte-
gration at the exact time when a discontinuity in the spatial
dimension is crossed, by means of event detection to identify
a crossing, and bisection to find the time of the crossing.

If the grid structure and resolution of the current data are
known, so are also the positions of the discontinuities. Recall
from Sect. 2.3 and Fig. 1 that the discontinuities are along
the boundaries of the grid cells in the interpolated velocity
field. The integrator with discontinuity handling will use this
knowledge to check at each step whether such a boundary
has been crossed. If it finds that a boundary is crossed within
the step, it applies the event location procedure described by
Hairer et al. (2008, pp. 195-196). To explain the procedure
we consider as an example the illustration in Fig. 2. In the
top panel, we see a situation where a single boundary was
crossed in the i-direction during the step from position x,
to position x,11. Let t* be the time when the boundary is
crossed, and let x* = [xl?“,x*] denote the exact position at
which the trajectory crosses the boundary. The component xj
is unknown, but since we know the positions of the bound-
aries, x; is known. We can thus define a function

() = xi(t) —x, ®)

where x;(¢) is a continuous function representing the i-
component of the trajectory between x, and x,;. Since
we know that the boundary is crossed at (the unknown)
time ¢*, we know that x; (t*) = x, and hence g;(t*) =0.
To find #* we thus only need to find the root of Eq. (5).
The trajectory y; (¢) is unknown except for the endpoints, but
we can approximate it using a so-called dense output for-
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Figure 2. [llustration of the boundary crossing procedure with event
detection, shown for the fourth-order Runge-Kutta method. The thin
dashed lines show the locations of the spatial discontinuities, and
the trajectory moves from left to right. When a step is found to cross
a discontinuity, Hermite interpolation and bisection is used to find
a first approximation of the time of the crossing (top panel). Then
a trial step is taken, deliberately a bit short of the boundary, and
the Hermite interpolant is used with bisection to extrapolate to find
the time of the boundary crossing (middle panel). Finally, a step is
taken exactly to the boundary, and a second step to complete the
duration of the original timestep (bottom panel). The position of
the rightmost point in the bottom panel is more accurate, and thus
differs a little from the rightmost point in the top panel.

mula (see Hairer et al., 2008, p. 188). A dense output for-
mula is a numerical approximation to the solution y (¢, +6h)
for 0 <6 < 1, i.e., the entire interval between x, = x (¢,) and
Xn+1 = x (¢, +h), which requires few, if any, additional eval-
uations of the right-hand side of the ODE, f(x,t). Here,
we apply Hermite interpolation (see, e.g. Hairer et al., 2008,
p- 190) to find the dense output approximation to x;(¢). Note
that the Hermite interpolation is used to interpolate the tra-
Jectory between two steps, and is independent from the inter-
polation of the velocity field.

Given x, and x,11, and f, = f(x,,2,) and f, | =
f(xut1,th+1) (recall that f is the right hand side of the
ODE), we have

u;(0) = (1 _e)xn,i +9xn+1,i
+60 —1)((1 —26)(Xns1,i — Xn,i)
+ O = Dh fui +0h fut1,i), (6)

where x,, ; is the i-component of x,, etc.
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With 60 = (t —t,)/(tn+1 — t,) We can insert u;(0) as an
approximation for x;(¢) in Eq. (5) and apply the bisection
method (see, e.g. Press et al., 2007, pp. 447-449) to find the
root 0* = 6(¢*). Then we can adjust the step size,

hagj = 6*h. )

With this step size, a step from x,, should in theory end up at
x*. Now, we could decide to simply take this step and pro-
ceed the integration, but instead, we choose to take a step that
is deliberately a little too short. That is, we take a new step
of size h < hydj from x,, and end up at the position ¥, which
is close to the boundary but not exactly at it. See the middle
panel of Fig. 2. Then we repeat the procedure above with the
same x* as before but now using the dense output solution
u;(0) between x,; and X; instead of the one between x; ;
and x,41 ;.

The reason we choose to take a second deliberately short
step is that the dense output solution u;(6) we first used is
computed using an integrator step that crossed one or more
boundaries, and values of f(x,t) from two different grid
cells. This will affect how accurate the approximation is, due
to the discontinuous derivatives at the cell boundary. The
approximation #; (6), on the other hand, is computed using
values from only one grid cell and is thus likely more accu-
rate since there are no discontinuities between the two points.
Note that, since xl?k is not in the interval between x, ; and X;,
using i; (0) requires some extrapolation to find 6*. However,
in our tests the extrapolation method was found to locate the
boundary more accurately than directly using the crossing
time identified by the first bisection, presumably due to the
second Hermite polynomial being based only on coefficients
from a single cell.

The final step in the procedure is to complete the duration
of the original timestep, by making a second shorter step of
duration f,,41 — t*. This ensures that the continuing integra-
tion will still stop and restart at discontinuities in time (as
discussed in Sect. 3.1) without further intervention. See the
bottom panel of Fig. 2.

A subtle point worth mentioning is that the Hermite inter-
polation and bisection scheme is never used to find the next
location on the overall particle trajectory, only the duration
of the timestep needed to reach the boundary. All steps are
taken with the chosen ODE method, which thus determines
the order of convergence.
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Finally, note also that one cannot assume that a boundary-
crossing step always only crosses one boundary. Figure 3 il-
lustrates some of the ways boundaries can be crossed within
one single step. The procedure described above is for a sin-
gle boundary crossing, illustrated in the left panel, where the
step crossed one boundary in one direction. However, situa-
tions like the ones illustrated in the middle and right panels
might also occur, where more than one boundary has been
crossed in a single step. Other variations are also possible. In
any case, we use the described event detection procedure to
determine which boundary was crossed first, and adapt the
step to stop at that one first, and, if necessary, repeat the pro-
cedure for the next one(s). We note that even if a very long
timestep is chosen, the described method will prevent the tra-
jectory from actually stepping across multiple cells at once,
due to the event detection method forcing the integration to
stop at each cell boundary.

4 Numerical experiments

The purpose of the numerical experiments in this study is to
look into how different interpolation schemes affect integra-
tion, and to investigate how the integrators with the disconti-
nuity handling described in Sect. 3.1 perform in comparison
to their regular counterparts. We consider a selection of five
fixed-step numerical integration schemes from the Runge-
Kutta family: One method of order 1 (Euler’s method, for-
ward/explicit), one method of order 2 (Heun’s method), two
methods of order 3 (Heun’s method and Kutta’s method), and
one of order 4 (RK4, or “The” Runge-Kutta method). For de-
tails on the methods see Appendix A.

4.1 Ocean currents

The current data used in this study was obtained from the
Norwegian Meteorological Institute. The datasets were taken
from the following model setups:

— Arctic20km (20 km horizontal resolution, 1 h time step),
— Nordic4km (4 km horizontal resolution, 1 h time step),

— NorKyst800m (800 m horizontal resolution, 1h time
step).

We have also subsetted the data, to make the file size more
convenient, and the data is made available along with the
code (Nordam and Mgrk, 2025). To allow a direct compar-
ison, we use the same datasets as those used by Nordam
and Duran (2020) in the study of special-purpose integrators
that stopped and restarted integration at discontinuities in the
temporal dimension. The original datasets have dimensions
x, y, z and ¢, though for the purposes of this work only the
surface layer has been used. The velocity field is thus interpo-
lated in three dimensions (two spatial dimensions, and time),
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and we have used the same degree of interpolation in all three
dimensions.

The xy plane for all three datasets is defined in polar stere-
ographic projection so that the horizontal plane is a regu-
lar (constant spacing) quadratic grid. The current velocity
field is given as vector components on the xy basis, and we
note that the # and v components have been interpolated to
a common grid prior to output (see Fig. 1). We use the xy
coordinate system of the polar stereographic projection of
the datasets, and we track particle positions in meters in our
simulations. This way we can use the vector components di-
rectly from the datasets without needing to perform rotation
or any other conversion of the data. The error measurements
in this study are calculated from Euclidean distances in the
xy plane.

4.2 Initial conditions

The initial conditions for the trajectory computations are also
chosen to be the same as used by Nordam and Duran (2020),
namely 100 x 100 points off the coast of Norway, distributed
on a regular quadratic grid with grid spacing of 1600 m. The
same initial conditions were used for all simulations with all
three datasets, and these were chosen to avoid a situation
where particles might get stuck in land cells. The particles
are generally transported northward, with the eastern half of
the particles being subject to more turbulent mixing than the
western half. Like Nordam and Duran (2020) we start the tra-
jectories in our simulations at midnight on 8 February 2017,
and integrate for 72 h. The initial and final particle positions
are shown on a map in Fig. 4, along with the outlines of the
subsetted datasets used to force the trajectories.

4.3 Reference solutions

To investigate the performance of the different integration
schemes we must estimate the global errors of the computed
numerical solutions. Since the true solutions are unknown,
we need to estimate the error by purely numerical means, as
described in Sect. 2.1. We compute a set of highly accurate
numerical solutions for each of the 10000 different initial
conditions to replace the exact solution x(¢) in Eq. (3).

Note that in this study we are not trying to find the solution
that most accurately approximates the true trajectories of La-
grangian drifters in the ocean. That is, the exact solution we
refer to here is the exact solution with a given realisation of
the velocity field, which is not the same solution as we would
obtain with true continuous data for the velocity field in the
ocean. In Lagrangian oceanography, the aim of interpola-
tion is not to approximate the unresolved turbulent motion
of the ocean (which is usually treated by adding random dis-
placements), but rather to have a consistent means for eval-
uating discrete gridded data at arbitrary positions and times.
Different interpolation schemes will provide different values
for the current within the grid cells, and hence have a dif-
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Figure 4. The initial positions used in the trajectory simulations, as well as the final positions for the three different datasets. The final
positions were obtained with cubic interpolation, the fourth-order Runge-Kutta integrator and a timestep of 60 s. The current speed is shown
as a snapshot for the final timestep of the trajectory simulations, and the colour scale is the same for all three subplots.

ferent exact solution to the initial value problem. Therefore,
we must compute reference solutions for all combinations of
dataset and interpolation scheme. Since we have three dif-
ferent datasets and three different interpolation schemes we
thus need nine reference solutions.

For the standard integrators, we computed the refer-
ence solutions using the standard fourth-order Runge-Kutta
method, and for the integrators with discontinuity handling
we used the fourth-order Runge-Kutta method with disconti-
nuity handling. Note also that we computed the optimal step
size hrer for each individual reference solution. For details
see Appendix C.

4.4 Implementation

The code used to run the simulations in this study is avail-
able on Zenodo (Nordam and Mgrk, 2025), along with
the necessary data for the cases shown. It is developed
from an earlier code, as described by Nordam and Duran
(2020), and we refer to that study for additional details.
The code is a simple program for Lagrangian particle trans-
port, written in Fortran. Ocean current data was read using
the netCDF library for Fortran, and interpolation was done
using the bspline-fortran (https://github.com/jacobwilliams/
bspline-fortran, last access: 1 September 2025) library. The
x and y components of the velocity field were interpolated
separately, and the interpolation order was always the same
in all three dimensions (x, y, ). We implemented integrators
with the procedure for discontinuity handling described in
Sect. 3.1 and 3.2, as well as the regular Runge-Kutta integra-
tors.

We note that we use the derived type bspline_3d from
the bspline-fortran library, and for each of the two current
components, we create a global interpolator covering the
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whole simulation in both space and time. This means that
when using, e.g., cubic splines, our interpolator is C> glob-
ally, i.e., it has at least two continuous derivatives every-
where. This is in contrast to for example the local cubic in-
terpolation scheme described by Lekien and Marsden (2005),
which is only C! globally.

5 Results and discussion

We have run trajectory simulations for three different resolu-
tion datasets, and three different orders of interpolation, us-
ing five different fixed-step integrators from the Runge-Kutta
family of methods. In each case, 10000 trajectories were
calculated, from the initial positions shown in Fig. 4. The
trajectories were integrated for 72 h, with timesteps ranging
from 120s to 1 h. We note that all the timesteps are chosen
to evenly divide the 1h intervals on which the data are pro-
vided, such that integration is always stopped and restarted
on the discontinuities along the time dimension, as discussed
in Sect. 3.1, and in Nordam and Duran (2020).

5.1 Standard integrators

In Fig. 5, we show the results of running with five regular
fixed-step integrators, with orders ranging from 1 to 4 (see
Appendix A for details). These results are a baseline, repre-
sentative of how numerical integration is typically done in
Lagrangian oceanography, and are also the same as the re-
sults for fixed-step integrators in Nordam and Duran (2020).
As mentioned earlier, especially the combination of linear in-
terpolation and fourth-order Runge-Kutta is fairly common,
among those studies that provide this information. We note
that quintic spline interpolation is probably not used in prac-
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tice, but it is included here as an example where the order
condition in Eq. (4) is satisfied even for fourth-order Runge-
Kutta.

The results are shown as work-precision diagrams (see,
e.g., Hairer et al., 2008, p. 140), where the amount of work
is indicated by the number of evaluations, Ny, of the right-
hand side of the ODE (average per particle). We note that we
use Ny instead of /& as a measure of work partially as it is
conventional in the ODE literature, and partially to allow a
direct comparison between the standard integrators and the
ones with discontinuity handling. For the latter, there is no
simple relation between Nt and /. The precision is indicated
by the median relative error, where the relative error is given
by
E(h) = |x v (h) xrefl, 8)

[ X ref|
where X is the highly accurate reference solution (see Ap-
pendix C), and the median is taken over all 10 000 particles.

For the standard methods, the number of evaluations of the
right-hand side of the ODE is inversely proportional to the
timestep, i.e. Ny ~ 1/ h, with a prefactor that depends on the
method. Hence, we would expect the error to scale as (Nr) ™7,
where p is the order of the method. However, we observe that
with linear interpolation, we are only able to achieve second-
order convergence, even with higher (third and fourth) order
integrators.

The reason we only achieve second-order accuracy in the
case of linear interpolation is that when the integrator steps
across a spatial boundary, where the first derivative of the
velocity field is discontinuous, it picks up a local error that
is not bounded by Eq. (4). In Appendix B we show numeri-
cally that the local error in stepping across this type of dis-
continuity is of order 42, for all the integrators considered
here. Normally, the order of the global error, E(h), is p if
the local error is of order p + 1: since the number of steps
is N; ~ 1/h, we have that E(h) ~ O(h?T!) x Ny = O(hP).
However, the number of boundary crossings, Ny, is deter-
mined by the length of the trajectory and the resolution of
the dataset, and does not depend on the timestep. Hence the
effect of the boundary crossings is to add to the global error
a term of order Nyph?. For the integrators with order p higher
than 2, the error from the boundary crossings will dominate
over the global order from the rest of the trajectory, which is
of order (Ny— Np)hPT1. We see that even for the dataset with
20 km resolution, where only a small fraction of the steps
will cross a cell boundary, the lower-order local errors from
those steps still dominate the global error (Fig. 5, upper right
panel).

With cubic and quintic interpolation, we are able to
achieve the expected orders for all interpolation schemes.
The reason for this is that the interpolated fields are suf-
ficiently smooth not to introduce any local errors of low
enough order to dominate the global error. For cubic inter-
polation, the third derivative is discontinuous, and as shown
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in Appendix B, this reduces the local error from order 5 to
order 4, for the fourth-order Runge-Kutta integrator. How-
ever, since the number of boundary crossings is constant with
timestep, the net effect is to add a fourth-order term to the
global error, not reducing the order of the overall global er-
ror. For quintic spline interpolation, the velocity field has four
continuous derivatives, and thus the conditions for Eq. (4) to
hold are satisfied for all integrators of order 4 and lower.

5.2 Integrators with discontinuity handling

Figure 6 shows results for the same five integrators, but here
with event-detection and handling of the boundary cross-
ings. Here, the integration has been stopped and restarted at
each discontinuity at the cell boundaries, as recommended by
Hairer et al. (2008, pp. 197-198). We observe that with event
detection, we are able to achieve higher than second-order
accuracy when using linear interpolation. By stopping and
restarting the integration exactly at the boundary we avoid
picking up the local errors of order 4% that stem from the dis-
continuous first derivative, and thus the global error is of the
expected order for each method.

We note that the number of evaluations, Ny, is now given
approximately by Ny~ p T/h+ (2p + 1) Ny, where T is the
trajectory duration, p is the order of the method, and Ny, is the
number of boundary crossings (which as mentioned depends
on the length of the trajectory and the resolution, but not on
the timestep). The added constant term in Ny is the reason
that the error as a function of number of evaluations does not
form straight lines in the log-log plots in Fig. 6 (this effect is
more pronounced for the higher resolution datasets, as these
will give more boundary crossings).

For cubic and quintic interpolation, the accuracy achieved
with the event-detection method is essentially identical to
that obtained with the standard methods. As discussed in
Sect. 5.1, this is because the cubic and quintic interpolants
are sufficiently smooth that the standard integrators operate
as expected.

Comparing the standard integrators and the event-
detection method, we see that the main difference is found
when using linear interpolation, and an integrator of or-
der 3 or 4. The combination of linear interpolation and
fourth-order Runge-Kutta appears in many studies in applied
oceanography, making this a very relevant case to discuss.
In Table 1 we show the median relative error obtained with
a 600 s timestep with the fourth-order Runge-Kutta integra-
tor, for all nine combinations of resolution and interpolation
orders, after 72 h of integration. For linear interpolation, the
error with the 600 s timestep is 1.5-3 orders of magnitude
smaller with the event detection approach. With a shorter
timestep, the difference becomes even greater due to the
higher order achieved with event detection, but in practice
timesteps much shorter than 600 s are probably rarely used
in applied oceanography. With cubic or quintic interpolation,
the errors are very similar between the standard and the event
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Figure 5. Work-precision diagram showing the relative median error as a function of number of evaluations of the right-hand side of the
ODE, for five regular fixed-step integrators, ocean currents with three different resolutions, and three different orders of interpolation.

Median
relative error

Euler
R-K2
R-K 3 (Heun)
R-K 3 (Kutta)

R-K 4

4 km, linear 20 km, linear

Median
relative error

\”\\899:”' quintic

Median
relative error

10712 L

o 1o

i
No. of evals, Ny

102

o

o
No. of evals, Ny

IR T

No. of evals, Ny

Figure 6. Work-precision diagram showing the relative median error as a function of number of evaluations of the right-hand side of the
ODE, for five fixed-step integrators with discontinuity handling, ocean currents with three different resolutions, and three different orders of

interpolation.

detection approaches, or even a bit worse with event detec-
tion (presumably due to the larger number of floating point
operations).

Another way to consider the results is to look at the run-
time needed to achieve a given level of accuracy. In Table 2,
we show the runtime needed to achieve a median relative
error of 10~10 after 72h of integration, which is about the
accuracy obtained with fourth-order Runge-Kutta, cubic in-
terpolation, and a timestep of 4 = 600s. To find the runtime
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needed for a given error, linear interpolation was applied to
error as a function of runtime on a log-log scale (see Fig. D1
and D2 in Appendix D). We see that for cubic and quintic in-
terpolation, the method with event detection is slower, due to
the additional number of operations involved in crossing cell
boundaries. For linear interpolation, however, the event de-
tection method achieves the same accuracy as the standard
approach, but with a factor 6-7 reduction in runtime. For
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Table 1. Median relative error for a timestep &2 = 600s, using the

fourth-order Runge-Kutta integrator.

Standard

800 m 4km 20km
Linear 3.69x 1078 292x107% 6.88x 10710
Cubic  333x10710 6.00x 10712 221x107!12
Quintic 1.29x 10710 2,06x 10711 2.39 x 10711
Event detection

800 m 4km 20km
Linear 8.6x10719  358x 10712 6.34x 10713
Cubic 242x10710 799x 10712 236x 10712
Quintic 2.15x 10710 57210711 3.25x 107!

Table 2. Runtime in seconds needed to achieve a median relative
error of 10710, using the fourth-order Runge-Kutta integrator.

Standard

800m 4km 20km
Linear  150.2s* 45.8s 22.1s
Cubic 427s 155s 119s
Quintic 94.0s 59.0s 61.2s
Event detection

800m 4km 20km
Linear 26.2s 6.4s 3.1s
Cubic 68.1s 24.7s 143s
Quintic 175.1s  94.1s 71.6s

* For the 800 m resolution dataset with linear
interpolation, this accuracy was not achieved with
the standard method, hence this runtime is based on
linear extrapolation of the error as a function of
runtime in a log-log plot (see Fig. D1).

higher accuracy (smaller error), the difference will be even
larger.

5.3 Application to backtracking

A common application of Lagrangian particle methods is in
backtracking, used for example to find the source of an oil
spill (Galt and Payton, 1983; Suneel et al., 2016), the ori-
gins of plastics in the ocean (Strand et al., 2021; van Duinen
et al., 2022), or the site of an accident in search and rescue
(Abascal et al., 2012; Drévillon et al., 2013; Breivik et al.,
2025). A somewhat subtle element in backtracking is that
simulations often start from observations, where floating ob-
jects have been found. Floating objects at sea are not uni-
formly distributed, but are more likely to be found in zones of
convergent surface currents (D’ Asaro et al., 2018). In back-
tracking, one essentially reverses the velocity field, such that
zones of convergence become zones of divergence. This pro-
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Figure 7. Particles from the initial position (grey square) are mod-
elled forwards in time for 25 d (black dots), using modelled surface
currents with 4 km horizontal resolution, linear interpolation, and
the fourth-order Runge-Kutta method with discontinuity handling.
The final positions of the forwards modelling are then used as initial
conditions for an exercise in backtracking. The dashed line shows
the outline of the subsetted data, which is provided along with the
code (Nordam and Mgrk, 2025).

vides two challenges: First, when a particle is found in a con-
vergence zone, it is typically not known when it arrived in
that zone. When reversing the velocity field in the backwards
simulation, the particle may leave the convergence zone at a
different time than when it arrived. Second, when a particle is
in a convergence zone, even a small error in the position can
lead to a large difference in the direction of the velocity field.
Both of these effects can lead to large errors in backtrack-
ing, as discussed in Reijnders et al. (2024) and Breivik et al.
(2025). Any initial errors will tend to grow over the course
of a trajectory, and for these reasons it may be of extra im-
portance to use accurate numerical schemes in backtracking.

Just to be clear, we note that there is no intrinsic differ-
ence between forwards and backwards trajectory modelling.
Aside from some asymmetries such as river outlets, the re-
versed velocity field of the ocean is not drastically differ-
ent from the original field. The challenge in backtracking is
thus not due to the velocity field, but rather due to the initial
positions, which tend to be located in zones of convergence
(D’ Asaro et al., 2018).

To test our numerical schemes on a realistic case of back-
tracking, we first start out 2500 particles in a 50 x 50 grid
of initial positions, and run these forwards in time for 25d,
using the 4 km resolution currents, linear interpolation, and
the fourth-order Runge-Kutta method both with and with-
out discontinuity handling, with a 10 s timestep. We note that
we consider transport in the horizontal plane, using only the
surface currents. The initial and final particle positions are
shown in Fig. 7, and we observe that many of the particles
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Figure 8. Result of the backtracking, for the fourth-order Runge-
Kutta method with and without discontinuity handling, and for three
selected timesteps. Also indicated is the number of particles that are
more than 0.1 m outside the initial square. If the backtracking was
perfect, all particles would end up inside the black dashed line.

are found in relatively narrow bands of high concentrations,
corresponding to the convergence zones discussed above.

Using the final positions of the forward runs as initial
positions, we conduct backtracking with the same dataset
and interpolation (4km, linear). We use the fourth-order
Runge-Kutta method, with and without the discontinuity
handling scheme described in Sect. 3.2, and we use a range
of timesteps from 60 to 3600s. In Fig. 8, we illustrate the
results qualitatively. If the backtracking was perfect, all par-
ticles would end up back inside the initial square (dashed
black lines). We see that shorter timesteps are better, and we
also see that the method with discontinuity handling does a
better job than the standard method.

Finally, in Fig. 9, we show the median and mean error as a
function of timestep. Here, the error is defined as the absolute
distance away from the true initial location we are trying to
recover by backtracking. As we expect from the discussion
in Sect. 5.1 and 5.2, we see second-order convergence for
the median error of the standard fourth-order Runge-Kutta
method, due to the discontinuous derivatives of the linear in-
terpolation. The method with event detection and discontinu-
ity handling is able to achieve fourth-order convergence, and
the median error at a timestep of 600 s is around three orders
of magnitude smaller than for the standard method.
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Figure 9. Median error (top panel) and mean error (bottom panel),
relative to the ideal initial position, as a function of timestep, for the
fourth-order Runge-Kutta method with and without discontinuity
handling.

For the mean error, the convergence is much slower, which
is more unexpected. We see from the illustration in Fig. 8
that most particles end up very close to the correct position,
while a small percentage (up to 20 % for the longest timestep
and the standard method) end up quite far away from the cor-
rect positions, outside the dashed square. The median error is
dominated by the majority of particles with a fairly small er-
ror, while the few particles with an error of 100 km or more
will dominate the average. We conclude that the growth in
the average error is driven primarily by the growth in num-
ber of particles that have very large errors. The responsible
mechanisms are presumably the timing of the departure from
the convergence zones in the backwards run, as well as the
initial direction on leaving the convergence zones, as dis-
cussed above. While both methods show slower convergence
of the mean error, the method with discontinuity handling
still performs far better than the standard method, with faster
convergence and about 1 order of magnitude lower error for
a timestep of 600 s, and the improvement is even better for
shorter timesteps.

5.4 Comparison to variable-timestep methods

The topic of Nordam and Duran (2020) was discontinuities
in the partial derivatives of the right-hand side of the ODE
along the time dimension. Two strategies were investigated:
First using fixed-step integrators with timestep and start time
chosen such that the integration always stops and restarts ex-
actly at the times when the input data is defined, and second
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to use variable-timestep integrators, but modify them in such
a way that they stop exactly at these times. The first strat-
egy from Nordam and Duran (2020) is the same as what we
have presented in Sect. 5.1. Here, we present a comparison of
the variable-step methods from Nordam and Duran (2020) to
the fixed-step integrators with event detection and spatial dis-
continuity handling developed in the current study. We limit
the comparison to linear interpolation, as this is both the most
common use case, and the case where the greatest differences
are seen.

We have not discussed variable-step methods so far, but
briefly they are ODE methods where one specifies an error
tolerance instead of a timestep, and then the method will take
as short steps as needed to meet the tolerance. Variable step
methods are usually very efficient for general ODE prob-
lems (Hairer et al., 2008), but do not appear to be widely
used in Lagrangian oceanography. The methods we con-
sider are Bogacki-Shampine 3(2) (Bogacki and Shampine,
1989), Dormand-Prince 5(4) (Dormand and Prince, 1980),
and Dormand-Prince 8(7) (Dormand and Prince, 1986). In
Fig. 10, we show both the standard variants, and the special
variants developed in Nordam and Duran (2020), which stop
and restart the integration at the discontinuities in time. For a
detailed description, see Nordam and Duran (2020).

In Fig. 10, we show the median relative error after 72 h of
transport (as shown in Fig. 4), for the fourth-order Runge-
Kutta method with event detection and spatial discontinu-
ity handling, compared to three varible-step methods. As
the variable-step methods do not use a fixed timestep, we
again compare the integrators by plotting error as a func-
tion of number of evaluations of the right-hand side, Ny,
as a measure of the work. Broadly speaking, the simulation
runtime is proportional to Ny, and for a fixed-step method
such as fourth-order Runge-Kutta, Ny ~ 1/ h, where h is the
timestep. As described in Sect. 3.2, for the method with event
detection and discontinuity handling, some additional evalu-
ations are done each time a cell boundary is crossed.

The timesteps considered for the fourth-order Runge-
Kutta method range from 90 to 3600s, and we see that the
method with event-detection and (spatial) discontinuity han-
dling compares favourably to the varible-step methods, both
the standard ones and the ones that handle discontinuities
along the time dimension. For the dataset with 800 m res-
olution, corresponding to the largest number of boundary
crossings during a 72 h trajectory, the event-detection method
gives better efficiency (smaller error for the same amount of
work) for timesteps of 1800 s or shorter. If lower accuracy is
acceptable, the Bogacki-Shampine 3(2) or Dormand-Prince
5(4) methods, with temporal discontinuity handling may be
preferable.

For the dataset with 4 km horizontal resolution, the Runge-
Kutta method with event-detection and spatial discontinu-
ity handling gives better efficiency than the variable step
methods for all timesteps considered. For the 20 km dataset,
Dormand-Prince 5(4) or 8(7) may give better efficiency for

https://doi.org/10.5194/gmd-18-7831-2025

7843

very high accuracies, corresponding to timesteps shorter than
600 s for the Runge-Kutta method.

Overall, we find the fixed-step fourth-order Runge-Kutta
method with spatial discontinuity handling (and a timestep
chosen to handle temporal discontinuities) to be preferable to
variable-step methods with temporal discontinuity handling
only. Even though the latter may strictly give better efficiency
in some cases, the differences are small, and may be out-
weighed by the convenience of having a fixed timestep. With
regards to complexity of implementation, the two methods
are comparable.

5.5 Comparison to other methods

We note that our method for discontinuity handling with
event detection has some similarities to the analytical method
employed by models such as ARIANE (Blanke and Ray-
naud, 1997) and TRACMASS (Do6s et al., 2017; de Vries
and Do6s, 2001). These models do not operate on a timestep
in the traditional sense, using instead an event-driven ap-
proach. When a particle enters a “cell” defined by the grid
of the hydrodynamic data, an analytical equation is solved to
find the time and location where the particle will leave that
cell, assuming linearly interpolated currents. Effectively, this
stops and restarts the integration exactly at the cell bound-
aries, thus avoiding the lower-order error terms. With the
event-detection method we presented in Sect. 3.2, the inte-
gration is also stopped and restarted at the boundary, except
that the time at which the particle reaches the boundary is
determined numerically instead of analytically. In particular,
if the integration timestep is chosen identical to the timestep
the data is provided on, h = AT, then the event detection
method will stop and restart integration at all cell boundaries
in both space and time, and nowhere else, which has strong
similarities with the analytical method.

The analytical method employed by, e.g., TRACMASS
and ARIANE, has been found to yield very low numerical
errors. This makes it particularly suited for global-scale wa-
ter mass transport studies as evidenced, for example, by only
small differences in diagnosed inter-ocean mass transfers
obtained from forward and backward calculations (Blanke
et al., 2001). Such practical reversibility of forward and
backward calculations is not necessarily obtained by stan-
dard time-stepping methods, as seen for example in Reijn-
ders et al. (2024). In that study, particles are tracked back-
wards, and then forwards, and found to return to their origi-
nal position with far higher accuracy when using the analyti-
cal method, compared to standard fourth-order Runge-Kutta
and linear interpolation. Similarly, we show in Sect. 5.3 that
our modified Runge-Kutta method with spatial discontinuity
handling performs far better than the standard method, when
tested on a case of backtracking with linearly interpolated
data.

While we have not directly compared the accuracy of our
event-detection approach to the analytical method, we do be-
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Figure 10. Median relative error after 72 h trajectory duration, for the three variable-timestep methods discussed in Nordam and Duran
(2020), and for the fourth-order Runge-Kutta method with event detection and spatial discontinuity handling. For the variable-timestep
methods, the continuous lines show the standard methods, and dashed lines show the special methods with temporal discontinuity handling.

lieve that our event-detection method offers the advantages
of relatively simple implementation and great flexibility re-
garding the velocity input velocity data as well as the choice
of interpolation and integration schemes. Our method is grid-
agnostic, and can use data that are natively on either A-grid
or C-grid, as well as data that has been produced on a C-grid,
and then interpolated to cell centers (which is very common
for openly available velocity products such as those from
Copernicus Marine Service). Our method is also adaptable to
unstructured grids, the only requirements are that we can tell
when a trajectory crosses a cell boundary, and that we need
a function that has a root at the cell boundary (see Eq. 5),
which can be used with the bisection scheme to find the time
of the boundary crossing. Our method is also interpolation
agnostic, and can be used for example with the local cubic
spline interpolation of Lekien and Marsden (2005). In short,
our method provides the opportunity to combine some of the
previously distinct features of analytical and standard time-
stepping methods for the calculation of particle trajectories
in the marine environment.

6 Conclusions

This study builds on a previous study by Nordam and Du-
ran (2020), which demonstrates that stopping and restarting
integration at discontinuities in time can improve accuracy.
Here, we have extended the idea by stopping and restart-
ing integration at discontinuities in the spatial dimensions as
well as in time. To identify the times at which spatial cell
boundaries were crossed required the use and adaptation of
methods from the general numerical literature, and we de-
veloped a variant of a procedure described by Hairer et al.
(2008, pp. 195-198) which was found to work well.

We have tested the developed procedure on some typical
applications in Lagrangian oceanography, and we demon-
strate that with our method for discontinuity handling we
achieve fourth-order accuracy with fourth-order Runge-
Kutta and linarly interpolated currents. The standard fourth-
order Runge-Kutta is only able to achieve second order accu-
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racy with linearly interpolated currents, due to the discontin-
uous derivatives at every cell boundary. When combined with
higher-order interpolation schemes, the results are essentially
the same regardless of integration method, though in practice
linear interpolation is the most commonly used approach in
oceanography, due to its volume conserving properties.

As a comment on the standard methods, we note that the
combination of fourth-order Runge-Kutta and linear interpo-
lation is not an optimal choice, despite being the most com-
mon. As shown in Fig. 5, the second-, third-, and fourth-
order standard methods all show second-order convergence
only, and in fact the third-order method due to Kutta has a
slightly smaller error for the same effort across a large range
of timesteps, compared to the standard fourth-order method.

Studies where additional accuracy may be important in-
clude backtracking for source attribution (Strand et al., 2021)
or search and rescue (Breivik et al., 2025), and generally any
study with long integration times. Using integrators with dis-
continuity handling can considerably reduce the numerical
error in such simulations. Alternatively, the same accuracy
as with standard methods can be achieved with much reduced
computational effort. The complexity of the implementation
is modest, and the fact that the modified integrators with dis-
continuity handling still use a fixed timestep has some prac-
tical advantages when it comes to reading of input data, and
writing of output.
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Appendix A: Runge-Kutta methods

In this study we consider a selection of five fixed-step nu-
merical integration schemes from the Runge-Kutta family.
We consider one method of order 1 (Euler’s method), one
method of order 2 (Heun’s method), two methods of order 3
(Heun’s method and Kutta’s method), and one of order 4 (the
classic fourth-order Runge-Kutta).

With a general s-stage explicit Runge-Kutta method, the
next step from position x,, at time #, to position x, 1| can be
expressed as (see, e.g. Hairer et al., 2008, p. 134)

N
Xn+t = Xn+h Y biki, (A1)
i=l1

where the coefficients k; are given by

i
ki=f<xn+hzaijkj,tn+hci>- (A2)

j=1

The coefficients a;;, b;, and ¢; for a specific method can
be expressed in a so-called Butcher tableau, after Butcher
(1964). The Butcher tableau for the general method repre-
sented by Egs. (A1) and (A2) is given in Table Al. We also
present the Butcher tableaus for the specific methods used in
this paper in Table A2.

Table Al. Butcher tableau for a general s-stage Runge-Kutta
method represented by Eqs. (A1) and (A2).

0
2 | a1
€3 | a3 asz

bl b2 . by
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Table A2. Butcher tableaus for the methods used in this study.
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Appendix B: Error in boundary-crossing steps In Fig. B2 we show the result of a similar test as described
above, but where the right-hand side of the ODE is given by
When stepping across a spatial boundary between cells, dur- the continuous, piecewise cubic function

ing integration of a Lagrangian trajectory, we pass a point

where f(x, ), or some of its derivatives, are discontinuous in x4+ @x—1)7% if x<l1
. . . .. . fx) = 3 . B3)

x. In the case of linear interpolation, the function itself is con- x—(x—=1)7° if x>1

tinuous, but the first derivative is a discontinuous step func-

tion. TO illustrate the error in Stepping across Such a point’ ThlS fuIlCtiOIl haS COHtinuOuS ﬁrSt al‘ld SeCOHd deerathe Wlth
we consider the continuous, piecewise linear function respect to x, but the third derivative is a step-function. We
carried out the same test as above, except that in place of an
Flo) = I+x if x<1 (BI) analytical solution we used a numerical reference solution
o 2x  if x>1 obtained with solve_ivp from scipy.integrate. We
' ' o observe that the integrators of orders 1, 2 and 3 have the
To create a tgst Wherf: we are certal.n to cross the d1sc30nt1nu1ty expected local error of orders respectively 2, 3 and 4 when
at x =1 during a single, small timestep of duration h, we  gtepping across the discontinuity (Fig. B2, left panel), while

start the.integration at xo = I —h/4 at =0, and tak.e one  the fourth-order Runge-Kutta method has local error of or-
step, which advances time to t = h. To create a test without der 4, instead of the usual 5. When not stepping across the

the discontinuity, we simply use xo = 1. In both cases, the discontinuity, all the integrators have the expected local error
analytical solution at time 4, is (Fig. B2, right panel).

2
x(h):exp|:2<h—ln(1+x0>>i|. (B2)

In Fig. B1 we show the result of the test described above,
where the local error has been calculated by comparing the
numerical solution after one step to the analytical solution.
We observe that all five integrators considered have local
error of order 42, when stepping across the discontinuity
(Fig. B1, left panel), and the more usual local errors of or-
der p + 1 when not stepping across the discontinuity (right

panel).
1074 N B
s — RK1 o
1076 - oo |l — RK2 olod
oD —— RK 3 (Kutta) Ol
e ’
S 1078 - i RK3 (Heun) ~Z2
£ — RK4
2 oo — RK1 | —
8 RK2 | T ... ~ht
| —— R-K 3 (Kutta) -
_ 7,
10712 4 R-K 3 (Heun) | 1 =~
— RK4
10-14 4 _—— ~h2 J
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Figure B1. Absolute value of the local error, for a single step of length 4. In the left panel stepping across a point with discontinuous first
derivative (see Eq. B1), and in the right panel without the discontinuity. We note that all integrators have a local error of order h? when
stepping across the discontinuity, and their expected orders when there is no discontinuity. For this particular example, the local error of the
classic fourth-order Runge-Kutta and Kutta’s third-order method are almost identical, which is why the green line is not visible.
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when stepping across the discontinuity, while for the case with no discontinuity the fourth-order method has the expected fifth-order local
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Appendix C: Reference solutions

In order to find the numerical error in the trajectories, we
need a reference solution to compare against. In the absence
of an analytical solution, we are forced to use a numerical
reference solution. As we make the timestep shorter, the nu-
merical solutions will become more accurate, but only up to
a point. Eventually, roundoff error starts to dominate over
truncation error as we make an increasing number of steps,
and therefore an increasing number of calculations (Lapidus
and Seinfeld, 1971, pp. 35-37). Clearly, there exists an op-
timal timestep, where the sum of the roundoff error and the
truncation error is minimal.

To obtain the numerical reference solutions for this study
we wish to use a timestep close to the optimal. To estimate
the optimal timestep, still in the absence of analytical solu-
tions, we use an approach of repeatedly halving 4, with a
measure of the error given by

E(h) = |xn(h) —xnp@h)|. (1)

Here, E(h) is the difference between the solution after N
steps with timestep %, and the solution after N /2 steps with
timestep 2h. We average over all particles, and plot the mea-
sure of the error as a function of timestep, as shown in
Fig. C1. The timestep where the difference between the error
at 4 and at 2/ is smallest, will be used as the reference.

The timesteps used for the reference solutions are sum-
marised in Table C1. The different datasets, and also the dif-
ferent interpolation schemes, in general give different veloc-
ity vector fields. Hence, they also give different solutions,
and separate reference solutions are obtained for each of
the nine combinations of dataset (resolution) and interpola-
tor. The reference solution is calculated with the fourth-order
Runge-Kutta integrator in all cases, using standard RK4 for
the standard methods, and RK4 with discontinuity handling
as reference for the methods with discontinuity handling.
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Figure C1. A measure of the error, E(h) (see Eq. C1), as a function
of timestep, for the standard integrators (left) and the integrators

with event detection (right). All results are for fourth-order Runge-
Kutta.

Table C1. Timesteps used to obtain the numerical reference solu-
tions for the error analysis, for the standard integrators (left) and the
integrators with event detection and discontinuity handling (right).
In all cases, the fourth-order Runge-Kautta integrator is used for the
reference solution.

Standard

800m 4km 20km

Linear 10s 10s 10s
Cubic 10s 30s 60s
Quintic  10s 30s 30s

Discontinuity handling

800m 4km 20km

Linear 10s 20s 60s
Cubic 10s 30s 60s
Quintic  10s 30s 30s
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Appendix D: Additional results

In Figs. D1 and D2 we show work-precision diagrams where
the error is shown as a function of runtime, T1,,. The runtime
was measured on an Intel i9 CPU (3.7 GHz), with the pro-
gram running on a single core. Reading of current data from
disk, and creation of the interpolator object, was not included
in the measured time.
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Figure D1. Median relative error as a function of runtime, for the standard integrators. The dotted, dash-dotted and dashed lines show
expected behaviour for respectively second, third and fourth-order methods, if runtime was inversely proportional to the timestep.
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Figure D2. Median relative error as a function of runtime, for integrators with event detection. The dotted, dash-dotted and dashed lines
show expected behaviour for respectively second, third and fourth-order methods, if runtime was inversely proportional to the timestep.
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